nasa technical note

24
I $!" NASA TECHNICAL NOTE NASA TN D-3921 c N A 1 L I4 0 ITHRU) -23300 - (ACCESSION NUMBER) - E > L c IPAQES) B i ICATEQORY) (NASA CR OR TMX OR AD NUMBER) PROGRAMS FOR COMPUTING EQUILIBRIUM THERMODYNAMIC PROPERTIES OF GASES by Hawy E, Bailey Ames Research Center Moflett Field Cdl$ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. APRIL 1967 https://ntrs.nasa.gov/search.jsp?R=19670013971 2019-04-13T06:25:03+00:00Z

Upload: others

Post on 12-Sep-2021

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NASA TECHNICAL NOTE

I

$!"

N A S A TECHNICAL NOTE N A S A TN D-3921

c N

A 1 L

I4

0 ITHRU)

-23300 - (ACCESSION NUMBER) - E

>

L

c IPAQES)

B

i

ICATEQORY) (NASA CR OR TMX OR AD NUMBER)

PROGRAMS FOR COMPUTING EQUILIBRIUM THERMODYNAMIC PROPERTIES OF GASES

by Hawy E, Bailey Ames Research Center Moflett Field Cdl$

N A T I O N A L A E R O N A U T I C S A N D SPACE A D M I N I S T R A T I O N W A S H I N G T O N , D. C. A P R I L 1967

https://ntrs.nasa.gov/search.jsp?R=19670013971 2019-04-13T06:25:03+00:00Z

Page 2: NASA TECHNICAL NOTE

c

. NASA TN D-3921

PROGRAMS FOR COMPUTING EQUILIBRIUM THERMODYNAMIC

PROPERTIES OF GASES

By Harry E. Bailey

Ames Research Center Moffett Field, Calif.

N AT I ON AL A E RON AUT ICs AN D SPACE ADM I N I ST RAT I ON

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price $3.00

Page 3: NASA TECHNICAL NOTE

b

, PROGRAMS FOR COMPUTING EQUILIBRIUM THERMODYNAMIC

PROPERTIES OF GASES

By Harry E. Bailey

Ames Research Center

SUMMARY

This r e p o r t p r e s e n t s a s e r i e s of subroutines, w r i t t e n i n FORTRAN I V , f o r c a l c u l a t i n g the equi l ibr ium thermodynamic p rope r t i e s of any mixture of r e a c t - ing diatomic gases i f the temperature, dens i ty , and molar concentrat ions of the spec ie s a r e given. One t r i a t o m i c gas, carbon dioxide, may a l s o be included i n t h e mixture. Two a d d i t i o n a l subrout ines permit t h e c a l c u l a t i o n of t he molar concentrat ions of t h e spec ie s i f the gas mixture i s a i r . A sample main program i s included which uses a l l t hese subrout ines t o compute the equ i l ib r ium composition and thermodynamic p r o p e r t i e s o f a i r f o r a given d e n s i t y over a range of temperatures.

INTRODUCTION

So lu t ions t o problems involving the flow of a chemically r e a c t i n g gas r e q u i r e the computation of the equi l ibr ium thermodynamic p r o p e r t i e s of t he gas mixtures over wide ranges of temperature and d e n s i t y . These p r o p e r t i e s a r e a v a i l a b l e i n t a b u l a r form f o r a i r ( r e f s . 1, 2, and 3) , i n g raph ica l form f o r carbon d iox ide ( r e f . 4), and f o r t h ree n i t rogen carbon dioxide mixtures ( r e f . 5 ) . However, n e i t h e r t he t a b u l a r nor g raph ica l form i s convenient f o r use i n e l e c t r o n i c machine c a l c u l a t i o n s without e l a b o r a t e and tedious curve

u s e f u l f o r t h e s o l u t i o n of many problems i n the flow of a chemically r e a c t i n g gas.

I f i t t i n g of t h e da t a . Therefore, the subroutines presented he re should prove

F ive d i f f e r e n t subrout ines are presented i n t h i s r e p o r t . I n add i t ion , a main program designed t o compute the equi l ibr ium thermodynamic p r o p e r t i e s of a i r i s p resen ted t o i l l u s t r a t e t h e use of t h e f i v e subrout ines . Two of the subrout ines , SPECIE and ENTH, can be used t o o b t a i n the pressure, enthalpy, s p e c i f i c h e a t a t cons t an t pressure (with frozen composition), entropy, gas constant , and equ i l ib r ium cons tan t s of the components of a gas mixture. The va r ious chemical and phys ica l constants needed as inpu t by subrout ine SPECIE may be ob ta ined from re fe rences 6 and 7. A t h i r d subroutine, MTCON, gives the r e a c t i o n r a t e s f o r e i g h t chemical r eac t ions i n a i r . This subrout ine would r e q u i r e modif icat ion i f some o t h e r gas mixture were used. t i o n a l subrout ines , GUESS and ITERA, c a l c u l a t e t he equ i l ib r ium molar concen- t r a t i o n s o f each spec ie s f o r a i r a t a given temperature and d e n s i t y . Although t h e s e subrout ines would r e q u i r e major modif icat ion f o r any mixture o t h e r t han a i r , they do provide a s u i t a b l e basis from which s imilar programs f o r o t h e r mixtures could be w r i t t e n e a s i l y .

Two addi-

Page 4: NASA TECHNICAL NOTE

Each ind iv idua l spec ie s i s assumed t o behave as an ideal gas. The thermodynamic p r o p e r t i e s of the diatomic species a r e approximated by the harmonic-osci l la tor r i g i d - r o t a t o r model with r o t a t i o n a l and v i b r a t i o n a l constants appropr i a t e t o the lowest e l e c t r o n i c s t a t e . a r e given f o r two a i r models. Model A contains the spec ie s N2, 02, N, 0, NO, NO+, O', N+, and e-.

Computational r e s u l t s

Model B contains the same nine spec ie s as model A p lus two

C P

P i C

En

*i

gn

H

Hi

HOT

Ki

Mi

n i

P

P i

R

S

si

T

T V

2

add i t iona l species , O++ and N++.

SYMBOLS

s p e c i f i c h e a t a t constant p re s su re (wi th composition frozen)

s p e c i f i c h e a t a t constant pressure f o r t he i t h spec ie s

energy of the nth energy l e v e l

f r e e energy of t he i t h spec ie s

degeneracy of the n th energy l e v e l

t o t a l enthalpy of the mixture

enthalpy of the i t h spec ie s

enthalpy of formation of t he i t h spec ie s

equi l ibr ium constant f o r the i t h r e a c t i o n

molecular weight of t he i t h spec ie s

number of atoms i n the i t h spec ie s

t o t a l pressure of t he mixture

standard p res su re of one atmosphere

p a r t i a l pressure of t he i t h spec ie s

un ive r sa l gas constant

t o t a l entropy of the mixture

entropy of t he i t h spec ie s

temperature, OK

c h a r a c t e r i s t i c r o t a t i o n a l temperature

c h a r a c t e r i s t i c v i b r a t i o n a l temperature

Page 5: NASA TECHNICAL NOTE

t

ZN mass concentration of nitrogen atoms in cold mixture

' ZO mass concentration of oxygen atoms in cold mixture

Pi sum of Bij values over the index j

Bi j difference of the stoichiometric coefficients of the jth species in the ith reaction

concentration of the ith species in moles/gm Yi

SAMPLE MAIN PROGRAM

This is a typical program (see appendix A) which uses all the following subroutines to compute the thermodynamic properties of equilibrium air. It is intended as a guide for the use of the subroutines SPECIES, mTH, RATCON, GUESS, and ITERA. It by no means exhausts the possibilities for their use.

The sample program requires an input AT (DELTA), a density (RHO), and nine species concentrations for the cold mixture of nitrogen and oxygen (G(N)). The program will then call the appropriate subroutines for the computation of the thermodynamic properties pressure, gas constant, enthalpy, entropy, specific heat at constant pressure, equilibrium constants, reaction rate con- stants (as defined under subroutine RATCON), and the species concentrations. These computations will be performed at the given density for 25 temperatures starting at AT and ending at 25 L1T. A sample output is given for air at a density of 0.01288 gm/cm3 and at 4 temperatures from 1000° K to 4000° K.

SUBROUTINE SPECIE

This subroutine (see appendix B) will compute the pressure (P),' enthalpy (H(21)), specific heat at constant pressure (with composition frozen) (CP( 21) ) , entropy (FE( 21) ) , equilibrium constants (BK( J) ) , reaction rate constants (AK(J)), and the gas constant (GCONST) for a given temperature (T) , density (R) , and the molar concentrations (GA( J) ) of each species. On the first entry to the subroutine, all necessary chemical and physical constants are read from cards and stored in the program. made for the computation of 20 species and 40 reactions.

Provision has been

This subroutine uses the following equations to compute the thermodynamic properties of the mixture from the thermodynamic properties of the components.

~ ~~

'Characters in parentheses are those used in the FORTRAN listing in the appendixes. There is an unavoidable inconsistency between these characters and those defined under Symbols.

3

Page 6: NASA TECHNICAL NOTE

The en tha lpy i s given by

RT

The s p e c i f i c h e a t a t constant pressure (wi th frozen composition) i s given by

v c = Y p p i P

The entropy of t he mixture i s given by

R RT P O

The t o t a l p ressure of t he mixture i s

P = pRT 1 y i

The equi l ibr ium cons tan t f o r each r e a c t i o n i s

The p a r t i a l p ressure of each spec ies i s computed from

- Y i Pi - - CYi

The en t ropy of each spec ies i s computed i n t h i s subrout ine as

S . = Hi - Fi 1

( 3 )

(4)

The d a t a t h a t must be input t o t h i s subrout ine a r e the number of r eac t ions ( I L ) , t he number of spec ie s ( J L ) , t he s to i ch iomet r i c c o e f f i c i e n t s f o r each r e a c t i o n ( B ( I , J ) ) , t he number of e l e c t r o n i c energy l e v e l s for each spec ies (NL(J) ) , t he energy (E(J ,N)) and degeneracy ( G ( J , N ) ) of each of t hese e l e c t r o n i c energy l e v e l s , t he number of atoms i n each molecule ( E N J ( J ) ) , t he v i b r a t i o n a l (TV( J) ) and r o t a t i o n a l (TR) temperatures of each diatomic spec ie s , the h e a t of formation (ENTA(J ) ) o f each spec ie s , t he molecular weight (EMWT(J)) of each spec ies , and f i n a l l y the percent by volume (GX(J)) of each spec ie s i n the cold mixture, A l l t h i s information i s s t o r e d i n the subrout ine and used on a l l subsequent e n t r i e s f o r t he computation of t he thermodynamic p r o p e r t i e s .

Each time the subrout ine i s c a l l e d i t must be given the temperature (T) , i n degrees Kelvin, t he d e n s i t y ( R ) i n gm/cm3, and t h e mass concent ra t ions (GA(1) ), i n moles/gm. The subrout ine w i l l then compute a l l t he q u a n t i t i e s

4

Page 7: NASA TECHNICAL NOTE

Y

l i s t e d i n the f i r s t paragraph of t h i s sec t ion . I n add i t ion , t he en tha lpy ( H ( J ) ) , entropy ( F E ( J ) ) , and s p e c i f i c h e a t a t cons t an t pressure (CP(J ) ) for each ind iv idua l spec ies (J = 1, J L ) w i l l be computed.

'

Subroutine SPECIE uses two subrout ines , ENTH and RATCON, which a r e d iscussed i n subsequent s ec t ions .

Sample input d a t a requi red by subrout ine SPECIE a r e shown i n appendix F. The inpu t d a t a a r e shown f o r model A and model B.

SUBROUTINE ENTH

This subrout ine ( s e e appendix C ) w i l l compute the en tha lpy ( H ) , s p e c i f i c h e a t a t cons tan t p re s su re (CP), and f r e e energy (FE) of a given spec ie s for a given temperature (TX). the h e a t of formation (ENTAX), t he number of atoms i n one molecule of t he spec ies (ENJX) , the v i b r a t i o n a l temperature (TVX) , t he number of e l e c t r o n i c s t a t e s ( N U ) , as wel l as the energy (EX) and degeneracy (GX) of each e l ec - t r o n i c s t a t e and a cons tan t (EMWTX) which depends on the molecular weight of t he spec ie s and the r o t a t i o n a l temperature of the spec ies .

For each spec ies , th is subrout ine must be given

The computations performed by t h i s subrout ine a r e based on the harmonic- o s c i l l a t o r r i g i d - r o t a t o r model f o r a l l diatomic molecules. It i s a l s o pos- s i b l e t o compute the thermodynamic func t ions f o r one t r i a tomic molecule, carbon d ioxide . I n t h i s computation i t i s assumed t h a t t he re i s only a ground e l e c t r o n i c s t a t e for t he carbon dioxide molecules.

The equat ions used by t h i s subrout ine f o r t h e computation of t he thermodynamic func t ions of each ind iv idua l spec ies a r e as fol lows. The f r e e energy i s computed from

F. 1 = -2n RT -En/T - [ ( n i - 1) + 2.512n T - 1 .5 2n M. + 3.6649516

1

( 8 )

The en tha lpy of each spec ie s i s

E e-En/T (ni - 1 ) ~ ~ H O i 1 a n n + + - RT

H . -&= [ ( n i - 1) + 2.51 + Cgn e -En/T T(eTVlT - 1)

( 9 )

5

Page 8: NASA TECHNICAL NOTE

The s p e c i f i c h e a t a t cons tan t pressure (wi th f rozen composition) i s

SUBROUTINE RATCON

This subrout ine ( s e e appendix D ) w i l l compute the r a t e cons tan ts f o r a given temperature according t o the formulas and cons tan ts of r e fe rences 8 and 9 f o r the r e a c t i o n s l i s t e d below.

KF

KF

KF

% KF

KB

5 KB

02 + 02 2 20 + 02

N 2 + N 2 P 2N + N2

NO + M z N + 0 + M

N + 02 2 NO + 0

0 + N 2 2 NO + N

+ - O + O t O + e

N + N t N + e - +

+ N + O ~ N O + e -

The symbol KF a f t e r a r e a c t i o n i n d i c a t e s t he forward r a t e cons tan t ; KB i nd ica t e s t he backward r a t e cons tan t .

This r o u t i n e r equ i r e s on ly the temperature as inpu t . It i s a simple mat te r t o a l t e r t h i s subrout ine t o g ive the r a t e cons t an t s f o r any r e a c t i o n des i r e d .

SUBROUTINES GUESS AND ITERA

For any mixture of n i t rogen and oxygen, two a d d i t i o n a l subrout ines ( s e e appendix E ) a r e a v a i l a b l e t h a t permi t t h e computation of t he equ i l ib r ium spec ie s concentrat ions a t a given temperature and d e n s i t y . These two

6

Page 9: NASA TECHNICAL NOTE

I

subrout ines r equ i r e a s i npu t the temperature ( T ) , t he d e n s i t y (RHO), t he atom concent ra t ions of t h e cold mixture (ZN,ZO), and e i g h t equi l ibr ium cons tan ts ( EK( I) ) .

The f irst subrout ine GUESS es t imates the r e l a t i v e magnitude of t he var ious spec ie s concent ra t ions . The second subrout ine ITERA then r e f i n e s these guessed values u n t i l they s a t i s f y the t h r e e conservat ion equat ions, t h a t i s , conservat ion of oxygen atoms, n i t rogen atoms, and charge, as we l l a s s i x equi l ibr ium equat ions. These two subrout ines r e q u i r e a block of common s torage c a l l e d /COM4/ which contains a r rays f o r 20 equi l ibr ium cons tan ts (EK(20)), 20 mass concent ra t ions (B(20) ) , 20 f irst guesses ( C ( 2 0 ) ) of the mass concent ra t ions , t he d e n s i t y (RHO), and t h e cold mass concent ra t ions of n i t rogen atoms (ZN) and oxygen atoms (ZO) .

The equat ions t h a t must be solved by subrout ine ITERA a r e l i s t e d below.

PY o2 yo2

K1 = -

"OYN K3 = - yNO

PY e -Yo+ YO

K G =

K8 = 'e -'NO+

'OYN

The convergence of t he i t e r a t i o n process sed i n subrout ine ITERA I r e q u i r e s that equat ion (19) be solved f o r the l a r g e s t of yo, yo,, or yo+, and

tha t equa t ion (20) be solved f o r t he l a r g e s t of i n g y i va lues a r e then found from equat ions (22) through (27r. The value of ye- i s always found from equat ion (21). The pa th taken i n subrout ine

YN, YN,, o r y +. The remain-

7

Page 10: NASA TECHNICAL NOTE

S!

ITERA depends therefore on the relative magnitudes of m- lllc *.---+<-.. 1~~~~~~~~ VI - 0 su'ijruutine GUESS is to provide an initiai

guess of these relative magnitudes. This initial guess is based on the temperature and density Of the mixture and on the relative values of the equilibrium constants K1 and K 6 for oxygen and K2 and K7 for nitrogen.

y o , yo2., 7~ and of ,v-- ,l\l, yq2, aEc *--* ll\lT.

r

Based on these guessed values, subroutine ITERA then computes the species concentrations by iterating equations (19) through (27) until all the equations are satisfied. At each step in the iteration the newest value of each concentration is computed as the average between the value obtained on the previous iteration and the value computed on the present iteration. The iteration is terminated when the change in the values for two successive iterations is less than a specified amount model B) and when all the equations are satisfied to within a specified amount (5~10-~ for model A and

for model A and lom5 f o r

for model B) . Appendix E gives two listings for subroutine ITERA and two listings f o r

0'' subroutine GUESS. or

In each case one listing is for model A (contains no N+') and one listing is for model B (contains 0" and N + + ) .

POSSIBLE USES OF TKE PROGRAMS

A series of programs for computing the thermodynamic properties of a variety of gases is presented. computation of the equilibrium species concentrations of air or any other mixture of nitrogen and oxygen, as well as the thermodynamic properties of the mixture.

In addition, two of the programs permit the

The programs are presented in a form which can be modified easily to For instance, the thermodynamic properties of any suit the user's needs.

diatomic or monatomic gas may be obtained simply by altering the input data to subroutine S P E C I E . Subroutine RATCON can be easily altered to give any rate constant desired. Subroutines GUESS and ITERA may be rewritten to give the equilibrium concentrations of gas mixtures other than air. A l l the sub- routines as presented may be used in a new main program to compute the equilibrium flow properties behind a normal shock wave.

DISCUSSION OF RESULTS

The main program described in this report has been used to compute the thermodynamic properties of air. model A the species assumed to be present are and e-. Model B contains and O++ in addition to the species in model A. The values obtained are compared to the values presented in references 2 and 3 (table I) and to the values presented in reference 1 (table 11).

Two different models have been used. In N2, Opt NO, N, 0, NO', N', O',

8

Page 11: NASA TECHNICAL NOTE

I

The dimensionless enthalpy, H/RT, computed for model A agrees with the , values presented in reference 2 to within 1 percent except at 15,000° K, where

the error rises to 1.39 percent at 100 times standard density and to 8.46 per- cent at times standard density. The dimensionless entropy, S/R, computed for model A, agrees with that computed in reference 2 to within 0.5 percent except at 15,000° K and 2.54 percent. The pressure (in atmospheres), for model A, a rees with that computed in reference 2 to within 3 percent except at 15,000 standard density where the error is 3.27 percent.

times standard density where the error is

% K and loe7 times

0 The increase in error at 15,000 K for enthalpy, entropy, and pressure is attributed to inadequacies in model A. The neglect of species begins to be felt at 15,000° K. comparing the results computed for model B to the results of reference 2. 15,000° K and 8.46 to 0.13 percent, the error in dimensionless entropy drops from 2.54 to 0.25 percent, and the error in pressure drops from 3.27 to 0.28 percent.

and O++ That this is indeed the case may be seen by

At p/po = 10-7, the error in the dimensionless enthalpy drops from

The highest temperature available in references 2 and 3 is 15,000° K. Therefore, for comparisons at higher temperatures, it is necessary to use the results of reference 1. The comparison between values in reference 1 and the present calculations is presented in table 11. both the model A and model B air of the present report. 25,000' K and at However, for model B, which includes points are drastically reduced. in the low temperature region.

Again, comparison is made with At 18,000° K and

p/po = the errors in model A are seen to be enormous. and O++, the errors at these

In fact, they become comparable to the errors

CONCLUSIONS

A series of subroutines written in FORTRAN IV is presented. These programs may be used to compute the thermodynamic properties at a given den- sity and temperature of any diatomic gas plus the one triatomic gas, CO2, if the molar concentrations are given. subroutines are included that permit the computation of the molar concentra- tions themselves. The thermodynamic properties of two models for air are compared to the results obtained by other investigators.

In the special case of air, additional

Ames Research Center National Aeronautics and Space Administration

Moffett Field, Calif., Dee. 28, 1966 129-01-08-20

9

Page 12: NASA TECHNICAL NOTE

APPENDIX A

I I B F T C C A I N NCREF C C A I N CHECKOUT B A I L E Y

C O C C C N / C O C 4 / E K l 2 0 l ~ B l 2 O l ~ C l 2 O ~ . R H O ~ Z N ~ ~ O D I Y E N S I O N A K l 2 O l ~ B K l 2 O l r H I 2 1 ~ ~ C P l Z l ) r S o . G ( 2 1 )

12

2

4

1

13

9

10 e

11

5

c 3

7

R E A 0 1 5 1 1 2 ) hCAX FCRCATI I31 R E A O I 5 r 2 ) DELTA FCRYAT lF15 .6 I REAC15.4) I G I N I r h = l r 9 1 F O R C A T l 5 F 1 5 . 6 1 ZN=2.*G I 5) LC=2.*G14) R E A C l 5 . 2 1 Rl-C TECP=O. YR I T E I 6.13 I F O R M A T l l 2 H l T E M P E R A T U R E / ~ 9 H CENSITYIPRESSUREVGAS CONSTANT.ENTHALPVI

1ENTROPY.CONSTANT PRESSURE S P E C I F I C H E A T l 9 H E N T H A L P Y l 8 H t N T R O P Y l 3 2 H 2 CCNSTANT PRESSURE S P E C I F I C H E A T l 2 l H E O U I L I B R I U C C O N S T A h T l 1 4 H REAC 3 T I O N R A T E l l 9 H MASS CCNCENTRATIONl34H O I N I E - I O ~ ~ N ~ , N O ~ N O ~ , O ~ , N ~ , O ~ ~ 4 . N t t ) DO 3 M = l r N C A X TEMP=TECP+OELTA CALL S P E C I E ~ T E M P ~ R H O I P R E S S I G . H I C P . S I A K I B K I G ~ O N S T I 00 8 N = l . l l I F I B K I N I -82 . I E K l N I = l O . * * B K l h l GO T O 8 E K I N l = l . E + 3 6 CONTINUE CALL GUESS CALL I T E R A 00 11 N=1.11 G I N I = B I N 1 CALL S P E C I E I T E L P I R H O I P R E S S I G I H I C P ~ S ~ A K ~ ~ K ~ G C O N S T I W R I T E l 6 r 5 1 T E M P ~ R H O ~ P R E S S ~ G C O N S T ~ H l 2 l l ~ S l 2 l l ~ C P l 2 l l F O R C A T l 1 H O ~ E 1 5 . 6 / 1 0 X 1 6 E 1 5 ~ 6 ~ W R I T E I 6 . 6 1 l H I N I . N = l . 1 1 1 W R I T E l 6 . 6 ) l S I N l l N = l r l l )

YR ITEI6.61 I B K I h ) .N=l . 10 I W R I T E l 6 . 6 1 l ~ K l ~ l ~ N = l ~ l O l W R I T E 1 6 . 6 1 I G l N l r N = 1 ~ 1 1 1 F C R C A T I L H r l l E l l . 4 1 CONTINUE W R I T E 1 6 . 7 1 FORCATI lHOs13HEhC OF RUN1 cc IC 1 END

9 1 9 9 1.2

W R I T E l 6 . 6 1 I C P l h l r N = l r l l l

10

Page 13: NASA TECHNICAL NOTE

I

TIN- 000

m N - 0 0 0

m N - 4 0 0 0

W W W m N d u m o u m n d N N

000 0

C ) N - N O 0 0 O b - l

. . . . W W W - m u e m 0 m m m

W W W m O N N 9 0 m U v I 4 N N

0 0 0 0 . . . . NNN

000 0 . . . .

I W W W W W QtnOldO m U N m 0 P N O t n O Y l N N - 0

I W W W W W VIOlCl-0 0 - o m 0 outnr-0 m N N C O

W W W W W

- N O ~ O N d C N O

O n v I N O N N N - 0 . . . . . . o o o ? o o

. . . . . . 000000

I 1 - 8 m N d m P 0 0 0 0 0 -

. . . . . . 0 0 0 0 0 0

I I - ~ N - N O I 00000-

*NNd&bN 0 0 0 0 0 - N

d N N - N ( T Q 0 0 0 0 0 4 4

I I W Y W W W W W m m u o m o c - m e c . n o ~ o n m m ~ o m 4 V I N N U O U u...... ~ 0 0 0 0 0 0

I 1 O N N - - O ~

or>oo- - W W W W W W

I

m m ~ t n t n m . a O U - A N - ~

m t n m m - m W U N N C l - m e...... C O O O O O O 0. I Y I N N - N S C goooo-0

I W W W W W W

m m N O o O W N N N - 0 m...... m O O O O O O

m o 9 m a o O N N ~ ~ O

I W W W W Y W m m ( P N C 0 m m m o u o 4-4"LndO m r ( N N D 0 m . . . . . , u 0 0 0 0 0 0

I 1 W W W W W W W C C d d . t O N Q O O N Q O C s c m m r t o t n U C N N Q O O u... . . . u 0 0 0 0 0 0

I 1 O m N d N C

0 0 0 0 -

I 1 O N N d N C C 0 0 0 0 4 y

W W W W W

O O Q O l - m ~ N ~ O N N

m - m m a

W W W W W W m . n m o m ~ . n o m m o u + r ( 9 m m - 0 -

W 6 N N d N a

W W W W W W

o o u o c m m

e......

m c o - - Y t n . n

W S N N ~ - - y \ u m m o o

~ 0 0 0 ~ 0 0

W - 8 N N r . L n I n . . . . . . m o o o o o o 0 I

- 0 0 0 0 - e . W W W W W

C l m - m s c d N d m P N m m Q I D

~ 0 0 0 0 0 0

utoooo- 9 - W W W w W

N ~ N - N ~

- ~ m r - r l d . . . . . .

W N N - N ~

m m ~ . o m c o m m a t n m r l - ~ m o ~ m .dNuFd o...... 000000

_. . . - N . . . . . . Lnoooooo 9 N N d N C - Y l-0000-- c I . W W W W W W

O N Q d Y \ U N o o m u m m

m I

m - ~ m m c s m u m m m

-000000

W - N - N C ~ m o o o o - o

m r - m - m u - ~ - c ~ + m m . m m u m m ~

d . . . . . .

9 I m w W w W W W

N U N m C m c

o...... 0 0 0 0 0 0

c U W

I: U

lL

U W P u,

W

K 3 m

VI W

K

I

I

a I- z U

I- v) z 0 U

>

0 K

i- z W

> -I

I: c z W

I-

z U c v)

z 0 U

m U

a

a a

& N N - & ; ~ O m I

o c m m c c - - ~ m - m r ( ~ m ~ u a ~ m

N0000--4

. W W W W W W

U m U N d m - . e . . . . ~ 0 0 0 ~ 0 0

~i W w w w W IiJ

m u m o m u m m u ~ t n -

O N N - A C O I Y ) P - e Q N t n

d . . . . . . - 0 0 0 p 0 0 W d N d N l - N ~ 0 0 0 0 - 0

N W W W W W W

r - u m m o - m

o...... 000000

m - s m t n m e m m c u u Q ~ t n . r - m u ~ r l r (

W - N - N S N m o o o o - o N I N W W W W W W u m ~ m m m ~ V I N W Q d N m tn m m u o m m . a m u ~ m m

0 . . . . . . O O O O O O

I d N d - 0 4

c o o o o - 0 0 - w W w u l w i w c r ( m m m t n

m - m u u c t n m u m u m m ~ C m m U t n N 9

u...... N m o o o p o o ._

. r ( N d A U N o o o o o - o

.- . r (N r lLUN ooooo-o

I W W W W W W

m 9 U N d O . U

U m U N N U W . . . . . . m O O O O O O m O . - r ( - d m C

m m u o m m o m m m u m m

~ o o o o o p

.-N--.~N o o o o o - o

I w W W Iy W w U Q Q Q 9 0

0 c O . d Q m m m N U + - +

W . . . . . . N 3 0 0 0 0 0

m a ~ e r - m m

I W W W W W W 0 - 9 9 9 -

m m r . m o m m O N U 9 0 m U

U V l U m - ~ w . . . . . . tnoooooo

W W W W W W m a t n o r n o

m t n ~ c m m m

m o o o o o o

0 0 N U - m - u m u u m c

U . . . . . .

m N d d 4 N - U N O 0 0 0 0 4 .+

+ + z + + 0 + 5 + 0

I- 4 W

I V

U I

m w w w u l l i J - 0 m 0 - m

o o m o ~ m

N ~ N ~ N LnVl tnNQ . . . . . .

- 0 0 0 0 0 0 0 I N N d N Q

W o o O D - m N d J Y W W W m m m o ~ m m - u o o u ~ m - t n n ~

U - t n N N U U 0 . . . . . . .

0 0 0 0 0 0 0 W l o N N - N ~ N 0 0 0 0 0 0 - 0 I 1 0 W W W W W W

N U d m U ! O

0 m N N N r t U 0 0 0 0 0 0

p m m 9 m m t n . " m u m - . . . . . . I

~ W W W W W ~ . O - O N ~ Y ,

000090Ln m o m m m u N m N C - 4 N C N - N ~ . . . . . .

- 0 0 0 0 0 0 0 I NNr(N9-4

W 0 0 0 o - d

. . . . . . - 0 0 0 0 0 0 0 I N N d N m - w o o o o - 0

. . . . . . - 0 0 c 0 0 0 0 I N N d N V I t n

W o o o o - o m N U l l l l W I

W W Y - e m L0-m

0 0 0

0 0 0

W W W U N m e m m N t n Q C L n d

r r ~ m d m m

- m m

. . . I

. . . 0 0 0

m I

m m u ~ ~ m o ~ ~ P N o N ~

... 0 0 0 c . 0 0 0

N W W W W W W

N O U b d D m U d d N N - U \ U 0 . . . . . . . ~ o m t n m ~ d N - U ~

U - ~ N N N - ~ U-NNN 0 . . . . . . . 0 . . . .

0 0 0 0 0 0 0 0 0 0 0 W YI 0 N N d & * m 0 NN-4 0 0 0 0 0 0 0 0 0 0 0 0 I O 0 W W W W W W 0 WYW o 0 m m a m 9 o m d m N r 4 o m m m m U N -

0 W W W W W W

. m m t n - o Q o - U N N ~ ~ u a m 9 , n m ~

O SN"i'"Y? ) ; U & d d N NnVI

0 4 N N r t t n d 0 < y y . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11

Page 14: NASA TECHNICAL NOTE

,

I

z - I -

Y O U L - w * m

- z o - * a- w w z m

T n - U a -

_ _ u o .-I - 4 n z a m - u - w * z

4.a.x - W - * - I N

N=

-u I II I - -- A N N-

I -

-n x u

F9 x

N I .4d m - 0 d N N

v) d

Urn - I

-0 5 : a o w * c * w a n - m z d U U

2 N - V

.a .. " Y u c Z ^ C * 4 - x ~ N Z L T X -0 I4 P

v a u x I1 o w w o n

-)-mu r r w m x

4

I w

W 0 _1 4 m

r(

I - m 7

- 0 c c X S O w o

-

I- d

- w

U u w

I I V ) 0 z w z (re 0 3 N U " a

e 3 Ln

U c U m ..

- w n

- u m

I

L w * Q - 0 z * - w

c 0 A lr d N .r m u lr

12

Page 15: NASA TECHNICAL NOTE

1

,

AF'PENDIX C

S I E F T C T C l Z l O NOREF S U E R O U T I N E E N T H I T X I E h T A X ~ E N J X t T V X . E M U T X ~ E X ~ G X . N L X . H ~ C P ~ F E I D I M E N S I O N E X l Z C ) ~ G X I Z O I N X - I F I X I E N J X I

1

4

Z

6

8

1

9

- 3

5

GO T O I 1 . 2 . 3 ) ~ N X SUM1 - 0 . SUM2=0. SUM3=0. 00 4 N I l t N L X X X = G X I N I ~ E X P I - E X I N I / T X I S U N l = S U C l + X X S U M 2 = S U M Z + X X * E X l N l S U M 3 = S U M 3 + E X I N l ~ E X l H ) r X X F E = - A L O G I S U C 1 ) - 2 . 5 ~ A L O G ( T X I - E M U T X t E N T A X / T X H = 2 . 5 + S U C Z I l T X ~ S U M l ) + E N T A X / T X C P = Z . 5 + I S U M 1 ~ S U C 3 - S U ~ 2 ~ ~ 2 l / l l T X ~ S U ~ l ~ ~ ~ ~ ~ GO TC 5 SUM 1=0. SUM Z 4. SUM3=0. 00 6 N = l r N L X X X = G X l N l * E X P I - E X I N I I T X I S U M l = S U M l + X X S U M Z = S U M Z + X X * E X I N ) S U M 3 = S U M 3 + E X l N l * E X l N ) . X X F E = - A L O G I S U C 1 l - 3 . 5 ~ A L O G O - E ~ U T X + E N T A X / I X H = 3 . 5 + S U M Z / l T X ~ S U M 1 1 t E N T A X / T X C P = 3 . 5 + l S U M 1 ~ S U C 3 - S U C Z ~ ~ 2 l / l l T X ~ S U M 1 l ~ ~ Z 1 I F ( T V X / T X - 8 8 . 0 1 l r l r 0 V I B H = O . V I BCP.0. RZ-0. GO TO 9 A 1 = E X P I T V X / 1 x 1 R 2 * A L O G l l . - E X P I - T V X / T X ) ) A l l = A l - l . V I B H = I T V X I T X I I A ~ ~ V I B C P = l T v X / T X ) . . 2 V I 8 C P = l V I 8 C P / A 1 1 l ~ l A l / A l l ~ C P = C P + V I E C P H = H + V I B H F E - F E t R Z

V I 8 1 = 1 9 3 2 . 1 / T X V I B 2 = 9 6 0 . 1 / T X V I B 3 = 3 3 8 0 . / T X VIE11~1./11.-EXPl-VIEl~l VIR22=1./l1.-EXPl-VI82l~ VIB33=1./Il.-EXPI-VIE3)l V I 8 l c = V I 8 1 . . 2 . E X P l V I E l ~ / l E x P l v I e l l - l . ~ ~ ~ 2 V I 8 2 C ~ V I 8 Z ~ ~ 2 ~ E X P l V I @ Z l / l E X P l V I ~ Z l - l ~ l ~ ~ Z V I 8 3 C = V 1 8 3 . . 2 . E X P l V 1 @ 3 ) / 0 - 1 . ~ ~ ~ ~ V I B 1 ~ V I B 1 / I E X P I V I E 1 ) - 1 . 1 VIe2=VIBZ/lExPlVIBZl-l.l VI83=VIB3/IEXPlVIE3l-l.l H = 3 . 5 + V I 8 1 + 2 . ~ V I e Z + V I 8 3 + E N l A X / T X F E ~ - 3 ~ 5 ~ A L C G l T X l - A L O G l V I ~ l l ~ V I 8 2 Z ~ V I 8 Z 2 * V I B 3 3 l ~ E M U T X + E N T A X / T X CP=3.5+VIE1C+2.*VIB2CtV183C RETURN END

GO T o 5

Page 16: NASA TECHNICAL NOTE

S I B F T C T C l Z O B NOREF SUBROUTINE R A T C O N I A K I T X I D I M E N S I O N A K I 1 0 1 T 1 5 = T X * S C R T l T X l AKlll=3.6EtZ1.EXPI-5938O./lXl/Tl5 A K l Z 1 = 1 . 5 E + Z O / T 1 5 A K l 3 1 = 5 . 1 8 E t Z l . E X P I - 7 5 4 9 O . / T X ) / T l 5 A K l 4 l ~ 1 . G E + 1 2 ~ E X P I - 3 l Z O ~ / l X l ~ S C R ~ ~ l X ~ A K l 5 1 ~ 5 . G E t 1 3 ~ E X P l - 3 8 0 1 6 ~ / T X ~ A K l b ~ ~ b ~ O E + 2 4 / l T l 5 ~ T X l AK I 7 l = A K I 6 1 A K l 8 ) = 1 . 8 E t Z l / T 1 5 RETLRN END

14

APPENDIX D

Page 17: NASA TECHNICAL NOTE

0 N

z N

0 m

m d

c d

c

- 0 - N O - N U . . d

- z N . N U . d -

- m m - -

- u 0 .

I d N . - L O d

m + r . I w * u I X W L u -

N + N .-. - u - I d " m

N . d B

0 t"N

K - . - 0 * N .VI 0.

O + N - o d .r. d U 9 .- v - c - - d d u-01-

I I ~m ~ ( ~ O W I I

- m o m m

0 u- Z W L d 2 0 - - U Y C.Y

VI3z. VIOOVI W K S .

030-4 VIUU

U b-

a m = II

e

- 0

c d VI m d

- z u .- N

u U .

- u 0 .

c r .

d

U . U N

- U U N

c In *

m z m a

m i

- w

I P m .

- 0 Y O -hl

c

P U m I .I)

0 r(

0 * d

Page 18: NASA TECHNICAL NOTE

MODEL A

S I B F T C T C 1 2 0 6 NCREF SUBRCUTINE I T E R A C O ~ P C N / C O H 4 / E K l Z 0 l ~ 8 l 2 O l ~ C l Z O ~ ~ R H O ~ Z N ~ Z O DATA O E L l r D E L Z / 1 ~ E ~ 0 l r 5 ~ E ~ O E / DO 9 N = l t 2 0 0 I F l E l 4 l - E l l l l 1.192

E l 4 1.1 B I 4 I * C I 4 I I / 2 . Clll=SPRTlEl4l~EKl1l/RHOl

2 Cl4l~l~C-8l1l-8l6l-Elll-ElBll/2.

1 5

B I 1 1 = I B I 1 1 * c I 1 1 1 / 2 . C l B l = l B 1 1 l / E l 3 l l ~ l E K l 6 E l E l = 1 B l E l * C l 8 l l / 2 . N r E S T l = l GO 10 3 I F l E l 1 l - E l E l ) 4.4.5 C l 1 l ~ Z C - 2 ~ ~ E I 4 1 - ~ l 6 1 - ~ B I 1 1 = I B l 1 1 * C I 1 1 1 / 2 . C14 I = R H O * E I l I *E I11 I E K I B l 4 1 = l ~ 1 4 1 * C 1 4 1 1 / 2 . C l E l = l E 1 1 l / E l 3 l l ~ l E K l 6 E 1 8 1 = 1 8 1 E l ~ C 1 E l 1 / 2 . NTEST1=2 GO T O 3

I RHO I

7l-ElEl

1

/RHO I

4 ClEl~ZO-Elll-2~*El4l-El6l-Elll E l E l = l E l E l ~ C 1 E l 1 / 2 . C l l l = R H C ~ E l 3 1 ~ E l E I / E K O 8 l l l = l B l l l * c l l l l / 2 . C l 4 1 = R H O ~ E l 1 l ~ E l 1 1 / E K l l l 8 1 4 l = l E l 4 1 t C l 4 I 112. N l E S T l - 3

3 I F 1 E l 5 I - E l 2 1 1 6 . 6 9 1 1 C l 5 1 ~ l 2 N - ~ l 2 1 - 8 1 6 1 - ~ ( 7 ) - 8 ( 9 ) ) 1 2 ~

6 l 5 1 = 1 6 l 5 1 * C 1 5 1 1 / 2 . C ( 2 I = S P R T I E l 5 1 * E K ( Z l/RHOl E l 2 1 = 1 B I 2 1 + C 1 2 1 1 / 2 . Cl9l=lElZl/@13ll~lEKll~/RHOl E l 9 l = l E l 9 l * C l 9 l l / Z . N T E S T 2 = 1 GO T O E

6 I F l E I Z l - E 1 9 1 1 3 1 9 3 1 ~ 3 2 3 2 C 1 2 1 - Z N - 2 . ~ ~ l 5 1 - ~ l 6 1 - 8 o - B I P )

E l 2 l = l E l Z I * C I Z I I / Z . C 1 5 1 = R H O * E l 2 I ~ E 1 2 1 / E K l 2 1 8 t 5 1 = l 8 l 5 1 * t l 5 1 I/Z. Cl91=1~12l/@l31l~IEKlll/RHOl 8 1 9 1 = 1 8 l 9 1 ~ C l 9 1 1 / 2 .

3 1

E

1 0 11 1 2 13 1 4 1 5 1 6 11 1 8 1 9

22 23 2 4 25 2 6 2 1 2 6 2 9 30 9

3 4

3 3

NTESTZ-2 GO T O R Cl9l=LN-E12~-2~*Bl51-El6l-Blll E l 9 1 = 1 8 l 9 I + C l 9 ~ 1 / 2 . ClZl=RHO~8l3l~E19l/EKlll B l 2 1 = I B l Z ) + C l 2 l l / Z . Cl5l=RHC~BlZI~ElZl/EKl2l B I 5 1 = ( 8 ( 5 1 + c ( 5 1 1 / 2 . N T E S T 2 = 3 C 1 3 1 = 8 l 7 1 ~ ~ l 8 1 + @ l 9 1 8 l 3 1 = l 8 l 3 1 * c l 3 1 1 / 2 . C l 6 1 ~ R H C ~ ~ l 1 1 ~ ~ 1 2 1 / E K ( 3 1 E 1 t l = l E l 6 l * C l 6 l l / Z . C l 7 ~ = ~ ~ 1 1 * ~ 1 2 1 ~ E K l 8 1 / 6 l 3 1 8 1 1 1 = 1 8 1 1 1 * c l 1 1 1 / 2 . I F I A B S I l C l l l - E l 1 l I / @ l 1 1 l ~ D E L 1 I 1 1 * 1 1 * 9 I F I A B S l l C l Z l - E I Z 1 l / E l Z ~ I ~ D E L l 1 1 2 ~ 1 2 ~ 9 I F I A B S l l C l 3 1 - 8 l 3 1 1 / 8 l 3 1 1 - 0 E L 1 1 1 3 . 1 3 1 9 I F I A E S l l C l 4 1 - ~ 1 4 1 1 / ~ l 4 1 1 ~ D E L 1 1 1 4 . 1 4 * 9 I F I A E S l l C 1 5 ~ - ~ l 5 1 1 / ~ l 5 1 1 ~ 0 E L 1 1 l 5 r 1 5 r 9 I F I A E S l ( C l 6 1 - E l 6 1 1 / 8 l 6 1 1 - O E L 1 1 1 6 . 1 6 1 9 I F I A E S l l C l 1 1 - 8 l 7 1 1 / @ 1 1 1 1 ~ C E L 1 1 1 7 i 1 7 r 9 I F I A E S l l C l E l - E l E l l / E l 8 l l ~ O E L 1 I 16.18rS I F I A E S l l C l 9 1 - ~ l 9 1 1 / ~ 1 9 1 1 - C E L 1 I 1 9 r 1 9 r 9 0 1 ~ 2 C - ~ l 1 1 - 2 . ~ 8 l 4 1 - ~ ( 6 ) - 8 0 - 8 ( 8 1 0 2 ~ ~ N - ~ l 2 1 - 2 ~ ~ ~ l 5 1 - B ( 6 ) - 8 ( 7 ) - 8 1 9 ) 0 3 ~ B l 3 1 - E l l l - E 1 B l ~ ~ l 9 l O 4 = E l 4 1 ~ E K l l l - R H C * E l l ~ ~ ~ ~ l l O 5 = E l 5 ~ ~ E K l 2 l - R H C ~ E l 2 l * E l 2 l D 6 ~ ~ l 6 l ~ E K l 3 l - R ~ C ~ 8 l l ~ ~ B l ~ l 0 l = E l 1 l o E K l 6 1 - R H C ~ 8 l 3 l ~ E l E l O E = E l 2 ~ ~ E K l l l - R H C ~ 8 l 3 l ~ E l 9 l D 9 = ~ l 1 1 ~ ~ l 2 1 ~ E K 1 ~ 1 - ~ 1 3 1 . 8 ( 7 ) I F I A E S l O X ) - C E L Z I 2 2 1 2 2 1 9 I F I A B S 1 0 2 1 - D E L 2 I 2 3 , 2 3 1 9 I F I A E S l O 3 1 - O E L 2 I 24.24.9 I F I A E S l D 4 l - C E L 2 I 2 5 1 2 5 . 9 I F I A E S I O 5 l - C E L Z 1 2 6 1 2 6 . 9 I F I A E S 1 0 6 l - C E L Z 1 2 1 r 2 7 . 9 I F I A E S 1 0 1 1 - D E L 2 I 2 6 1 2 8 9 9 I F I A E S l D E l - C E L 2 I 2 9 , 2 9 9 9 I F I A E S l 0 9 1 - O E L Z 1 3 0 1 3 0 1 9 GO IC 33 CONTINUE W R I T E l 6 ~ 3 4 l h T E S T l ~ N T E S ~ 2 ~ l E l J l ~ J ~ l ~ 9 l F O R C A T l l H O t Z Z H N O CONYERGENCE N T E S T 1 = 1 3 e

C A L L E X I T RETURN END

l H N T E S T . ? = 1 3 / 1 H . l P 9 € 1 4 . 6 )

16

Page 19: NASA TECHNICAL NOTE

z 2 e 0 w z K W

a

I I- - - 40

0 - x o a I . . a - - 2

- a m -

a m m N - I . w - - m u \ . - r - N - P L Y . - m . -

- - C N - - I . .

IC - . - Y N x w.

N . N . m - d 3 2 ;

- - m - m e - u mu.- .*-- - - m +

- m 0 . .

u m -- + - 0. . -0

-a I1 I

* N

- m

m x

-- -- m u

-- C N a- o m VI- * * N N -- -- urn

-(D

m m e m m m e

0

0 4

W - m -

m I

e - m I

a - - * - - I .Y - -

- N W X X u.. w w

- - a -

0. I I

- 0 N - - - 0 m o r x a V I -

a . - . I O . - o m - I - ( I , N - C a -e - . - w m -

Q - . Y N

:? N ? - x t a!!>

e - - u m s

- w . " . 4

4 - m - 0 - m - m I - .

m 0-0 R m I v - x r( u n a eo-- n VIcoo- w 4 - m eo--- z o u m u

* - 0 - m - m - - m m w - m m ~ I I - m - - n m - u r n - n n r r (DN- * - - c u - * I - o o v ) c m - - m 4 - w - w m ---+a&-- m u m z w - u m v u w-

U c U m

N - - a r m

Ln m

Page 20: NASA TECHNICAL NOTE

@PENDIX F

MODEL A 8 9

2. 2.

1. 1. 1. -1. -1. 1. -1. 1.

-1. 1. -1. -1. 1.

5 1 5.0 3 -0 1 .o 5 -0 1.3 1 .o

4 .O t .o 4 .O 4 .O 2 .o

5 2

l.G 1 3

2 .o 1.

5 4 3 -0 2 .o 1 .o 3 -0 3 -0 2.0 4 5

1 .o 3 .O 6 .O 1 .o 2 .o

2 .o 2 .o 2 .o 4 -0

4 6

2.0 4 1 1.0 3 -0 6 -0 6 -0 2.0 5 8

4 - 0 6 -0 4 -0 4.0 2.0 1 .o 1 .o 6 9

3.0 5.0 5.0 1.0 5.0 1.0

0 . 0 .

I L AN0 JL

-1.

-1. 1. -1. 1.

-1.

-1.

1. 1.

1.

0.0 159.0

227.0 15868.0 33792.0 1.0

0.0 19228.C 19281.0 28840.0 28840.0

N L AN0 J 0.0

0.c

1 .o

0 .o 7918.0 13195.0

36096.0 49802.0 2256.0

0 .o 50256.0

59626.0 6CCOC . C 3314.0

0.0 121.0 43966.0 45918.0 2119.0

0.0 20000.0 3100C.O

3397.0 36000.0

0 . 0 26808. 26829.0

40467.0 40468.0 1 .o

0 . 0 49.0 131.0

32687.0 47168.0

0.

15316 .O

1 .o

0.

5 8980. C

11259C.O ELECTRON

0.0

0.0

0.0

21477.0

234970 -0

372900.0

447700 .O

0 . 0 .

OXYGEN ATCM OXYGEN ATCM OXYGEN ATCM OXYGEN ATCM OXYGEN ATCM OXYGEN ATCM

1c.coo 1 .o NITCGEN ATOM NITOGEN ATOM NITOGEN ATOM NITCGEN ATOC: N ITCGEN ATOM

NITROGEN ATOM

14.007 1 .o G AND E ELECTRON

CXYGEN MCLECULE .00054847 1.0

0

N

E-

OXYGEN MOLECULE OXYGEN MCLECULE CXYGEN MCLECULE OXYGEN MCLECULE CXYGEN MCLECULE

NITROGEN MOLECULE NITROGEN MOLECULE NITROGEN MOLECULE NITROGEN MOLECULE NITROGEN MOLECULE 28.C14 5.784 N 2 N I T R I C O X I D E N I T R I C O X I D E N I T R I C O X I D E N I T R I C O X l O E N I T R I C O X I D E 30.007 2.453 NO

32.000 4.160 02

h I T R l C C X I O E I O N N I I R I C C X I D E I O N N I T R I C C X I O E I O N N I T R I C C X I O E I O h N I T R I C C X I D E I O N 30.001 2.880 NO+

OXYCEh I O h OXYGEN I O h OXYGENIOh OXYGErt IOh OXYGENIOh OXYGENIOh

lt.OOO 1 .o o+ h I T R O G E h ICN h I T R O G E h I C h N I T R O G E h I C N NITROGEh ICN NITROGEh I C h N ITROGEh I t h h l T R O G E h I C N

14.007 1 .o N * -21153 .18841

0.

18

Page 21: NASA TECHNICAL NOTE

010011 2. -1.

2. -1. 1. 1. -1. 1. -1. -1. 1.

-1. 1. -1. 1. -1. 1.

-1. 1. -1. -1. 1.

1.c 1 .c

5 1 5.0 3 -0 1 .o 5 -0 1.0 1 .o 4 -0 6 .O 4 .O 4 -0 2 .o

5 2

1.0 1 3

2 .o 1.

5 4 3.0 2 .o 1 .o 3 .O 3.0 2.0 4 5

1 .o 3.0 6 -0 1 .o 2 .o 2.0 2 .o 2 .o 4 .O 2.0 4 7

4 6

1 .o 3 -0 6 .O 6.0 2.0 5 8

4 .O 6 .O 4 -0 4 .O 2.0 1 .o

1.0 6 9

3.0 5.6 5.0 1.0 5.0 1.0

006010 1 .o 3 .O 5 .O 5.0 1 .o 5 .O 1 .o

005011 2 .o 4 .O 2 .o 4.0 6 -0 1 .o 0. 0 . 0.

0.0 159.0

227.0 15868.0 33792.0 C.O

0.0 19228.0 1928l.C

28840 - 0

NL ANC J 0 . c

0.0

28840 .o 0.7

0 .o 7918.0 13195 -0

36096.0 49802.0 2256.0

0.0 50256.0

59626.C 6COOO.O 3374.0

0 .o 121.0 43966.0 45918.@ 2719.0

0.0 2COOO .o 31000.0

3397.0 36000 .O

0.0 26808.

40467.0

0 .o

26829.0

40468.0

0.0 49.0 131.0

32687.0 153 16 -0

4716a.c 0.0

J .0 113.4 306.8 20271.0 43183.5 60312.1

0.0

0.0 174.5

57192.1 57252.0 57333.2

0.0 0. 0.

MODEL B

1. 1.

-1.0 1.c 1.

-1.0 1.3 OXYGEN ATCM OXYGEN ATCM OXYGEN ATCM OXYGEN ATCM OXYGEN ATCM OXYGEN ATOM

58980.0

112590.0 ELECTRON

0 . 0

0.0

0.0

21477 .O

234970 -0

~ 16.000 1 .o NITROGEN ATOM

NITCGEN ATOM N I T C G E N ATOM N I T C G E N ATOM NITCGEN ATOM NITCGEN ATOM

14.007 1 .o C A N 0 E ELECTRON

OXYGEN MOLECULE CXVGEN MOLECULE OXYGEN MCLECULE OXYGEN MCLECULE

. O C O 5 4 8 4 7 1.0

CXYGEN MCLECLLE OXYGEN WCLECLLE 32.coo 4.160

NITROGEN MOLECULE NITROGEN MOLECULE k I T R O G E h MOLECULE

0

N

E-

N ITROGEN MOLECULE h ITROGEN MOLECULE 28.C14 5.784 N I T R I C O X I D E N I T R I C O X I O E N I T R I C O X I D E N I T R I C O X I O E N I T R I C O X I D E

N I T R I C C X I O E I O N N I T R I C C X I O E I O N N I T R I C C X I O E I O N h I T R I C C X I D E I O N N I T R I C C X I O E I O N

3C.CO7 2.453

3C.CO7 2.880 NO+ OXYGENION OXYGENION OX YGEN I ON OXYGENION OXYGENION OXYGENION

3 72 9CO .O lt.CO0

447700 .C 14.007

1183560. 16 -000

1130500. 14.C07 0. -21153 0. 0.

02

N2

NO

1 .o O t NITROGEN I C N NITROGEN I C N NITROGEN I C h NITROGEN I C N NITROGEN I C N N I I R O G E N ICh NITROGEN I C N 1 .o N+

O t i O i i o i i O i t O t t O t t o t +

N t t N t t N t t N t i N i t h t i

1.0 N t t

0.

1 .o a t +

.7aa+i

Page 22: NASA TECHNICAL NOTE

REFERENCES

1. Gilmore, Forrest, R.: Equilibrium Composition and Thermodynamic Properties of Air to 24,000' K. RAND Rep. RM-1543, Aug. 24, 1955.

2. Hilsenrath, Joseph; Klein, Max; and Woolley, Harold W.: Tables of Thermodynamic Properties of Air Including Dissociation and Ionization from 1,500° K to 15,000° K. AEDC-TR-59-20, Dec. 1959.

3. Hilsenrath, Joseph; and Beckett, Charles W.: Tables of Thermodynamic Properties of Argon-Free Air to 15,000° K. AEDC-TN-56-12, Sept. 1956.

4. Bailey, H. E.: Equilibrium Thermodynamic Properties of Carbon Dioxide. NASA SP-3014, 1965.

5. Bailey, H. E.: Equilibrium Thermodynamic Properties of Three Engineering Models of the Martian Atmosphere. NASA SP-3021, 1965.

6. Herzberg, G.: Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules. D. Van Nostrand Company, Inc., 1950.

7. Moore, Charlotte E.: Atomic Energy Levels as Derived From the Analysis of Optical Spectra. Vol. I. NBS Circular 467, June 15, 1949.

8. Marrone, Paul V.: Inviscid, Nonequilibrium Flow Behind Bow and Normal Shock Waves. Part I. General Analysis and Numerical Examples. CAL REP. &~-1626-~-12(1), May 1963.

9. Hall, J. Gordon; Eschenroeder, Alan Q.; and Marrone, Paul V.: Inviscid Hypersonic Airflows with Coupled Nonequilibrium Processes. CAL AF-1413-A-2, May 1962.

20

Page 23: NASA TECHNICAL NOTE

N

a, 0 C

k

a,

C

z -4

M

3 I E rl

0

w C m m

a, 0 C w

2 . 4 r l w W h

12 L o %

bow

W C Y .A

D o 'A P a 0

.4 m a, -1

m m

,? .A m w Loo

w o

w c A H le

k m

$ 2

i w d

8 3

9 a, I-'

z - - C

m k a, o I-' W

P

4

I N N

f rl N

e 0 0

3 N 9

I

21 NASA-Langley, 1967 - 12 A-2530

Page 24: NASA TECHNICAL NOTE

h

L

“The aeronautical and space activities of the United States shall be conducted SO a~ to contribute . . . to the expansion of human knowl- edge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results tbereof.”

-NATIONAL A E R O N A U ~ C S AND SPACE ACT OF 19S8

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowle&e.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu- tion because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech- nology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

3

h a i l s on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. PO546