nasa goddard workshop on artificial intelligence, 28nov18 ... · o control-flow parts →cpu o...

10
Hybrid Semantic Image Segmentation using Deep Learning for On - board Space Processing Investigators and Students Sebastian Sabogal , Alan D. George – SHREC University of Pittsburgh Gary Crum – NASA Goddard Space Flight Center Research highlighted in this presentation was supported by SHREC members and by the I/UCRC Centers Program of the National Science Foundation under Grant No. CNS-1738783. NASA Goddard Workshop on Artificial Intelligence, 28NOV18

Upload: others

Post on 14-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

Hybrid Semantic Image Segmentation using Deep Learning for On-board Space Processing

Investigators and StudentsSebastian Sabogal, Alan D. George – SHREC University of Pittsburgh

Gary Crum – NASA Goddard Space Flight Center

Research highlighted in this presentation was supported by SHREC members and by the I/UCRC Centers Program

of the National Science Foundation under Grant No. CNS-1738783.

NASA Goddard Workshop on Artificial Intelligence, 28NOV18

Page 2: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

Deep Learning for Space

• Space Computing Challenges

o Escalating demands for high-performance on-board processing

• Convert large volumes of raw-sensor data into actionable data

or scientific knowledge to overcome downlink bandwidth

• Enable real-time systems for autonomous spacecraft operations

o Unique constraints in size, weight, power, and cost (SWaP-C)

o Unique hazards in radiation, vibration, thermal, and vacuum

• Deep Learning in Space

o Numerous opportunities for enhanced scientific methods,

autonomous operations, and intelligent space applications

o Deep learning is computationally prohibitive on traditional

radiation-hardened (rad-hard) processors

2

Page 3: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

AutomobilesLow Vegetation

Trees

DecoderEncoder

Semantic Image Segmentation

• Computer Vision / Machine Learning Processo Assign labels to all pixels

o Pixels with same label share semantic characteristics

o Output roughly resembles input

• Space Applicationso Science: Earth observations

and remote sensing

o Defense: reconnaissanceand intelligence gathering

• SegNet Modelo Convolutional neural network (CNN)

o Deep learning (86 layers)

o Encoder-decoder architecture• Encoder: classify objects

• Decoder: upsample feature maps using pooling indices

3

Roads

Buildings

Convolution + Batch Normalization + ReLU Pool Unpool Softmax

Input OutputGround Truth

Pool Indices

Page 4: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

Hybrid

Semantic Image Segmentation

4

• CHREC Space Processor (CSP)o Multifaceted Hybrid Space Computer

• Hybrid system-on-chip (SoC): CPU + FPGA

• Hybrid architecture: COTS + rad-hard

• Robust design: Novel mix of COTS, rad-hard,and fault-tolerant computing

o Operational on International Space Station since Mar’17 on STP-H5/CSP

o Planned for numerous missions: NASA CeREs, Lockheed-Martin LunIR, and STP-H6/SSIVP

• Hybrid Semantic Image Segmentationo Control-flow parts → CPUo Data-flow parts → FPGAo Scatter-gather DMA (SGDMA)

• High-throughput streams of multi-dimensional feature maps

• Interleaving & deinterleaving architecture

o ReCoN accelerator• High-performance CNN inferencing

• Scalable, parameterizable, and optimized

Software FPGA

Memory

Peripherals

CPU

AX

I-M

M

• CoreN−1

Core0 •

PartialReconfiguration

Region

ReCoNReconfigurable CNN

Accelerator

CRAM Scrubber

ReconfigureMonitor

Configuration Manager

TMR

Partial Bitstreams

libaccel

DMA

Application

Network Definition

Trained Weights

DMA Buffers

Interrupts

SGDMAScatter-Gather

DMA

AXIS

CSPv1 Rev. B

STP-H5/CSP

STP-H6/SSIVPC

S P

preconfigured

& adaptive

Fault-Tolerant Computing

Page 5: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

ReCoN Accelerator

5

• Designed for accelerating parts of SegNet Model

o Convolution, BatchNorm (BN) + ReLU, Maxpool, and Maxunpool

• Scalable and Parameterizable

o Scale accelerator size to accommodate various platforms

o Parameterize accelerator to support various mission applications

• Data-flow Optimizations

o Process pipelines in parallel

o Maximize input/output stream bandwidths

• Quantization Optimizations

o Reduce area overhead at small cost of reduced accuracy

Co

nvo

luti

on

BN

+ R

eL

UM

ax

po

ol

Ma

xu

np

oo

l

𝑈𝐿

𝑈𝑅

MA

X

𝐷𝐿

𝐷𝑅

𝑶𝑫

𝑴𝑫Line Buffer𝑰𝑫

val/rdy Controller val/rdy

(d)

𝑈𝐿

𝑈𝑅

MA

X

𝐷𝐿

𝐷𝑅

𝑶𝑫

𝑴𝑫Line Buffer𝑰𝑫

𝑶𝑫𝑰𝟏𝑰𝟐

𝑰𝑫𝒊+𝟑

𝑰𝑫𝒊+𝟐

𝑰𝑫𝒊+𝟏

𝑘 𝑘

𝑘 𝑘 𝑘

𝑘 𝑘 𝑘

𝑘𝑘 𝑘

𝑘 𝑘 𝑘

𝑘 𝑘 𝑘

𝑘𝑘 𝑘

𝑘 𝑘 𝑘

𝑘 𝑘 𝑘

𝑘𝑘 𝑘

𝑘 𝑘 𝑘

𝑘 𝑘 𝑘

𝑘𝑑0,0 𝑑0,1

𝑑1,0 𝑑1,1 𝑑1,2

𝑑2,0 𝑑2,1 𝑑2,2

𝑑0,2 Line Buffer

Line Buffer

2D Convolution

2D Convolution

2D Convolution

2D Convolution

𝑏

𝑏

𝑏

𝑏

(a)

(b)

𝑰𝑫𝒊+𝟎

𝑶𝑫𝒋+𝟐

𝑶𝑫𝒋+𝟏

𝑶𝑫𝒋+𝟎

𝑶𝑫𝒋+𝟑

𝑶𝑫𝑰𝟏𝑰𝟐

val/rdy Controller val/rdy

val/rdy Controller val/rdy

𝑈𝐿

𝑈𝑅

𝐷𝐿Line Buffer

𝐷𝑅

𝑰𝑫𝑴𝑫

𝑶𝑫

val/rdy Controller val/rdy

(e)

𝑈𝐿

𝑈𝑅

𝐷𝐿Line Buffer

𝐷𝑅

𝑰𝑫𝑴𝑫

𝑶𝑫

𝑶𝑫𝑥 𝑧× ×_𝑰𝑫 ReLU

𝑶𝑫𝑥 𝑧× ×_𝑰𝑫 ReLU

𝑶𝑫𝑥 𝑧× ×_𝑰𝑫 ReLU

val/rdy Controller val/rdy

(c)

𝑶𝑫𝑥

E[𝑥]

Var 𝑥 + 𝜖−1

𝛾

𝛽

𝑧× ×_𝑰𝑫 ReLU

Page 6: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

Accuracy and Resource Utilization

Prediction Accuracy/Error Net (7.38M weights) Net½ (1.85M weights) Net¼ (465K weights)

Prediction Accuracy (RGB) 90.17% 89.63% 88.30%

Prediction Accuracy (IRRG) 90.00% 89.95% 88.92%

Accelerator Error (floating-point) 0.00% 0.00% 0.00%

Accelerator Error (Q9.16) 0.73% 0.40% 0.30%

Accelerator Error (Q9.18) 0.72% 0.39% 0.29%

0

25

50

75

Slices FFs BRAM DSPs

Uti

liza

tio

n [

%]

Resource Utilization (Z7045)

Framework ReCoN2 ReCoN4 ReCoN8

SubsystemSlices

(218600)

FFs (437200)

BRAM (545)

DSPs (900)

Framework 3.87% 1.14% 6.33% 0.00%

ReCoN2 1.62% 2.03% 1.84% 4.44%

ReCoN4 3.81% 5.94% 3.49% 16.89%

ReCoN8 12.02% 20.39% 6.79% 65.78%

SubsystemSlices

(274080)

FFs (548160)

BRAM (912)

DSPs (2520)

Framework 4.23% 1.00% 7.57% 0.04%

ReCoN2 0.93% 1.24% 1.09% 1.59%

ReCoN4 2.14% 3.57% 2.08% 6.03%

ReCoN8 6.45% 11.64% 4.05% 23.49%

Platform: Xilinx ZC706 (Z7045)

Platform: Xilinx ZCU102 (ZU9EG) Data: 512×512 RGB – ISPRS Potsdam

05

10152025

Slices FFs BRAM DSPs

Uti

liza

tio

n [

%]

Resource Utilization (ZU9EG)

Framework ReCoN2 ReCoN4 ReCoN8

6Best on CSPv1

Page 7: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

Platform: Xilinx ZC706 (Z7045)

SW/CPU: dual-core ARM Cortex-A9 with NEON, 667MHz, -O2 Data: 512×512 RGB

Performance and Energy-Efficiency

on Zynq SoC

7Best Outcome

1

10

100

1000

10000

NET NET½ NET¼

Ex

ec

uti

on

Tim

e [

s]

Performance

SW - 1 SW - 2 ReCoN2 ReCoN4 ReCoN8

Execution Time [s] Improvement Dynamic

Power [W]

Dynamic Energy [J] Improvement

Version Net Net½ Net¼ Net Net½ Net¼ Net Net½ Net¼ Net Net½ Net¼ SW (1 thread) 2345.1 543.2 115.7 1.0 1.0 1.0 1.46 3424.0 793.0 169.0 1.0 1.0 1.0

SW (2 threads) 900.9 184.6 40.6 2.6 2.9 2.9 1.51 1360.0 279.0 61.3 2.5 2.8 2.8

SW (4 threads) – – – – – – – – – – – – –

ReCoN2 66.0 16.8 4.6 35.5 32.3 25.3 1.60 105.3 26.9 7.3 32.5 29.5 23.2

ReCoN4 27.6 7.3 2.1 85.0 73.7 54.5 1.62 44.8 12.0 3.4 76.4 66.2 49.0

ReCoN8 13.3 3.7 1.2 175.8 145.0 96.2 1.86 24.8 7.0 2.2 138.0 114.0 75.5

1

10

100

1000

10000

NET NET½ NET¼

Dyn

am

ic E

ne

rgy [

J]

Energy Efficiency

SW - 1 SW - 2 ReCoN2 ReCoN4 ReCoN8

Best on CSPv1

175 times faster 138 times less energy

Page 8: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

1

10

100

1000

10000

NET NET½ NET¼

Exe

cu

tio

n T

ime [

s]

Performance

SW - 1 SW - 2 SW - 4 ReCoN2 ReCoN4 ReCoN8

1

10

100

1000

10000

NET NET½ NET¼

Dyn

am

ic E

ne

rgy [

J]

Energy Efficiency

SW - 1 SW - 2 SW - 3 ReCoN2 ReCoN4 ReCoN8

Platform: Xilinx ZCU102 (ZU9EG)

SW/CPU: quad-core ARM Cortex-A53 with NEON, 1.2GHz, -O2 Data: 512×512 RGB

Performance and Energy-Efficiency

on Zynq UltraScale+ MPSoC

8

Execution Time [s] Improvement Dynamic

Power [W]

Dynamic Energy [J] Improvement

Version Net Net½ Net¼ Net Net½ Net¼ Net Net½ Net¼ Net Net½ Net¼ SW (1 thread) 1973.4 370.5 70.7 1.0 1.0 1.0 2.65 5230.0 982.0 187 1.0 1.0 1.0

SW (2 threads) 526.2 112.1 28.7 3.8 3.3 2.5 2.79 1468.0 313.0 80.2 3.6 3.1 2.3

SW (4 threads) 274.3 57.8 14.9 7.2 6.4 4.8 3.20 879.0 185.0 47.6 6.0 5.3 3.9

ReCoN2 55.2 13.5 3.8 35.7 27.5 18.8 2.70 148.8 36.3 10.1 35.1 27.1 18.5

ReCoN4 16.6 4.7 1.5 118.9 78.7 46.6 2.88 47.8 13.6 4.4 109.0 72.4 42.9

ReCoN8 8.4 2.6 1.0 236.1 141 72.1 2.97 24.8 7.8 2.9 211.0 126.0 64.3

Best Outcome

236 times faster 211 times less energy

Page 9: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

Conclusions

•Major Challenges Lie Ahead

oEscalating app demands in harsh environments

o Tightening constraints of platform, budget, process

oNecessitates adeptly doing more with less

•Hybrid Computing for On-board Processing

oEnable intelligent spacecraft

• Accelerate compute-intensive deep-learning applications

• Improve application performance and energy-efficiency

oDeep learning on-board

• Enable and extend spacecraft capabilities for science

and defense applications

9

Page 10: NASA Goddard Workshop on Artificial Intelligence, 28NOV18 ... · o Control-flow parts →CPU o Data-flow parts →FPGA o Scatter-gather DMA (SGDMA) • High-throughput streams of

Dr. Alan D. George (PI), Department Chair, R&H Mickle Endowed Chair,

Professor of ECE, and NSF SHREC Center Director

NSF Center for Space, High-Performance, and Resilient Computing (SHREC)

ECE Department, University of Pittsburgh

1238D Benedum Hall, 3700 O’Hara Street Pittsburgh, PA 15261 412-624-9664

Email: [email protected] or [email protected]

10

Questions?

www.nsf-shrec.org