nations unies - chm.pops.intchm.pops.int/.../0/download.aspx?d=unep-pops-poprc.…  · web viewas...

101
UNITED NATIONS SC UNEP/POPS/POPRC.14/ INF/4 Stockholm Convention on Persistent Organic Pollutants Distr.: General 18 July 2018 English only Persistent Organic Pollutants Review Committee Fourteenth meeting Rome, 17–21 September 2018 Item 4 (a) of the provisional agenda * Technical work: consideration of a draft risk profile on perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds Additional information on perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds Note by the Secretariat As referred to in the note by the Secretariat on a draft risk profile on perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds (UNEP/POPS/POPRC.14/2), the annex to the present note sets out additional information on PFHxS, its salts and PFHxS-related compounds prepared by the intersessional working group on PFHxS, its salts and PFHxS-related compounds. The present note, including its annex, has not been formally edited. * * UNEP/POPS/POPRC.14/1. 200718

Upload: others

Post on 24-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNITEDNATIONS SC

UNEP/POPS/POPRC.14/INF/4

Stockholm Conventionon Persistent OrganicPollutants

Distr.: General18 July 2018

English only

Persistent Organic Pollutants Review CommitteeFourteenth meetingRome, 17–21 September 2018Item 4 (a) of the provisional agenda*

Technical work: consideration of a draft risk profile on perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds

Additional information on perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds

Note by the SecretariatAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane sulfonic

acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds (UNEP/POPS/POPRC.14/2), the annex to the present note sets out additional information on PFHxS, its salts and PFHxS-related compounds prepared by the intersessional working group on PFHxS, its salts and PFHxS-related compounds. The present note, including its annex, has not been formally edited.

** UNEP/POPS/POPRC.14/1.

200718

Page 2: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Annex

Perfluorohexane sulfonic acid (CAS No: 355-46-4, PFHxS), its salts and PFHxS-related compounds

ADDITIONAL INFORMATION

Prepared by the intersessional working group on PFHxS, its salts and PFHxS-related compounds

Persistent Organic Pollutants Review Committee

July 2018

2

Page 3: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.1. Measured levels of PFHxS in aquatic biota

Organism Tissue Year Country Study site/Type of location

Range (g/kg) Mean (g/kg) Comment Reference

Marine water organismsAtlanticcroaker

Homogenate 2004 United States Charleston Harbour,South Carolina

n.d. Houde et al., 2006

Fish Homogenate 2009 Republic of Korea

Estuarine and Coastal areas, Urban/industrial

0.020–1.2 0.28 Naile et al., 2013

Crab Homogenate 2009 Republic of Korea

Estuarine and Coastal areas, Urban/industrial

0.039–3.3 0.30 Naile et al., 2013

Gastropod Homogenate 2009 Republic of Korea

Estuarine and Coastal areas, Urban/industrial

0.16–1.1 0.45 Naile et al., 2013

Bivalve Homogenate 2009 Republic of Korea

Estuarine and Coastal areas, Urban/industrial

0.073–1.4 0.47 Naile et al., 2013

Fish (Arctic cod, Capelin, Sand lance)

Homogenate 2007–2009 Canadian Arctic

Remote n.d. Pooled samples and some individual

Braune et al., 2014

Bentic fish (various)

Homogenate 2007–2009 Canadian Arctic

Remote n.d.–0.22 ng/g

Pooled samples and some individual

Braune et al., 2014

Pigfish Homogenate 2004 United States Sarasota Bay, Florida 4.1 Houde et al., 2006Pinfish Homogenate 2002/03 United States Charleston Harbour, South Carolina n.d. Houde et al., 2006Pinfish Homogenate 2004 United States Sarasota Bay, Florida 4.6 Houde et al., 2006Red drum Homogenate 2002/03 United States Charleston Harbour, South Carolina 0.5 Houde et al., 2006Sheephead Homogenate 2004 United States Sarasota Bay, Florida n.d. Houde et al., 2006Spotted seatrout Homogenate 2002/03 United States Charleston Harbour, South Carolina 1.1 Houde et al., 2006Spotted seatrout Homogenate 2004 United States Sarasota Bay, Florida 0.6 Houde et al., 2006Spotfish Homogenate 2002/03 United States Charleston Harbour, South Carolina 0.6 Houde et al., 2006Polar cod Liver 2004 Norway Svalbard, Barents Sea n.d.–0.07 0.04 Haukas et al., 2007Rainbow trout Muscle Sweden Baltic Sea <0.011–0.040 0.013 Glynn et al., 2012Fish various Whole body Canada Hudson Bay n.d.–0.22 Braune et al., 2014 Fish Muscle/liver Australia Urban/industrial n.d./0.70–1.2 Thomson et al., 2011bVarious aquatic organisms

2007 United States, Savannah, Georgia

Urban 0.1–3.4 ng/g Sawtooth pen clam, white shrimp, eel, oyster toadfish, snapper, catfish, Atlantic croaker, southern kingfish, southern stingray, silver perch, spot, inshore lizardfish, tomtate, sea robin, Black sea bass, largemouth bass, Atlantic sharp-nose shark, bonnethead shark

Kumar et al., 2009

Various fish Liver 2004 Netherlands North Sea, Western Scheldt, Skagerak

<3–27 ng/g Various marine fish Van Leeuwen & Boer, 2006

3

Page 4: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Organism Tissue Year Country Study site/Type of location

Range (g/kg) Mean (g/kg) Comment Reference

Various shellfish and crustaceans

Liver 2004 Netherlands North Sea, Western Scheldt, Skagerak

<3–<6 ng/g Van Leeuwen & Boer, 2006

Fresh water organismsAtlanticcroaker

Homogenate United States Charleston Harbour,South Carolina

n.d. Houde et al., 2006

Big head carp Muscle 2011 China Lake Tangxun, urban/industrial 0.19–3.57 1.15 Zhou et al., 2014Grass carp Muscle 2011 China Lake Tangxun, urban/industrial 4.58 Zhou et al., 2014Silver carp Muscle 2011 China Lake Tangxun, urban/industrial 0.81–3.33 1.59 Zhou et al., 2014Common carp Muscle 2011 China Lake Tangxun, urban/industrial 15.5–74.0 31.2 Zhou et al., 2014White amur bream

Muscle 2011 China Lake Tangxun, urban/industrial 0.83–3.16 1.84 Zhou et al., 2014

Yellow catfish Muscle 2011 China Lake Tangxun, urban/industrial 6.19–12.2 9.92 Zhou et al., 2014Cod Whole blood Poland Baltic Sea, Gulf of Gdansk 0.05–0.80 0.10 Falandysz et al., 2006Herring Liver 2005/2006 Sweden East and West coast 0.22 Pooled sample Bignert et al., 2008Herring Liver 2007/2008 Sweden East and West coast 2.2 Pooled sample Bignert et al., 2008Herring Liver 2009 Sweden East and West coast 1.3 Pooled sample Bignert et al., 2008Biota Various 2013-2015 Vietnam River <0.0–0.95

ng/g0.06 Fish, crab, prawn, snail, Lam et al., 2017

Fish Various 2010 Czech Republic

River Labe, Vltava and Bilina 0.007–0.121 ng/g

0.032 Pooled and individual Svihlikova et al., 2015

Bentic invertebrates

Whole 2010/2011 Canada Arctic n.d. Lescord et al., 2015

Pelagic invertebrates

Whole 2010/2011 Canada Arctic n.d. Lescord et al., 2015

Char Various 2010/2011 Canada Arctic n.d.–2.0 Lescord et al., 2015Various fish Liver 2004 Netherlands <3–<4 Eel and pike Van Leeuwen & Boer, 2006Rainbow trout Muscle Sweden Baltic Sea <0.011–0.040 0.013 Glynn et al., 2012Fish Edible tissue

(muscle)2016/2018 China Baiyangdian Lake, recepient water

from rivers containing emission from production facilities.

0.02–39.77 ng/g ww

Carp, bream, snakehead, stone maroko, and loach

Cui et al., 2018

Crab Edible tissue 2016/2018 China Baiyangdian Lake, recepient water from rivers containing emission from production facilities.

0.9–1.43 ng/g ww

Crab Cui et al., 2018

Shrimp Whole body 2016/2018 China Baiyangdian Lake, recepient water from rivers containing emission from production facilities.

32.94 ng/g ww Cui et al., 2018

Rice field eel Edible tissue (muscle)

2016/2018 China Baiyangdian Lake, recepient water from rivers containing emission from production facilities.

25.69 ng/g ww Cui et al., 2018

Turtle Edible tissue (muscle)

2018 China Baiyangdian Lake, recepient water from rivers containing emission from production facilities.

0.02 ng/g ww Cui et al., 2018

4

Page 5: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.2. Measured levels of PFHxS in amphibians and birdsOrganism Tissue Year Country Study site/Type of location Range (g/kg) Mean (g/kg) Comments Reference

AmphibiansAmerican alligators

Plasma 2008/2009 United States Merrit Island National Wildlife Refµge

<0.008–161 7.955 Bangma et al., 2017

American alligators

Tail muscle

2015 United States South Carolina 0.051–0.272 ng/g 0.0816–0.099 ng/g

Median Tipton et al., 2017

Chinese alligators Serum 2009 China Anhui Research Center for Chinese Alligator Reproduction

0–1.5 ng/g dw 0.2 ng/g dw Wang et al., 2013

BirdsAlbatross Liver 2011 Canada Midway Atoll, North Pacific

Ocean0.32–0.81 Chu et al., et al., 2015

Albatross Muscle 2011 Canada Midway Atoll, North Pacific Ocean

0.14–0.44 Chu et al., et al., 2015

Albatross Adipose 2011 Canada Midway Atoll, North Pacific Ocean

n.d.–0.18 Chu et al., et al., 2015

Herring Gull Egg 2012/2013 United States/Canada

Great Lakes 0.01–1.44 Letcher et al., 2015

Caspian tern Egg 2013/2014 United States/Canada

Great Lakes n.d.–4.61 Range of three colonies Su et al., 2017

Murres and fulmars

Liver Various Canada Arctic Very low detection of PFHxS Butt et al., 2007

Murres and Fulmars

Egg Various Canada Prins Leopold Island, Nunavut

0.01–0.21 Range between two species Braune and Letcher, 2013

Herring Gull Egg 2009–2014 United States/Canada

Urban (industrial)/rural 0.1–2.7 Range between locations. Big difference in concentration between Urban/industrial and rural

Gewurtz et al., 2016

Various Egg Australia Urban/industrial <0.50–6.8 Ibis and gull eggs Thomson et al., 2011bGreat tits Egg

(n=11) 2011 Belgium,

AntwerpIndustrial 36.9−354.6 162.3 Vicinity of a

perfluorochemical plant (3 M) in Antwerp, Belgium (PFOS levels in the range 3237-69218 µg/kg)

Groffen et al., 2017

Great tits Egg (n=11)

2011 Belgium, Antwerp

Industrial <LOQ–5.6 1.6 1 km Sout East of a perfluorochemical plant (3 M) in Antwerp, Belgium (PFOS levels in the range 55.1-782 µg/kg)

Groffen et al., 2017

Eider duck Blood Poland Baltic Sea, Gulf of Gdansk 400−2900 pg/ml 1100 pg/ml Falandysz et al., 2006Northern goshawk Plasma 2014 Norway North <LOD−1.33 ng/ml 0.61 ng/ml Gomez-Ramirez et al., 2017White-tailed eagle Plasma 2014 Norway North <LOD−2.37 0.89 ng/ml Gomez-Ramirez et al., 2017White-tailed eagle Feather 2014 Norway North <LOD−2.23 0.63 ng/ml Gomez-Ramirez et al., 2017Common eider Egg 2012 Norway Sklinna, mid, remote 0.49–0.56 ng/g

(g/kg)Pooled samples Huber et al., 2015

Common eider Egg 2012 Norway Røst, north, remote 0.59–1.58 Pooled samples Huber et al., 2015

5

Page 6: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Organism Tissue Year Country Study site/Type of location Range (g/kg) Mean (g/kg) Comments ReferenceEuropean Shag Egg 2012 Norway Sklinna, mid, remote 0.53–0.53 Pooled samples Huber et al., 2015European Shag Egg 2012 Norway Røst, north, remote 0.65–0.93 Pooled samples Huber et al., 2015European herring gull

Egg 2012 Norway Sklinna, mid, remote 0.23–0.50 Pooled samples Huber et al., 2015

European herring gull

Egg 2012 Norway Røst, north, remote 0.40–0.79 Pooled samples Huber et al., 2015

Duck Egg 2016 China Baiyangdian Lake, recepient water from rivers containing emission from production facilities.

30.61 ng/g ww n=10 Cui et al., 2018

Duck Meat 2016 China Baiyangdian Lake, recepient water from rivers containing emission from production facilities.

88.52 ng/g ww n=4 Cui et al., 2018

Duck Liver 2016 China Baiyangdian Lake, recepient water from rivers containing emission from production facilities.

288.78 ng/g ww n=4 Cui et al., 2018

Duck Blood 2016 China Baiyangdian Lake, recepient water from rivers containing emission from production facilities.

438.01 ng/g ww n=4 Cui et al., 2018

6

Page 7: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.3. Measured levels of PFHxS in marine- and terrestrial mammals

Organism Tissue Year Country Study site/Type of location Range (g/kg) Mean (g/kg) Comments Reference

Marine mammalsLichen - 2009 Antartica 0.11–1.16 Alava et al., 2015Penguin Feces 2009 Antartica 0.45–4.9 Alava et al., 2015Penguin Feces 2010 Antartica 2.17–3.77 Llorca et al., 2012Weddell seals Plasma Antartica McMurdo Sound n.d. Not detected Routti et al., 2015Ringed seal Plasma 1990–

2010Norway Svalbard 0.49–2.68 Not sampled every year Routti et al., 2016

Ringed seal Liver 1986–2010

Greenland East Greenland <MDL–0.9 Not sampled every year Riget et al., 2013

Ringed seal Liver 1984–2006

Greenland Northwest Greenland 0.1, 0.2, 0.7 ng/g 1984, 1998, 2006 (3 pooled samples/year, pool n=4−5, medians)

Rotander et al., 2012

Ringed seal Liver 1982–2010

Greenland West Greenland <MDL–0.4 Riget et al., 2013

Seal Muscle Greenland Western 0.2–0.6 Carlsson et al., 2014Harbour seal Liver 2002 Denmark Various seas and fjords 2.7–16.3 Range of mean from several locations in

DenmarkDietz et al., 2012

Harbour seal Various Germany German Bight 0.66–10.49 Liver, kidney, lung, heart, blood, brain, muscle, thyroid, thymus* and blubber. * had max concentration

Ahrens et al., 2009

Harbour seal Liver 2002 Germany Wadden Sea 6.5–32.4 ng/g 16.3 Galatius et al., 2013Hooded seal Liver 199

0−2007

West Ice 0.1, 0.2 ng/g 1990, 2007 (3 pooled samples/year, pool n=4−5, females, medians)

Rotander et al., 2012

Hooded seal, mother

Plasma 2008 Greenland, east

West Ice 0.256–1.89 ng/g 0.845 Grønnestad et al., 2017

Hooded seal, pup Plasma 2008 Greenland, east

West Ice 0.483–5.01 2.90 Grønnestad et al., 2017

Hooded seal Mothers milk

2008 Greenland, east

West Ice 0.394 n.d. n=1 Grønnestad et al., 2017

Fur seal pup Liver Antarctica 0.4 82% frequent detection Schiavone et al., 2009Harbour porpoises

Liver 1980–2005

Denmark Danish North Sea DL Found in minority of samples Galatius et al., 2011

Harbour porpoises

Liver 1992-1997

Iceland West Iceland 0.2, 0.2 ng/g 1992, 1997 (3 pooled samples/ year, pool n=5, medians)

Rotander et al., 2012

Harbor porpoises Liver 1999–2002

Denmark Danish North Sea DL–6.3 1.1 Galatius et al., 2013

Pilot Whale Muscle 1986–2013

Faroe Islands

n.d., 0.13, 0.19, 0.11, 0.14 ng/g

1986–1988, 1994–1997, 1998–2002, 2006–2009, 2010–2013

Dessuncao et al., 2017

Pilot Whale Liver 1986–2007

Faroe Islands

0.1, 0.3, 0.4 ng/g 1986, 2001/2002, 2006/2007 (3 pooled samples/period, pool n=3−5, males, medians)

Rotander et al., 2012

Pilot Whale Liver 1986−2016

Faroe Islands

0.08−1.7 ng/g n=63 (juvenile males) Andreasen et al., in prep.

7

Page 8: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Organism Tissue Year Country Study site/Type of location Range (g/kg) Mean (g/kg) Comments Reference

Belµga whale Liver Alaska, United States

Cook inlet 0.6–3.55 Reiner et al., 2011

Belµga whale Liver Alaska, United States

Eastern Chukchi Sea <0.0261–0.378 Reiner et al., 2011

Mink whale Liver Iceland <0.4–1.1 Kallenborne et al., 2004Minke whale Liver 1998 Greenland Central, west 0.2 ng/g 1998, 3 pooled samples, pool n=4,

females, median.Rotander et al., 2012

Fin whale Muscle 1986−2009

Iceland West <0.2, <0.2 ng/g 1986−1989, 2009 (3 pooled samples/period, pool n=3−5, males, medians)

Rotander et al., 2012

Long-finned pilot whale

Liver Faroe island 0.39–1.0 Kallenborne et al., 2004

White-beaked dolphin

Liver 1999–2002

Denmark Danish North Sea DL 6.8 2.8 Galatius et al., 2013

White-sided dolphin

Liver 2001−2006

Faroe Islands

0.4, 0.5 ng/g 2001/2002, 2006 (3 pooled samples/period, pool n=3−5, males, medians)

Rotander et al., 2012

Bottlenose dolphins

Plasma 2004 United States

Sarasota Bay, Florida 115 ± 101 ng/g ww

n=12 Houde et al., 2006

Bottlenose dolphins

Plasma 2004 United States

Charleston Harbour, South Carolina

48 ± 62 ng/g n=24 Houde et al., 2006

Bottlenose dolphins

Plasma 2003–2005

United States

Indian River Lagoon, FL, less urban

2.30–757 Range between juvenile, adult female and adult male.Highest level found in juvenile based geometrical mean.

Fair et al., 2012

Bottlenose dolphins

Plasma 2003–2005

United States

Charleston, SC, Urban 4.6–471 Range between juvenile, adult female and adult male.Highest level found in juvenile based geometrical mean.

Fair et al., 2012

Bottlenose dolphins

Blubber 2005 United States

Indian River Lagoon, FL, less urban

0.3–69.3 Range between juvenile, adult female and adult male. Highest level found in adult male based on geometrical mean.

Fair et al., 2010

Bottlenose dolphins

Blubber 2005 United States

Charleston, SC, urban 0.3–22.7 Range between juvenile, adult female and adult male.Highest level found in juvenile based on geometrical mean.

Fair et al., 2010

Otter Liver 1972–2011

Sweden 0.7–12 ng/g Northern Sweden0.7–64 ng/g Southern Sweden1.5–7.6 ng/g South–west Norway

2.8, 5.5, and 3.6 ng/g (median respectively)

Northern Sweden, Southern Sweden, South-west Norway

Roos et al., 2013

TerrestrialRoe deer Liver

pooledGermany 0.5–2.0 Falk et al., 2012

8

Page 9: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Organism Tissue Year Country Study site/Type of location Range (g/kg) Mean (g/kg) Comments Reference

Arctic fox Various 2011/ 2012

Norway Svalbard, Arctic remote 0.23–8.4 total range 0.47–5.2 mean range

The range levels represent tissues; liver, blood, kidney, adipose tissue and muscle

Aas et al., 2014

Arctic fox Liver Norway Svalbard, Arctic <0.05–139 Routti et al., 2017Polar bear Liver Greenland East Greenland Bossi et al., 2005Polar bear Liver 1999/

2001Greenland East Greenland 140 ng/g ww Smithwick et al., 2005a

Polar bear Liver 2001 United States

ChukchiSea, Alaska

35.2–325 ng/g ww 129 ng/g ww Smithwick et al., 2005b

Polar bear Liver 2001 United States

NorthwestTerritories,

<3.2–261 ng/g ww 44.8 ng/g ww Smithwick et al., 2005b

Polar bear Liver 2002 Canada High Arctic <3.2–263 ng/g ww 35.9 ng/g ww Smithwick et al., 2005bPolar bear Liver Canada South Baffin

Island<3.2–417 ng/g ww 71.4 ng/g ww Smithwick et al., 2005b

Polar bear Liver 2002 Canada South Hudson Bay <3.2–321 ng/g ww 62.3 ng/g ww Smithwick et al., 2005bPolar bear Liver 1999/

2001Greenland East Greenland 4.39–544 ng/g ww 80.2 ng/g ww Smithwick et al., 2005b

Polar bear Liver 1996/2002

Norway Svalbard, Barents Sea 2260–4430 ng/g ww 2940 ng/g ww Smithwick et al., 2005b

Polar bear Plasma 1998–2008

Norway Svalbard, Arctic 40.8 Mothers 1998 Bytningsvik et al., 2012

Polar bear Plasma 1998–2008

Norway Svalbard, Arctic 12.0 Cubs 1998 Bytningsvik et al., 2012

Polar bear Plasma 1998–2008

Norway Svalbard, Arctic 32.6 Mothers 2008 Bytningsvik et al., 2012

Polar bear Plasma 1998–2008

Norway Svalbard, Arctic 12.2 Cubs 2008 Bytningsvik et al., 2012

Polar bear Various Greenland Scoresby Sound, CentralEast Greenland.

1.37–30.9 Liver, blood, brain, muscle, adipose Greaves et al., 2012

Polar bear Blood Norway Svalbard, Arctic 4.9–70 28 median Routti et al., 2017Polar bear Liver 1984–

1988Greenland East Greenland n.d. Not sampled every year Riget et al., 2013

Polar bear Liver 1989–2011

Greenland East Greenland <MDL–27.9 ng/g Not sampled every year Riget et al., 2013

Polar bear Serum Norway Svalbard–spring 5.5–65.3 28.6 Varies with the season Tartu et al., 2017Polar bear Serum Norway Svalbard–autum 11.0–70.7 28.6 Varies with the season Tartu et al., 2017Polar bear Liver Canada Southern Hudson Bay 7.1–9.66 8.28 ng/g Letcher et al., 2018Polar bear Liver Canada Western Hudson Bay 5.98–8.22 7.09 ng/g Letcher et al., 2018Caribou Liver 2005–

2016Canada Arctic <0.01-0.11 ng/g ww 0.02 ng/g ww Gamberg et al., 2018 (in

preparation)

9

Page 10: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.4. Measured levels of PFHxS in abiota

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

AirAir Canada Arctic lakes (Amituk,

Char, and Resolute) on Cornwallis Island, Nunavut, Canada.

Remote, Arctic <1 pg/m3 No exact value was given Stock et al., 2007

Air Canada 2009 Alert Remote, Arctic 0.085 pg/m3 Genualdi et al., 2010Air Norway 2016 Zeppelin Remote, Arctic Norwegian Environment Agency,

2017a (M-757)Air Norway 2016 Birkenes Norwegian Environment Agency,

2017a (M-757)Air Canada 2006–2014 Alert Remote, Arctic n.d.–0.62 pg/m3 0.032 pg/m3 Wong et al., 2018Air Norway 2006–2014 Zeppelin Remote, Arctic n.d.–0.35 pg/m3 0.036 pg/m3 Wong et al., 2018Air France Paris Urban 60.4 pg/m Genualdi et al., 2010Air Canada 2009 Alert Remote, Arctic 0.26 pg/m3 Polar site Rauert et al., 2018aAir Canada 2013 Alert Remote, Arctic NS–2.0 pg/m3 Polar site Rauert et al., 2018aAir Canada 2015 Alert Remote, Arctic 1.2 pg/m3 Polar site Rauert et al., 2018aAir Norway 2009 Ny Ålesund Remote, Arctic 0.07 pg/m3 Polar site Rauert et al., 2018aAir Norway 2013 Ny Ålesund Remote, Arctic NS–0.71 pg/m3 Polar site Rauert et al., 2018aAir Norway 2015 Ny Ålesund Remote, Arctic 2.2 pg/m3 Polar site Rauert et al., 2018aAir United

States2009 Hilo, Hawaii Background 1.6 pg/m3 Rauert et al., 2018a

Air United States

2013 Hilo, Hawaii Background 1.9–5.9 pg/m3 Rauert et al., 2018a

Air United States

2015 Hilo, Hawaii Background 7.6 pg/m3 Rauert et al., 2018a

Air South America

2015 Sites in Costa Rica, Mexico, Colombia, Brazil and Bolivia

Background 0.1–3.1 pg/m3 Rauert et al., 2018b

Air South America

2015 Sites in Argentina, Chile and Brazil

Urban NS–2.6 pg/m3 Rauert et al., 2018b

Air South America

2015 Site in Mexico Agriculture 2.4 pg/m3 Rauert et al., 2018b

Ice, snow and snowmeltSnow melt

Antarctica 2014/2015 Livingston Island Remote 0.35–7.3 pg/L 58% detection frequency Casal et al., 2017

Snow surface

Antarctica 2014/2015 Livingston Island Remote n.d.–23 pg/L 58% detection frequency Casal et al., 2017

Snowpack Sweden 2009 North region Remote <n.d. to 651 pg/L 25.1 pg/L Codling et al., 2014Snow Norway 2006 Svalbard Remote 20–30 pg/L Kwok et al., 2013Snow Greenland 2004 East Remote 8.2–40.2 pg/L), Reviewed in Butt et al., 2010Ice cap Canada Devon Ice cap Remote n.d. Not detected McInnis et al., 2017Rain- and river waterRain water

Germany 20 km east of Hamburg Semi-rural. n.d.–500 pg/L Dreyer et al., 2010

10

Page 11: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

Rain water

Netherlands 2008 North Sea coast, 30 km outside Amsterdam

Semi-rural, infiltrated 0.3–25 ng/L 10.0 ng/L Eschauzier et al., 2010

Rain water

Netherlands 2008 North Sea coast, 30 km outside Amsterdam

Semi-rural. 2.9–21 ng/L Eschauzier et al., 2010

River water

Netherlands 2008 North Sea coast, 30 km outside Amsterdam

Semi-rural, infiltrated <0.8–4.0 ng/L 1.4 ng/L Eschauzier et al., 2010

River water

Germany Rivers Elbe and lower Weser

0.6–1.0 ng/L Amount varied by season Zhao et al., 2015

Water Australia Sydney Harbour and Parramatta River estuary

urban/industrial 2.7–4.3 ng/L Thomson et al., 2011b

WaterWater Norway 2006 Svalbard Surface 20–500 pg/L Kwok et al., 2013Ocean water

Greenland 2009 Eastern Greenland Arctic Ocean n.d.–14.5 pg/L Bush et al., 2010

Ocean water

2008 Atlantic Ocean Northern Europe 8.3–53 pg/L Ahrens et al., 2010

Ocean water

Atlantic 2008 Atlantic Ocean Atlantic 4.1–17 pg/L Ahrens et al., 2010

Ocean water

Southern 2008 Southern Ocean Southern 4.1 pg/L Ahrens et al., 2010

Ocean water

Southern Between Asia and Antarctica

Surface water <1–10.2 pg/L Wei et al., 2007

Ocean water

Greenland 2009 Greenland Sea Surface water <6.5–45 pg/L Zhao et al., 2012

Ocean water

Atlantic 2010 Atlantic Ocean Surface water <6.5–61 pg/L Zhao et al., 2012

Ocean water

Southern 2010/2011 Southern Ocean Surface water <6.5 pg/L Zhao et al., 2012

Ocean water

Greenland 2004 Greenland Sea East of Greenland 6–19 pg/L, Reviewed in Butt et al., 2010

Ocean water

Faroe Islands

Sea 1 ng/L Reviewed in Butt et al., 2010

Ocean water

Russian Federation

Baydaratskaya Bay Arctic n.d. Reviewed in Butt et al., 2010

Ocean water

Global Global Surface water n.d.–51 pg/L Benskin et al., 2012

Ocean water

Arctic ocean

East of Greenland n.d.–20 pg/L Caliebe et al., 2005

Ocean water

Arctic 5–22 pg/L Yeung et al., 2017

Ocean water

Southern 2012 Between Asia and Antarctica

Surface water 5–10.2 Mean range from various stations

Wei et al., 2007

Ocean water

Arctic ocean

2011 66 pg/L Under detection limit at all sites Cai et al., 2012

Ocean water

Mediterranean

2014 Western Mediterranean Surface water 5.4–41.3 pg/L Brumovský et al., 2016

11

Page 12: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

Ocean and costal

Republic of Korea

2009 Estuarine and coastal areas Surface water <0.2–8.7 ng/L 1.7 ng/L Naile et al., 2013

Ocean and costal

World wide North and south Atlantic and Pacific, and southIndian oceans, and the coastal regions

Tropic- and sub tropic surface water

n.d.–1420 pg/L Close to 100% detection frequency

Gonzalez-Gaya et al., 2014

Ocean and costal water

World wide Pacific and Atlantic Oceans

Various depth 0.1–5600 pg/L Yamashita et al., 2005

Coastal Sea Water

Finland, Denmark,

Iceland, Faroe Islands 8–4390 pg/L Kallenborn et al., 2004

Coastal Sea Water

Sweden 2013 Baltic Sea and Kattegat 2 meters depth 0.11−1.7 ng/L 0.91 ng/L 100 % detection frequency, n=18. Significant correlation with dissolved organic carbon and PFAS was observed,

Nguyen et al., 2017

Fresh water

Canada Arctic lakes (Amituk, Char, and Resolute) on Cornwallis Island, Nunavut, Canada.

Background location, Southern Norway

n.d.–24 ng/ L Stock et al., 2007

Fresh waterFresh water

Canada 2010/2011 Arctic lake Remote 0.01–30 ng/L Lescord et al., 2015

Fresh water

Spain 2010 Juca River basin Urban/industrial 12.1–36.7 ng/L 3.25 ng/L 13% detection frequency Campo et al., 2016

Fresh water

China 2004 Tributaries of the Pearl River in Guangzhou

River water <0.13–<0.67 So et al., 2007

Fresh water

China 2004 Sampling points along the Yangtze RiverChongqing

River water <0.005–0.4 So et al., 2007

Fresh water

China 2015 Taihu Lake Lake 45.9–182 ng/L 69.3 ng/L Mean PFOS: 20.3 ng/L Chen et al., 2018

River Sweden 2013 Baltic Sea and Kattegat 40 cm depth 0.051−18 ng/L 9.0 ng/L 77 % detection frequency, n=40. Significant correlation with dissolved organic carbon and PFAS was observed

Nguyen et al., 2017

Fresh water

France 2012 Nation-wide survey 133 lakes and rivers <0.02−217 ng/L Industrial and urban sites had high PFAS levels

Munoz et al., 2015

River Australia 2011 Brisbane River (Somerset Dam)

0.09−0.13 ng/L 0.11 ng/L Gallen et al., 2014

River Australia 2011 Brisbane River (Jindalee) 2.5 ng/L Gallen et al., 2014River Australia 2011 Oxley Creek High tide 1.7−4.3 ng/L 3.1 ng/L Gallen et al., 2014River Australia 2011 Oxley Creek Low tide 7.1−17 ng/L 10 ng/L Gallen et al., 2014Coastal water

Australia 2011 Morton Bay 0.98−1.3 ng/L 1.1 ng/L Gallen et al., 2014

Coastal water

Australia 2011 Morton Bay 0.1−0.46 ng/L 0.25 ng/L Gallen et al., 2014

12

Page 13: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

River water

China 2016 Fuhe River The range of concentrations include various stations up- and downstream of production plant

0.38–1478 ng/L Flows into Baiyangdian Lake, production facility upstream of lake possible source of PFHxSPFHxS was the dominating PFAS

Cui et al., 2018

River water

China 2016 Hebei Province, Zhulong River

No known source of PFHxS

0.15 and 0.48 ng/L

n=2, flows into Baiyangdian Lake

Cui et al., 2018

River water

China 2016 Hebei Province, Zhaowangxin River

Receives water from Baiyangdian Lake

383 and 682 ng/L n=2, flows out of Baiyangdian Lake. PFHxS was the dominating PFAS

Cui et al., 2018

River water

China 2016 Hebei Province, Baigouyin River

No known source of PFHxS

11.8–13.6 ng/L n=2, flows into Baiyangdian Lake

Cui et al., 2018

Lake water

China 2016 Hebei Province, Baiyangdian Lake north

Various station in the lake

187–978.5 ng/L Cui et al., 2018

Lake water

China 2016 Hebei Province, Baiyangdian Lake south

Various station in the lake

3.6–900.4 ng/L Cui et al., 2018

Lake water

China 2009 Thaihu Lake n.d.–6.92 ng/L Ma et al., 2018

Lake water

China 2014 Thaihu Lake 4.8–118.5 ng/L Ma et al., 2018

SedimentSediment Canada Arctic lakes (Amituk,

Char, and Resolute) on CornwallisIsland, Nunavut, Canada.

Remote region, Arctic n.d.–3.5 ng/g dw Stock et al., 2007

Sediment United States

2007 Savannah, Georgia Urban n.d.–0.3 ng/g dw Kumar et al., 2009

Sediment Japan 2005 Rivers, (Kumo, Uji, Tenjin, Katsura, Osaka)

<0.1–<1.6 Senthilkumar et al., 2007

Sediment United States

2004 The San Francisco Bay area, California, Corvallis, Oregon, Baltimore, Maryland

Coastal areas n.d.–0.2 Higgins et al., 2005

Sediment Republic of Korea

2009 Estuarine and coastal areas Urban/industrial n.d. Naile et al., 2013

Sediment Spain 2010 Juca River basin Urban/industrial n.d. Campo et al., 2016Sediment France 2012 Nation-wide survey

(n=129)<0.2-0.63 ng/g dw Munoz et al., 2015

Sediment Czech Republic

2007–2008 Morova River Industrial 0.12–3.8 g/kg 0.53 g/kg Median 0.34 g/kg, n=70, detection=60%

Becanova et al., 2016

Sediment Australia Sydney Harbour and Parramatta River estuary

urban/industrial <0.10–0.10 Thomson et al., 2011b

Sediment Serbia Canal urban/industrial n.d.–0.23 Channel draining waste water Beškoski et al., 2013Sediment Canada 2015 Various sites, Ontario,

Hamilton area0.06–1.1 ng/g FHxSA 0.06–0.19 D'Agostino and Mabury, 2017

Sediment Canada 2010/2011 Arctic lake Remote 0.0–0.95 ng/g Lescord et al., 2015

13

Page 14: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

Sediment Vietnam 2013–2015 River Urban <0.04–18.3 ng/g 18.3 ng/g highest of all PFAS measured

Lam et al., 2016

Sediment China 2015 Lake Taihu Urban 0.044–0.250 ng/g dw

0.145 ng/g dw

Mean PFOS: 0.824 ng/g dwMean PFBS: 0.002 ng/g dw

Chen et al., 2018

SoilSoil North

AmericaVarious Rural LOD–36.5 pg/g Rankin et al., 2016

Soil Europe Various Rural LOD–99.7 Rankin et al., 2016Soil Asia Various Rural 2.95–14.63 Rankin et al., 2016Soil Africa Various Rural LOD–8.91 Rankin et al., 2016Soil Australia Various Rural LOD–39.57 Rankin et al., 2016Soil South

AmericaVarious Rural LOD Rankin et al., 2016

Soil Antarctica Various Rural LOD Rankin et al., 2016Soil Republic of

Korea2009 Estuarine and coastal areas Urban/industrial n.d. Naile et al., 2013

14

Page 15: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.5. Detection in waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufacture

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufactureWater Canada 2015 Various sites-Ontario, Hamilton

areaAFFF-impacted 28–150 ng/L FHxSA 1.0–19 ng/L, FASADA

n.d.–0.36,FASAB nd–1.42

D'Agostino and Mabury, 2017

Water Canada 2015 Various sites-Ontario, Hamilton area

Urban 0.04−0.94 ng/L FHxSA 0.32 ng/L median D'Agostino and Mabury, 2017

Water Canada 2015 Various sites-Ontario, Hamilton area

Urban 2.5 ng/L D'Agostino and Mabury, 2017

Water Canada 2015 Various sites-Ontario, Hamilton area

Rural 0.3 ng/L D'Agostino and Mabury, 2017

Water Canada 2014 Meretta- and Resolute Lake AFFF-impacted Arctic lakes

13–30 ng/L FHxSA 1.2–3.6, FASAB 0.7–0.74

D'Agostino and Mabury, 2017

Ground water

Sweden 2016–2017 Military airport 18 000–92 000 ng/L Ericson Jogsten and Yeung, 2017

Ground water

Australia Future Forrestfield rail station site AFFF use 0.024–0.12 g/L Awaiting classification http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Ground water

Australia Future Belmont Station site AFFF use n.d.–3.08 g/L Classified as possibly contaminated - investigation required

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Ground water

Australia Crown reserve land (lot 800) AFFF use n.d.–1.6 g/L Awaiting classification http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Ground water

Australia Former DFES Headquarters AFFF use n.d.–5.11 g/L Restriction on ground water use http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Ground water and soil

Australia Private fire training facility AFFF use n.d.–4.66 g/L ground water0.8–89.2 g/kg

Classified as contaminated - remediation required

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Ground water

Australia Forrestfield Rail yard, Abernethy Road, High Wycombe

AFFF use n.d.–2.11 g/L Being reviewed for classification.

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

15

Page 16: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufactureGround water

Australia Fuel refinery AFFF use n.d.–2.29 g/L Classified as contaminated - remediation required

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Ground water and soil

Australia Former fuel terminal AFFF n.d.–32.5 g/L ground watern.d.–16 g/kg

Restriction on ground water useClassified as remediated for restricted use

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Ground water

Australia Former fuel terminal AFFF n.d.–4.2 g/L Classified as possibly contaminated - investigation required

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Ground water

Australia Former fuel terminal AFFF n.d.–5.99 g/L Classified as contaminated - remediation required

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Soil Norway 2011 New training field at Evenes Airport (BØF A)

AFFF 2.1–443 g/kg Used from 1987–2005 https://avinor.no/contentassets/c3f5953f2b7d412e9cc973909a53d266/2015-harstad_narvik-undersokelser-av-pfas-i-jord-vann-og-biota.pdf

Soil Norway 2013 New training field at Evenes Airport (BØFA)

AFFF 3.0–99.3 g/kg Used from 1987–2005 https://avinor.no/contentassets/c3f5953f2b7d412e9cc973909a53d266/2015-harstad_narvik-undersokelser-av-pfas-i-jord-vann-og-biota.pdf

Soil Norway 2011 Old training field at Evenes Airport (BØFB)

AFFF 12.9–203 g/kg Used from 1973–1980 https://avinor.no/contentassets/c3f5953f2b7d412e9cc973909a53d266/2015-harstad_narvik-undersokelser-av-pfas-i-jord-vann-og-biota.pdf

Ground water

Norway Old training field at Evenes Airport (BØFB)

AFFF 212 g/L Used from 1973–1980 https://avinor.no/contentassets/c3f5953f2b7d412e9cc973909a53d266/2015-harstad_narvik-undersokelser-av-pfas-i-jord-vann-og-biota.pdf

Surface water

Norway Old training field at Evenes Airport (BØFB)

AFFF 7.5–407 g/L Used from 1973–1980 https://avinor.no/contentassets/c3f5953f2b7d412e9cc973909a53d266/2015-harstad_narvik-undersokelser-av-pfas-i-jord-vann-og-biota.pdf

Surface Norway New training field at Evenes AFFF 5–3460 g/L Used from 1973–1980 https://avinor.no/contentassets/

16

Page 17: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufacturewater Airport (BØFA) c3f5953f2b7d412e9cc973909a53d2

66/2015-harstad_narvik-undersokelser-av-pfas-i-jord-vann-og-biota.pdf

Water Norway 2015 Rygge airport AFFF 53–6240 ng/L Concentration range from various areas surrounding the airport

https://www.forsvarsbygg.no/contentassets/392d6ac269554b578b9634e74641dc6a/tiltaksvurdering-pfas-rygge-flystasjon-1.mars-2016-endelig.pdf

Soil Norway 2015 Rygge airport AFFF 3–22.9 g/kg Concentration range from various areas surrounding the airport

https://www.forsvarsbygg.no/contentassets/392d6ac269554b578b9634e74641dc6a/tiltaksvurdering-pfas-rygge-flystasjon-1.mars-2016-endelig.pdf

Ground water

Norway 2015 Rygge airport AFFF 66.7–47400 ng/L Concentration range from various areas surrounding the airport

https://www.forsvarsbygg.no/contentassets/392d6ac269554b578b9634e74641dc6a/tiltaksvurdering-pfas-rygge-flystasjon-1.mars-2016-endelig.pdf

Water Canada 2015 AFFF impacted 38 ng/L FHxSA 2.4/ 0.32 ng/L (AFFF/Urban)

D'Agostino and Mabury, 2017

Surface water

Sweden 2016–2017 Fortum Waste Solution Hazardous waste management facility

8.8–250 ng/L Ericson Jogsten and Yeung, 2017

Surface water

Sweden 2016–2017 Various airports Airports 4.4–1000 ng/L Both civil and military Ericson Jogsten and Yeung, 2017

Surface water

Australia Perth Airport South Main Drain, Redcliffe and Ascot

Airport 0.02–0.55 g/L Classified as possibly contaminated — investigation required.

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Surface water

Australia Perth Airport North Main Drain and Swan River foreshore at South Guildford

Airport 1.8 g/L Classified as contaminated — restricted use

http://www.parliament.wa.gov.au/publications/tabledpapers.nsf/displaypaper/4011002cdacb8122de9b89b2482581f00013ce30/$file/tp-1002.pdf

Waste water

European 90 EuropeanWaste Water Treatment Plants

3.4 ng/L Highest (single)Maximum Concentration922 ng/L

CONCAWE, report no. 8/16

Waste water

Sweden 2015 Influent/effluent Waste water treatment park

0.1–1.9 ng/L Eriksson et al., 2017

Waste water

Sweden Effluent Waste water treatment park

Approx. 7 ng/L

Swedish EPA, 2016

17

Page 18: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufactureWaste water

Norway 2016 Waste water inlet Waste management

2899–5689 ng/passive sampler

Norwegian Environment Agency, 2017b (M-806)

Water Norway 2016 Landfill leachates Waste management

93–96 ng/passive sampler

Norwegian Environment Agency, 2017b (M-806)

Water Sweden Landfill leachates Waste management

Approx. 80 ng/L

Swedish EPA, 2016

Water United States

Landfill leachates from 6 different sites

Waste management

1.3–3900 ng/L PFHxS detected Allred et al., 2014

Water United States

Landfill leachates from 6 different sites

Waste management

n.d.–89 ng/L Precursor FHxSAA (perfluorohexane sulfonamino acetic acid

Allred et al., 2014

Water United States

Landfill leachates from 6 different sites

Waste management

0.63–1900 ng/L Precursor MeFHxSAA (N-methyl perfluorohexane sulfonamino acetic acid

Allred et al., 2014

Water United States

Landfill leachates from 6 different sites

Waste management

n.d.–51 ng/L Precursor EtFHxSAA (N-ethyl perfluorohexane sulfonamino acetic acid

Allred et al., 2014

Water Australia 2015–2016 Local point source, Oakey, Queensland

Fire-fighting training area

0.07–6 2.4 g/L Bräunig et al., 2017

Sludge Norway 2016 Sludge Waste management

110–2700 g/kg dw Norwegian Environment Agency, 2017b (M-806)

Sludge Sweden 2012–2015 Sludge Waste water treatment park

0.02–0.07 ng/g Eriksson et al., 2017

Leachate Australia 2014 Landfills 13 landfill sites LOD–1900 ng/L Sites are located across Australia Gallen et al., 2016Biosolid Australia 2014 Waste Water Treatment Plants 16 WWTP LOD–7.3 ng/g dw Sites are located across Australia Gallen et al., 2016Leachate Australia 2014 Landfills 27 landfill sites 56–16000 ng/L 1200 ng/L 100 % detection frequency,

PFHxSPFOS in concentrationGallen et al., 2017

Sediment Norway 2016 Oslo Fjord and Mjøsa Fjord and lake 0.71 g/kg dw Norwegian Environment Agency, 2017b (M-806)

Soil Australia 2015–2016 Local point source, Oakey, Queensland

Fire-fighting training area

0.1–74 13 g/kg dw

Bräunig et al., 2017

Grass Australia 2015–2016 Local point source, Oakey, Queensland

Fire-fighting training area

1–26 10 g/kg ww

Bräunig et al., 2017

Egg yolk Australia 2015–2016 Local point source, Oakey, Queensland

Fire-fighting training area

10–16 13 ng/g Bräunig et al., 2017

Cow inside plume

Australia 2015–2016 Local point source, Oakey, Queensland

Fire-fighting training area

2–125 52 g/L serum

Bräunig et al., 2017

Cow outside plume

Australia 2015–2016 Local point source, Oakey, Queensland

Fire-fighting training area

0.5–18 7 g/L serum

Bräunig et al., 2017

Sheep Australia 2015–2016 Local point source, Oakey, Queensland

Fire-fighting training area

32–129 63 g/L serum

Bräunig et al., 2017

Horse Australia 2015–2016 Local point source, Oakey, Queensland

Fire-fighting training area

18–74 33 g/L serum

Bräunig et al., 2017

Human Australia 2015–2016 Local point source, Oakey, Fire-fighting 39–214 93 g/L Bräunig et al., 2017

18

Page 19: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/ Region Year Study site Type of location Concentration Mean Comment Reference

Waste water treatment, sludge, impacted biota, AFFF impacted sites and from manufactureQueensland training area serum

Waste effluent

Taiwan, Province of China

Hsinchu Science Park Semiconductor fabrication plant

13333 ng/L Lin et al., 2009a

Pure water Taiwan, Province of China

Hsinchu Science Park Semiconductor fabrication plant

24.2 ng/L Lin et al., 2009a

Photolithographic waste water

Taiwan, Province of China

Hsinchu Science Park Semiconductor fabrication plant

9930 ng/L Lin et al., 2009a

Waste effluent

Taiwan, Province of China

Hsinchu Science Park electronic/optoelectronic fabrication plant

2 g/L Lin et al., 2009a

Waste water effluent

Taiwan, Province of China

Urban Taipei Municipal waste water treatment plant I

6.3 ng/L Lin et al., 2010

Waste water effluent

Taiwan, Province of China

Urban Taipei Municipal waste water treatment plant II

35 ng/L Lin et al., 2010

Waste water effluent

Taiwan, Province of China

Urban Taipei, Hsinchu Science Park

Industrial Waste water treatment plant

2226.7 ng/L

A hub for 384 high-tech companies that include 86 optoelectronics, 203 integrated circuit companies and 27 semiconductor fabrication plants

Lin et al., 2010

19

Page 20: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.6. Detection in Drinking waterDrinking

water Country/region Year Study site PFHxS range ng/L

Mean ng/L Comment Sum PFAS (mean (range) References

Drinking water

Sweden 2013 Outgoing water from Brantafors waterworks in Ronneby

1770 Drinking water was also contaminated with 8000 ng/L PFOS and 100 ng/L PFOA

Li et al., 2018

Drinking water

Sweden 2013 Outgoing water from Kärragården waterworks in Ronneby

4.6 PFOS 27 ng/L and PFHxA 3.6 was also detected

Li et al., 2018

Drinking water

Italy 2013 Various municipalities in province of Treviso

27–36 From 8 municipalities supplied by drawing wells located in the Almisano area, involved in the PFAS contamination plume (from chemical plant (Miteni SpA).

Annex E submission from Council of Chemists of the Province of Treviso, Italy

Drinking water

France 2009-10 Raw water (surface water, n=99) <4 to 8 1 % LOD=48, % LOQ=6 Boiteux et al., 2012

Drinking water

France 2009-10 Raw water (ground water, n=163) <4 to 32 1 % LOD=31, % LOQ=10 Boiteux et al., 2012

Drinking water

France 2009-10 Treated water (surface water, n=26) <4 to 7 2 % LOD=88, % LOQ=8 Boiteux et al., 2012

Drinking water

France 2009-10 Treated water (surface water, n=15) <4 to 13 2 % LOD=100, % LOQ=27 Boiteux et al., 2012

Drinking water

Spain 40 different locations from 5 different zones of Catalonia

<0.02-5.3 0.64 Ericson et al., 2009

Tap water The Nederlands 2013–14 37 water sources <LOQ–2.3 1.3 Sum PFAS <LOQ to 54 ng/l Zafeiraki, et al., 2015Tap water Greece 2013–14 43 water sources >LOQ 0 Sum PFAS <LOQ and 5.9 ng/l Zafeiraki, et al., 2015Drinking water

Canada and other 2015-16 Bottle water (n=38) <LOQ–0.67 0.10 Canada and other countries (Burkina Faso, Chile, Ivory Coast, France, Japan, Mexico, Norway, and the United States) in 2015–2016.

Kabore et al., 2018

Drinking water

Canada and other 2015-16 Tap water (n=59) <LOQ–1.0 0.30 Canada and other countries (Burkina Faso, Chile, Ivory Coast, France, Japan, Mexico, Norway, and the United States) in 2015–2016.

Kabore et al., 2018

Drinking water

Australia 2010 Portable water from 34 locations in Australia

n.d.–14.4 PFHxS were detected in 27% of the samples Thompson et al., 2011a

Tap water China 2008 Xiamen and Beijing 0.085 Mak et al., 2009Tap water Afghanistan 2007 Kabul n.d. PFOA and PFOS were not detected in tap

water (LOQ µg/L: 0.03 PFOA, 0.015 PFOS)Hemat et al., 2010

Tap water China 2016 Hebei Province, From well Not detected

n=2 Cui et al., 2018

20

Page 21: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.7. PFHxS levels in food items

Food item Country/region Year N Median ng/g ww

Mean ng/g ww

PFHxS range ng/g ww

Detection frequency Comment Sum PFAS (median (range) ng/g ww) References

Domestic eggs Netherlands 2013–2014 73 1.1 <0.5–5.2 7 Home produced eggs, sum PFASs :3.5 (<LOQ–31.2), PFASs measured in egg yolk

Zafeiraki et al, 2016

Domestic eggs Greece 2013–2014 45 <0.5 <0.5 0 Home produced eggs sum PFASs: 1.1 (<LOQ–15)PFASs measured in egg yolk

Zafeiraki et al, 2016

Fatty fish Netherlands 2009 0.009 herring/eel/mackerel/ salmon Noorlander et al., 2011Lean fish Netherlands 2009 0.023 cod/plaice/pollack/tuna Noorlander et al., 2011crustacians Netherlands 2009 0.044 mussels/shrimp/crab Noorlander et al., 2011butter Netherlands 2009 0.016 salt-free butter/salted butter/low-fat butter Noorlander et al., 2011Chicken/ poultry

Netherlands 2009 0.003 Noorlander et al., 2011

flour Netherlands 2009 0.018 whole wheat flour/flour Noorlander et al., 2011Bakery products

Netherlands 2009 0.006 cake/almond paste cake/biscuits/brown spicedbiscuit/pie

Noorlander et al., 2011

Industrial oil Netherlands 2009 0.007 margarine/frying fat (industrial oil)/frying oil (industrial oil)

Noorlander et al., 2011

Meat products Sweden 1999 0.006 Beef, pork, lamb, poultry, cured/processed meats, sausages

Gebbink et al., 2015

Fish products 1999 0.007 Fresh and frozen fillets of fish, canned fish products, shellfish

Gebbink et al., 2015

Egg 1999 0.034 Hen eggs Gebbink et al., 2015Potatoes 1999 0.0002 Gebbink et al., 2015Soft drinks 1999 0.0002 Soft drinks, mineral water, low alcohol beer, medium-

strong beerGebbink et al., 2015

Vegetables and vegetable products

13 EU countries 2006–2012 186 0.0028– 0.0038

2% Broccoli, lettuce and melons EFSA 2012

Fruit and fruit products

13 EU countries 2006–2012 133 0.008-0.2 21% Only a limited number of fruit samples were analysed for PFHxS

EFSA 2012

Meat and meat products

13 EU countries 2006–2012 683 0.079-2.1 1% FFHxS was found in one sample of each: sheep, game mammal, poultry

EFSA 2012

Fish and other seefood

13 EU countries 2006–2012 0.043 and 1 Found in one unspecified seafood sample and one fish sample

EFSA 2012

Fish offal 13 EU countries 2006–2012 1.4–4.5 2%Crustaceans 13 EU countries 2006–2012 43 0.3–4.9 EFSA 2012Various Norway 2010–2011 940 0.71 1.53 0.18–84.7 Consummation of fat fish, canned food and drinks with

sugar were positively associated with PFHxS amountsAverina et al., 2018

Infant formula United States 2007 21 <1.35–3.59 10% 5 different brands Tao et al., 2008bDiary milk United States 2008 12 <1.35–3.82 8% 11 different brands Tao et al., 2008bShrimp China 2016 15 32 100% Samples from area around Baiyangdian Lake, Hebei

ProvinceCui et al., 2018

Duck egg China 2016–2018 10 30.61±19.7 100% Mean and SD. Samples from area around Baiyangdian Lake, Hebei Province

Cui et al., 2018

21

Page 22: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Duck meat China 2016–2018 4 88.52 ±92.71 100% Mean and SD. Samples from area around Baiyangdian Lake, Hebei Province

Cui et al., 2018

Table 1.8. Detection in indoor and outdoor dust and indoor air

Dust Country/Region Year of sampling (n) Type of location Concentration range

g/kg dw (%>LOD)Mean

g/kg dw Comment Reference

Dust Norway /Oslo 2017 (n=5) Furniture store 1600–2300 (100) 1983 g/kg dw

6:2diPAP was found in equal high amounts 330–3300 µg/ kg dw(mean PFOS 10,75 µg/kg)

Norwegian Environment Agency, 2017 (M-806)

Dust Norway/ Oslo 2017 (n=5) Hotel 1600–2100 (100) 6:2diPAP was found in equal high amounts 330–3300 µg/ kg dw

Norwegian Environment Agency, 2017 (M-806)

Dust Norway 2007/08 (n=7) Private residences <1.4-3.1 1.4 Huber et al., 2011Dust Norway 2007/08 (n=1) Office 27.8 Huber et al., 2011Dust Norway 2007/08 (n=1) Storage 1814 Huber et al., 2011Dust Norway 2008 (n=41) Private residences 0.21-142 8.4 Level of PFHxS was negativly correlated

with age of residence, and positive correlated with volum of the living room (m3)

Haug et al., 2011

Dust Czech Republic 2013 (n=12) Private home vacuuming <MQL–9.3 (93.8) Karazkova et al., 2016Dust Canada 2013 (n=15) Private home vacuuming n.d.–11.5 (90.0) Karazkova et al., 2016Dust United States 2013 (n=14) Private home vacuuming 1.4-84.4 (100) Karazkova et al., 2016Dust Canada 2007–2008

(n=18)Private home 2.9–1300 140 PFOS was found at equal high levels Beesoon et al., 2011

Dust United States/ Boston

2009 (n=31) Office 5.24–18.5 (23) Fraser et al., 2013

Dust United States/ Boston

2009 (n=30) Private home 6.05–430 (40) Fraser et al., 2013

Dust United States/ Boston

2009 (n=12) Vehicle 5.22–108 (46) Fraser et al., 2013

Dust Canada, Ottawa 2002/2003 (n=67)

House Dust (2.3–4305) Median 23, mean 391.96

Kubwabo et al, 2005

Dust UK, Australia, Germany and United States

2004 (n=39) Houshold dust 47.7–632.2) max 43765 (79.5)

185.5 (25th and 7th percentile) Kato et al., 2009

Dust United States/Ohio and North Carolina

2000–2001 (n=112)

Private homes (n=102) and day care centres (n=10)

(<DL–35,700) Median 46,mean 874

Strynar and Lindstrom, 2008

Dust China 2015 Hotel (n=11) n.d. –7.01 (9) Fluortelomer alkohols (FTOHs) were predominant PFAS (24.8-678 ng/g)

Yao et al., 2018

Dust China 2015 Private residents (n=18) n.d.–18 (61) 2.93 Yao et al., 2018Air China 2015 Hotel (n=19) 6.47–40.9 pg/m3 (100) 11.9 pg/m3 Fluortelomer alkohols (FTOHs) were

predominant PFAS (250–82300 pg/m3)Yao et al., 2018

Air China 2015 Private residents (n=22) 10.4–65.3 pg/m3 (100) 23.4 pg/m3 Yao et al., 2018Dust China Manufacturing plant, office 1 2010 Wang et al., 2010Dust China Manufacturing plant, office 2 580 Wang et al., 2010Dust China Manufacturing plant, product

storage 12040 Wang et al., 2010

22

Page 23: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Dust Country/Region Year of sampling (n) Type of location Concentration range

g/kg dw (%>LOD)Mean

g/kg dw Comment Reference

Dust China Manufacturing plant, product storage 2

25820 Wang et al., 2010

Dust China Manufacturing plant, raw material stock room 1

4340 Wang et al., 2010

Dust China Manufacturing plant, raw material stock room 2

590 Wang et al., 2010

Dust China Manufacturing plant, electrolysis workshop 1

2400 Wang et al., 2010

Dust China Manufacturing plant, electrolysis workshop 2

1460 Wang et al., 2010

Dust China Manufacturing plant, electrolysis workshop 3

4990 Wang et al., 2010

Dust China Manufacturing plant, sulfonation workshop 1

15110 Wang et al., 2010

Dust China Manufacturing plant, sulfonation workshop 2

15920 Wang et al., 2010

Dust China Manufacturing plant, sulfonation workshop 3

9950 Wang et al., 2010

Dust China Manufacturing plant, laboratory building

4740 Wang et al., 2010

Dust China Manufacturing plant, road 1 100 Wang et al., 2010Dust China Manufacturing plant, road 2 140 Wang et al., 2010Dust China Manufacturing plant, road 3 1260 Wang et al., 2010

23

Page 24: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.9. Detection in products

Matrix Country/Region Year of sampling (n)

Type of product/material

Concentration mean g/kg dw (%>LOD) Comment Reference

Consumer products Czech Republic 2008 Curtain (textile) 2.18 New Becanova et al., 2016

Consumer products Czech Republic 2004 Foam (textile) 0.586 Used Becanova et al., 2016

Consumer products Czech Republic 2003 Foam (textile) 0.409 Used Becanova et al., 2016

Consumer products Czech Republic 1996 Teddy bear cover (textile) 0.439 Used Becanova et al., 2016

Consumer products Czech Republic 1986 Table cloth (textile) 0.437 Used Becanova et al., 2016

Consumer products Czech Republic 1981 Upholstery material (textile) 2.93 Used Becanova et al., 2016

Consumer products Czech Republic 1981 Foam (textile) 1.085 Used Becanova et al., 2016

Consumer products Czech Republic 1981 Upholstery material (textile) 0.835 Used Becanova et al., 2016

Consumer products Czech Republic 1981 Blanket (textile) 0.219 Used Becanova et al., 2016

Consumer products Czech Republic 2010 Carpet-red (floor covering) 0.256 New Becanova et al., 2016

Consumer products Czech Republic 2006 Carpet-grey (floor covering) 5.016 Used Becanova et al., 2016

Consumer products Czech Republic 2006 Carpet-green (floor covering) 0.448 Used Becanova et al., 2016

Consumer products Czech Republic 1981 Persian carpet (floor covering) 3.26 Used Becanova et al., 2016

Consumer products Czech Republic 1981 Carpet (floor covering) 1.25 Used Becanova et al., 2016

Consumer products Czech Republic 2010 Switch (EEE) 0.054 New Becanova et al., 2016

Consumer products Czech Republic 2001 Keyboard (EEE) 0.059 Used Becanova et al., 2016

Consumer products Czech Republic 1996 TV 0.115 Used Becanova et al., 2016

Consumer products Czech Republic 1991 Fridge rubber insulation (EEE) 0.09 Used Becanova et al., 2016

Building materials Czech Republic 1986 Chipboard (OSB and wood) 0.207 Used Becanova et al., 2016

Building materials Czech Republic 2010 Blow cellulose insulation 0.642 New Becanova et al., 2016

Building materials Czech Republic 2006 Mounting and sealing foam 0.662 New Becanova et al., 2016

Building materials Czech Republic 2010 Pipe insulation aeroflex 1.43 New Becanova et al., 2016

Building materials Czech Republic 2006 Paper insulation 0.372 Used Becanova et al., 2016

Building materials Czech Republic 2006 Plaster (facade material) 0.182 Used Becanova et al., 2016

Building materials Czech Republic 2010 Window finishing beard (facade material) 0.252 New Becanova et al., 2016

Building materials Czech Republic 2006 Window corner bead (facade material) 1.48 Used Becanova et al., 2016

Building materials Czech Republic 2006 Drywall (facade material) 24.5 Used Becanova et al., 2016

Car interior material Czech Republic 2006 Hyundai textile material 0.147 Used Becanova et al., 2016

Car interior material Czech Republic 2006 Hyundai textile material 0.479 Used Becanova et al., 2016

Car interior material Czech Republic 2006 Skoda-textil material 0.027 Used Becanova et al., 2016

24

Page 25: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Matrix Country/Region Year of sampling (n)

Type of product/material

Concentration mean g/kg dw (%>LOD) Comment Reference

Consumer products Germany 2010 (n=7) Paper based FCM 0.6 (6) Kotthoff et al., 2015

Consumer products Germany 2010 (n=13) Ski wax 9.3 (35) Kotthoff et al., 2015

Consumer products Germany 2010 (n=13) Leather 10.1 (96) Kotthoff et al., 2015

Consumer products Norway Paint 0.53 Herzke et al., 2012

Consumer products Norway Paint 0.31 Herzke et al., 2012

Consumer products Norway Electrics and electronics 0.06 Herzke et al., 2012

Consumer products Norway Carpet (textile) 0.08 g/m3 Herzke et al., 2012

Consumer products Norway Lether 4.81 g/m3 Herzke et al., 2012

Consumer products Norway Non-stick wear pans 14.1 Herzke et al., 2012

Consumer products Norway Non-stick wear pans 11.9 Herzke et al., 2012

Consumer products Norway Non-stick wear pans 1.86 Herzke et al., 2012

Fire-fighting agents Norway AFFF 370,000 Herzke et al., 2012

Consumer products Untied States 2014-15 (n=407)

Paper based FCM 56% of bread and dessert wrappers, 38% of sandwich and burger wrappers and 20% of paperboard contained fluorine (total fluorine) no fluorine was detected in paper cops. PFHxS was detected in 1 of 20 samples analysed with LC/MS/TOF

Schaider et al., 2017

25

Page 26: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.10. Concentrations of PFHxS in human serum (See also ECHA 2017a, Annex II Table 14)

Location Year NHuman serum concentration (µg/L)

median (rang, %LOQ) or geometric mean (GM) Remarks Reference

PFHxS PFOS PFOAAfghanistan, Kabul

2007 43 adults12 children

Max level 3.0(22%)

1.2 (0.2–11.8)100%

Max level 3.0(24%)

PFOA and PFOS were not detected in tap water (LOQ µg/L: 0.03 PFOA, 0.015 PFOS)Adults (20–43 years old), Children (2.5–9 years old)

Hemat et al., 2010

Arctic Russia

2001 7 0.26 (0.15–0.46) 11.0 (5.56–14.11) 1.61 (0.63–2.48) Norilsk, Taimyr AO Region of Russia, blood from mothers collected 3 days post-delivery.

Norilsk participants mostly consumed store-bought foods (primarily non-local). There was some consumption of tundra reindeer, ptarmigan, and fish (mostly Salmonidae and Coregonidae species)

Hanssen et al., 2013

Australia 2002/022006/072008/092010/11

26 pools84 pools24 pools24 pools

3.6 (2–12.8) 2.9 (<LOD– 11.3)3 (1.2–5.7)3.3 (1.4–5.4)

25 (19.1–36.1) 14.8 (5–28.5)11 (5.3–19.2)9.4 (4.4–17.4)

10.6 (7–14.5) 6.4 (0.8–9.1)5.1 (2.8–7.3)4.3 (3.1–6.5)

Pools of human serum, all ages and both sex combined

Toms et al., 2014

Canada 2008–11 1940 GM 1.03 (<LOD–40) GM 4.56 (<LOD–36) GM 1.65(<LOD–16) Maternal-child cohort study in 10 sites across Canada

Fisher et al., 2016

Canada 2007–2009 1376 GM 3.2 * GM 11.0* GM 2.9* Plasma concentrations of Canadian males, aged 20-79 years, Canadian Health Measures Survey Cycle 1

Health Canada, 2013

Canada 2009–2011 510 GM 2.4* GM 8.3* GM 2.6* Plasma concentrations of Canadian males, aged 20-79 years, Canadian Health Measures Survey Cycle 2

Health Canada, 2013

Canada 2007–2009 1504 GM 1.6* GM 7.1* GM 2.2* Plasma concentrations of Canadian females, aged 20-79 years, Canadian Health Measures Survey Cycle 1

Health Canada, 2013

Canada 2009–2011 505 GM 1.3* GM; 5.7* GM 2.0* Plasma concentrations of Canadian females, aged 20-79 years, Canadian Health Measures Survey Cycle 2

Health Canada, 2013

China 2014 100 1.18 (0.61–2.42) 14.23 (0.24–1.04) 3.24 (1.83–5.61) Maternal serum first trimester Wuhan, China, mean (5th–95th percentile)

Pan et al., 2017

China 2008–12 302 764 (<LOD to 19,837)

1725 (50.3–118000) 427 (2.5–32000) Occupational exposure at a fluorochemical plant (Hexin Chemical Plant, Yingcheng, Hubei province). Serum levels of PFHxS and PFOA increased with length of service.

Fu et al., 2016

26

Page 27: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Location Year N

Human serum concentration (µg/L)median (rang, %LOQ) or geometric mean (GM)

Remarks Reference

ChinaDenmarkGreenlandNorway

2013–2015 (China)1996–2002 (Denmark)2008–2013 (Denmark)2010–2013 (Greenland)2007–2009 (Norway)

44815941533207391

GM 0.58 (0.55;0.61) GM 1.06 (1.03;1.09)GM 0.44 (0.43;0.45)GM 0.79 (0.73;0.84)GM 0.47 (0.45;0.50)

GM 8.0(7.6;8.3)GM 28.3(27.7;29.0)GM 7.7 (7.5;7.9)GM 10.9 (10.3;11.7)GM 8.0(7.7;8.4)

GM 10.7(10.2;11.1)GM 4.3(4.2;4.4)GM 1.8(1.8;1.9)GM 1.3(1.2;1.4)GM 1.6(1.6;1.7)

Blood sample were taken at gestagenal week 15, 9.7, 12.3, 25.1 and 18.6 weeks in the respective birth cohort from China (Shanghai Birth Cohort), Denmark, (Danish National Birth Cohort and Aarhus Birth Cohort), Greenlandic Birth Cohort and Northern-Norway Mother Child Contaminant Cohort.

Log-transformed PFAA concentrations were adjusted for age and parity using analysis of covariance.

Bjerregaard-Olesen et al., 2017

Faroe Island 20062011-12, 2007-2008

105151

M 2.38 (0.53-3.71)C 5.94 (3.59–14.3)F (0.5 (0.15–1.35)

M 47.8 (12.66-76.04)C 9.82 (4.40–15.0)F 5.59 (1.82–13.8)

M 3.46 (2.79-5.36)C 0.73 (0.34–1.97)F 1.0 (0.35–3.1)

Male age 47–80 (whaling men)Children age 13Female age 19–44

Hu et al., 2018

Germany ESB, 1982-2009 420 0.079−5.10 0.417−116.0 0.092−39.4 Participants (age 20-29 year), mostly students from two German cities, i.e. Münster and Halle. In this study, also PFSA and PFCA precursors (DiPAPs and SamPAPs) were detected in human plasma.

PFOS peaked between 1985 and 1990, PFHxS peaked between 2000 and 2005

Yeung et al., 2013

Greenland 2010-2013 207 0.70 10.15 1.19 Pregnant Inuit women (18-44 years), blood sampled at gestational week 25.1 (range 7-40 week)

In the North region, the levels of PFSAs in the blood were associated with both Se and Hg.These data indicate that the pregnant women's burden of PCBs, OCPs, PFASs, Pb and Hg is mainly derived from intake of the traditional food including marine mammals, seabirds, fish and terrestrial species.

Long et al., 2015

Greenland 2002/03 196 2.01 (0.091-20.5) 44.7 (12.3-161) 4.54 (1.52–13.7) Male Inuit, seafood 2 days/week Lindh et al., 2012India, Coimbatore

2000 45 Female 1.6 (<1–1.8, 36%)Male 1.5 (<1–2.9, 41%)

Female 2.5 (<1–3, 55%)Male 1.3 (<1–3.1, 50%)

Female <3 5 (<3, 0%)Male 3.5 (<3–3.5, 3%)

Agricultural and industrial area Kannan et al., 2004

Italy 2016 25025743

2.49 (0.03-9.14)a

2.98 (0.09-43.40)b

9.16 (2.74-32.30)c

5.84 (0.56-119) a 1.64 (27.9) a a not exposedb exposedc exposed (Lonigo)

drinking water exposure, area with fluorochemical plant

Annex E Council of Chemists of the Province of Treviso, Italy

27

Page 28: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Location Year N

Human serum concentration (µg/L)median (rang, %LOQ) or geometric mean (GM)

Remarks ReferenceJapan 2013201420152016

83817688

0.54 (n.d.–1.8)0.42 (n.d.–1.1)0.22 (n.d.–0.8)0.32 (0.071–0.76)

– – Select three areas in each year, (40–59 years old and long-time resident) in each survey area

Japan Annex E, Survey of the Exposure to chemical compounds in human (FY 2013 to FY 2016). The Environmental Risk Assessment Office, Environmental Health Department, Ministry of the Environment, Japan has conducted this survey and are open on website below: http://www.env.go.jp/chemi/dioxin/pamph/cd/2017en_full.pdf

Norway 2007-8 123 0.34 (0.04-1.64) 5.37 (1.63-17.7) 1.03 (0.36-4.24) Gützkow et al., 2012

Norway 2007-9 391 0.44 (<LOD-14.8, 99%)

8.03 (0.3-35.8, 100%)

1.53 (0.28-11, 100%) Women who completed The Northern Norway Mother-and-Child Contaminant Cohort Study (MISA).

Blood samples donated at mean gestational week 18.6 (9–36)

Berg et al., 2014

Norway 2010-11 950 0.71 (0.18-84.7, 100%)

6.20 (1.28-99.2, 100%)

1.92 (0.51-14.0, 100%)

445 girls age 16.5495 boys, age 16.3Boys had significant higher sum PFOS and sum PFHxS.

PFHxS levels were higher in the group that had fat fish >1x week, 1-6 glasses of sugar drinks and canned food 4-6 times per week

Averina et al., 2018

Poland 2002/03 190 1.18 (0.43-3.78) 18.5 (8.20 -40.2) 4.84 (1.48–16.0) Male, seafood 1 day/week Lindh et al., 2012Sweden,Ronneby

2014–2016 106 277 (12.3–1660) 345 (24.1–1500) 17.5 (2.38–92) Participants age 4–84 years, 53% females, receiving PFAS contaminated drinking water

Li et al., 2018

Sweden,Ronneby

2014–2016 3418 152 (<0.5–1790) 176 (<0.50–1870) 10.4 (<0.4–91.9) Drinking water exposure until 2013, (AFFF training area and military facility located nearby the municipal water source). Levels (ng/L) in outgoing water from waterworks in Ronneby: 1770 PFHxS, 8000 PFOS, 100 PFOA.Highest serum levels in persons that had live 35 years in this area.

Li et al., 2018

Sweden,Karlshamn

2016 242 0.84 (<0.5–60.1) 4.21 (<0.5–55.3) 1.59 (<0.4–4.98) Reference site nearby Ronneby with PFAS clean water source

Li et al., 2018

28

Page 29: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Location Year NHuman serum concentration (µg/L)

median (rang, %LOQ) or geometric mean (GM) Remarks Reference

Ukraine 2002/2003 203 0.34 (<LOD– 3.42) 7.60 (2.77 –29.9) 1.29 (<LOD–35.0) Male, seafood 2 days/week Lindh et al., 2012United States

2015 37 GM 3.12 (1.07–12.55)

GM 4.96 (0.39–31.35)

GM 1.57 (0.30–4.07) Age 22-34 years, Serum PFHxS levels were also elevated in individuals that vacuumed less often, and in individuals that reported consuming more microwavable foods.

Sibenaler et al., 2017

United States

NHANES 2013-2014 639 0.84 (0.76–0.94) 2.51 (2.03–2.74) 1.81 (1.64–2.01) Children age 3–11 Jane, 2018

United States

2009 31 GM 1.5 (0.2–13) In blood serum of some office workers in Boston, exposed to FTOHs

Fraser et al., (2012)

United States

2000

2006

2010

654

600

600

2.25

1.52

1.34

34.9

14.5

8.3

2.70

3.44

2.44

Red Cross adult blood donors (total, both men and women)

Percentage decline from 2000-2001 to 2010PFHxS (40%), PFOS (76%), PFOA (48%).

Olsen et al., (2012)

United States

NHANES 1999–2000 and 2003-2004

2094 GM 2.1GM 1.9 (0.7–8.3)

GM 30.4GM 20.7 (9.8–54.6)

GM 5.2GM 3.9 (1.9–9.8)

All groups together GM (10th and 95th percentile)

Calafat et al., 2007

United States

NHANES 1999–2006 1032 2.0 ± 0.1 4.3 ± 0.2 23.7 ± 0.7 60 years old participants Fry et al., 2017

Uzbekistan 2002 10 n.d. 0.23 (<0.08–0.89) n.d. Urgench, and Khazarasp cities, Uzbekistan, blood from mothers collected 3 days post-delivery.Uzbekistan women featured a varietyof items produced locally (e.g., meat, poultry, fish, cereal, fruits, andvegetables)

Hanssen et al., 2013

29

Page 30: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 1.11. Levels in cord blood (See also ECHA 2017a, annex II, Table 14)Cord blood concentration ng/mL

Median, (range), % detection (LOD)Location Year PFHxS PFOS PFOA Remarks Reference

Arctic Russia 2001 0.14 (0.08-0.33) 0.49 (0.15-1.12) 4.11 (1.75-6.27) n=7, Norilsk, Taimyr AO Region of Russia.

Hanssen et al., 2013

Canada, Ottawa 2005-2008 0.5 (n.d.–9.6)77%

5.0 (n.d.–21.7)98%

1.6 (0.3–5.2)100%

N=100 Arbuckle et al., 2013

Canada 2008-2011 <LOD (0.3)Min=n.d. max=1.9

(22.89% above LOD)

<LOD (0.3)Min=n.d. Max=5.8

(63.58% above LOD)

0.35 (GM)Min=n.d. Max=5.6

(47.73% above LOD)

n=1385 Fisher et al., 2016

China, Guangzhou 2013 3.87 (n.d.–20.15)97.2%

2.99 (n.d.–744.2)97.51%

1.23 (n.d.–229.36)96.88%

n=321 Zhang et al., 2017

China, Wuhan 2014 0.46 (0.24–1.04)*100%

4.38 (1.66–12.54)*100%

1.41 (0.8–2.63)*100%

n=100*(5th–95th percentile)

See also maternal serums

Pan et al., 2017

Norway 2007-8 0.23 (0.04-1.12) 1.78 (0.04-6.49) 1.03 (0.04-3.23) n=123 Gützkow et al., 2012*plasma

Table 1.12. Levels in Breast milk (See also ECHA 2017a, annex II, Table 14)Breast milk concentration ng/ml

Median, (range), % detection (LOD)Location Year PFHxS PFOS PFOA Remarks Reference

Cambodia 2000 nd (<0.002–0.019)13%

0.039 (0.017–0.327)100%

n.d. (<0.043–0.131)4%

n=24 Tao et al., 2008b

China 2004 0.004–0.1 0.045–0.36 0.047–210 Range, n=19, all above LOD So et al., 2006 (Annex E China)China 0.012–2.52 0.0446–83.1 <0.05–2.19 5 samples from 5 different citys Yeung et al., 2006France 2007 0.050 (0.040–0.066)

100%0.079 (<0.05–0.330)90%

0.075 (<0.05–0.224)98%

median, (range), Number >LODn=48

Antignac et al., 2013

Germany 2007–2009 n.d., (<0.02–0.3)3%

0.04 (<0.3–0.11)72%

n.d., (<0.15–0.25)2%

No. >LOQn=44 participants (1 samples each month)

Fromme et al., 2010

Indonesia 2001 0.013 (<0.002–0.059)100%

0.067 (0.025–0.256)45%

n.d.0%

n=20 Tao et al., 2008b

Japan 1999 0.006 (<0.002–0.018)92%

0.196 (0.140–0.523)100%

0.067 (<0.043–0.170)92%

n=24 Tao et al., 2008b

Malaysia 2003 0.007 (<0.002–0.013)85%

0.121 (0.048–0.350)100%

n.d. (<0.042–0.090)23%

n=13 Tao et al., 2008b

Philippines 2000/2004 0.007 (<0.002–0.013)92%

0.104 (0.027–0.208)100%

n.d (<0.043–0.183)29%

n=24 Tao et al., 2008b

Republic of Korea 1999–2005 0.007 (0.001–0.016) 0.061 (0.032–0.130) 0.041 (<0.043–0.077) n=17 Kim et al., 2011Spain 2007–2008 0.040 (0.02–0.11)

100%0.11 (<0.05–0.22) 100% n.d.

0%n=10 Karrman et al., 2010

Sweden 1972 <0.005 0.023 0.019 n=75 Sundstrøm et al., 2011

30

Page 31: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Breast milk concentration ng/mlMedian, (range), % detection (LOD)

Location Year PFHxS PFOS PFOA Remarks Reference197619801984/19851988199019921994199519961997199819992000200120022003200420072008

<0.0050.0060.0060.0160.0100.0110.0150.0280.0160.0160.0280.0230.0240.0170.0270.0250.0170.0170.014

0.0590.1030.1720.2110.2020.2220.2190.2140.2240.2370.2120.2340.2130.1980.2100.1790.1880.1220.075

0.0410.0600.0780.1480.1060.1110.1060.1390.1110.1380.1280.1200.1240.0980.1180.0980.1000.0860.074

n=78n=116n=102n=20n=20n=20n=20n=20n=20n=20n=20n=20n=20n=20n=20n=15n=20n=20n=18

Sweden 2004 0.070 (0.031–0.172)100%

0.166 (0.060–0.470)100%

Not available(<0.209–0.492)

Median, (range), Number >LODn=12 primiparous women

Karrman et al., 2007

SwedenUppsalaUppsalaUppsalaUppsalaUppsalaGöteborgUppsalaLundLycksele

199619971998199920002001200220032003–2004

0.0370.0300.0400.0440.0280.0280.0510.0250.016

0.2090.2070.2190.2130.1910.2580.1940.1530.123

<0.209a

<0.209a

<0.209a

<0.209a

<0.209a

<0.209a

<0.209a

<0.209<0.209

aLevels were >LOD (0.01) but the blank level (0.209) was >50% of the detected concentrations.

Karrman et al., 2007

United States 2004 0.012 (<0.030–0.161)51%

0.106(<0.032–0.617)95%

0.044 (<0.031–0.161)88%

n=45 Tao et al., 2008a

Vietnam 2000/2001 0.004 (<0.002–0.027)73%

0.058 (0.017–0.393)100%

n.d (<0.043–0.089)3%

median, (range), Number >LODn=40

Tao et al., 2008b

31

Page 32: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 2. Overview of PFHxS, its salts and PFHxS-related compounds identified in various national chemical inventories, including the Australian Inventory of Chemical Substances (AICS), the Canadian Domestic Substance List (DSL) (Environment Canada, 2013), the Inventory of Existing Chemical Substances in China (IECSC), the Japanese Existing and New Chemical Substances Inventory (ENCS), the Substances in Preparations in Nordic Countries (Nordic SPIN), and the United States Toxic Substances Control Act Inventory (US TSCA)

CAS number Chemical AICS CanadaDSL

ChinaIECSC

JapanENCS

NordicSPIN

USTSCA*

423-50-7 PFHxSF Yes Yes Yes, S

355-46-4 PFHxS Yes, S

3871-99-6 PFHxS, K Yes Yes Yes Yes*2 Yes Yes, S

55120-77-9 PFHxS, Li Yes Yes*2 Yes, P,S

68259-08-5 PFHxS, NH4+ Yes Yes Yes Yes, S

70225-16-0 PFHxS, NH(CH2CH2OH)2 Yes Yes Yes Yes Yes, S

68259-15-4 MeFHxSA Yes Yes Yes, S

68555-75-9 MeFHxSE Yes Yes Yes Yes Yes, S

34455-03-3 EtFHxSE Yes Yes Yes Yes Yes, S

50598-28-2 FHxSA-derivative Yes Yes, S

68957-61-9 FHxSA-derivative Yes Yes Yes, S

68957-32-4 EtFHxSE-derivative Yes, S

67584-53-6 EtFHxSE-derivative Yes Yes Yes Yes*3 Yes Yes, S

68555-70-4 EtFHxSE-derivative Yes, S

68298-09-9 FHxSA-derivative Yes, S

68957-58-4 FHxSA-derivative Yes Yes Yes Yes*4 Yes Yes, S

52166-82-2 FHxSA-derivative Yes Yes Yes Yes*4 Yes Yes, S

66008-72-8 MeFHxSA-derivative Yes Yes, S

68227-98-5 MeFHxSE-acrylate Yes, S

67584-57-0 MeFHxSE-acrylate Yes Yes Yes, S

67584-61-6 MeFHxSE-acrylate Yes Yes Yes, S

38850-52-1 FHxSE-derivative Yes, S

1893-52-3 EtFHxSE-acrylate Yes Yes Yes, S

38850-60-1 FHxSA-derivative Yes, S

32

Page 33: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical AICS CanadaDSL

ChinaIECSC

JapanENCS

NordicSPIN

USTSCA*

80621-17-6 FHxSA-derivative Yes Yes

67906-70-1 EtFHxSE-acrylate Yes Yes, S

38850-58-7 FHxSA-derivative Yes Yes Yes Yes Yes, S

73772-32-4 FHxSE-derivative Yes Yes Yes, S

81190-38-7 FHxSE-derivative Yes Yes Yes, S

67939-92-8 EtFHxSE-derivative Yes, S

68815-72-5 PFHxS-ester Yes Yes Yes Yes Yes, S

68555-90-8 MeFHxSE-acrylate polymer mixtures

Yes Yes Yes Yes, S

56372-23-7 EtFHxSE-driv. polyethoxylates Yes Yes Yes Yes Yes, S

30295-56-8 FHxSA-derivative Yes

70776-36-2 MeFHxSE-acrylate polymer mixtures

Yes Yes Yes Yes, S

68877-32-7 EtFHxSE-acrylate polymer mixtures

Yes Yes, S

68586-14-1 MeFHxSE-acrylate polymer mixtures

Yes Yes Yes Yes, S

68555-92-0 MeFHxSE-acrylate polymer mixtures

Yes Yes Yes Yes, S

68555-91-9 EtFHxSE-acrylate polymer mixtures

Yes Yes Yes Yes, S

*S=substances listed under the Significant New Use Rule; P=chemicals with a commenced pre-manufacture notice (P).*2: Registry name is perfluoroalkyl (C=4-12) sulfonic acid salt (Na, K, Li)*3: Registry name is perfluoroalkyl (C=6-10)-N-ethylsulfonyl glycine potassium salt*4: Registry name is perfluoroalkyl (C=6-10) sulfonamide propyl trimethyl ammonium salt

33

Page 34: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 3. Comparison of half-lives of PFAS in male and females in a variety of species including human

PFAS Human (year) Rat (days) Mice (days) Pig (days) Monkey (days)

PFHxS M 8.5 (3109 days)Range 2.2-27.0

7.4 (95% CI: 6.0, 9.7)

35 GM 19.9 29.1 31 713 141

F 12.2 13.3

4.7 (95% CI: 3.9,5.9)

7.7 GM 7.5 1.64 25 713 87

PFOS M 5.4 (1976 days)Range 2.4-21.7

4.6(95% CI: 3.7,6.1)

27 GM 60.9 38 43 634 132

F 4.96.8

3.1 (95% CI: 2.7,3.7))

6.2 GM 8.0 62 38 634 110

PFOA M 3.8 (1378 days) Range 1.5-9.1

2.8 (95% CI: 2.4,3.4)

2.1 GM 4.7 5.6 22 236 21

F 3.33.3

2.4 (95% CI: 2.0,3.0)

2.6 GM 3.1 0.08 16 236 32

References Olsen et al., 2007a Li et al., 2018b Zhang et al., 2013c

Fu et al., 2016d Sundström et al., 2012e

Sundström et al., 2012e

Numata et al., 2014f

Sundström et al., 2012e

a: Half-life in 26 (24 males and 2 females) fluorplant workers, blood sampled for 5 successive years after retirement (individual half-life given for the two women). b: Drinking water exposure, up to seven blood samples collected between 2014 to 2016 from 106 individuals.c: Half-life estimated based on paired urine-blood samples and urine as only elimination way from 86 individuals.d: Half-life in fluorplant workers (n=302) estimated by daily clearance rate by paired blood-urine samples and annual decline in serum levels over 5 years.e: Clearance profile of PFHxS after a single oral dose; Rats (n=4/sex/group) within 96 h after exposure for 1, 10, or 100mg K+PFHxS/kg body weight. CD-1 mice were sampled at designated times (2, 4, and 8 h post-dose and days 1, 8, 15, 22, 36, 50, 64, and 162 post-dose (n=4/sex/dose group) after exposure to 1 or 20mg K+PFHxS/kg body weight. For rat and mice, blood, liver, kidney, 24h-hurine and feces were sampled. Three male and three female cynomolgus monkeys were given intravenous dose of 10 mg/kg PFHxS. Urine was collected up to day 119, and blood sampled at regular intervals up to day 171 post–dose. f: Fattening pigs, 10 gilts (female), 10 barrows (castrated male pigs) and 10 prepubescent male pigs) for 21 days they received either PFAA contaminated feed (hay and barley grown on agricultural land added soil improver contaminated with high concentrations with PFAS (PFHxS concentration was 91.3 g/kg, each animal received 2 kg/feed per day), blood were sampled at day -4 and days 4, 8, 11, 15, and 18 and at slaughter day 21, muscle, fat, liver, kidney, urine, and feces were sampled.

34

Page 35: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 4.1. PFHxS serum levels and plasma, cholesterol, lipid levels and metabolic function associations

Region Year ofsampling

Location, cohort

Study-group,n, age

Study design

Association between PFHxS and plasma lipids and cholesterol

PFAS serum level

Median (range) ng/mlor geometric mean

(GM)

Comments ReferenceTC LDL

-CTC/HDL

Non HDL

-C

HDL-C TRIG

North America

2005-2006 C8 Health Project, Ohio and West Virginia, United States

Non-pregnant adults,≥18 yrs n=46,294

C-S, Multivariate linear regression

↑ – – – – – Mean and SDPFHxS 5.1 (0.8)PFOS 22.4 (14.8)PFOA 80.3 (236.1)PFNA 1.6 (0.8)

All lipid outcomes except high densitylipoprotein cholesterol showed significant increasing trends by increasing decile of either compound (PFOA and PFOS).PFHxS and PFNA was only reported for TC, both positively associated.

Steenland et al., 2009

North America

2007-2009 Canadian Health Measures Survey (Cycle 1)

Non-pregnant adults,18-74 yrs n=2700

C-S, Multivariate linear regression and IQR

↑ ↑ ↑ ↑ ns ns GM and SD in plasmaPFHxS 2.18 (2.63)PFOS 8.4 (2.04)PFOA 2.46 (1.83)

Over half of the study population was either obese or overweight.PFHxS OR for high cholesterol=1.27(95% CI: 1.1, 1.45)

No association was found between PFHxS and metabolic syndrome, insulin or glucose

Fisher et al., 2013

North America

1999-2000 and 2003-2004

NHANES, United States

≥12 yrs,n=1443, (adolescent 474, adults 969)

C-S, Multivariate linear regression

– – – – ns ns – No association was found between PFHxS and metabolic syndrome, insulin or glucose in adolescent or adults

PFNA was ↑ hyperglycemia in adolescents.

Lin et al., 2009b

North America

2003-2004 NHANES, United States

12-80 yrs,n=860

C-S, multivariate linear regres-sion and IQR, analyses in sex and age (12–19, 20–59, 60–80 years) subgroups for each PFC separately

↓P=0.07

↓P=0.01

– ↓ ↑P=0.11

– Median and rangPFHxS 1.8 (0.2-27.1)PFOS 21 (1.4-392)PFOA 3.9 (0.1-37.3)PFNA 1.0 (0.1-10.3)

PFHxS consistently acted in the opposite direction of the other PFASs in the cholesterol analyses, (PFOS, PFOA and PFNA ↑ HDL-C, TC, LDL).

No association was found between PFAS and metabolic syndrome, insulin or glucose

Nelson et al., 2010

35

Page 36: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Region Year ofsampling

Location, cohort

Study-group,n, age

Study design

Association between PFHxS and plasma lipids and cholesterol

PFAS serum level

Median (range) ng/mlor geometric mean

(GM)

Comments Reference

North America

2003-2012 NHANES, United States

>20 yrs,n=7904Male=3956Female=3948

C-S, multivariate linear regres-sion analyses in sex and age, IQR

ns ns – – ↑f ns Mean and SD male: PFHxS 2.88 (0.05)PFOS 20.8 (0.32)PFOA 4.5 (0.06)PFNA 1.52 (0.02)female: PFHxS 1.94 (0.04)PFOS 14.51 (0.26)PFOA 3.46 (0.04)PFNA 1.3 (0.03)

Diabetes prevalence in female in Q4 PFHxS OR=1.22 (p=0.056).

Systolic blood pressure ↑f

PFOA was ↑ associated with diabetes in males, and with TC in adults.

He et al., 2018

North America

1999-2002 Project Viva, Boston, Mother-child pairs

682 mother child pairs

C-(P)-cohort,multivariate linear regres-sion analyses, IQR-of prenatal or mid-childhood PFAS and mid-childhoodlipids and liver enzymes (ALT)

ns ns ns ns ns ns Median and (P25-P75)Prenatal-PFASsPFHxS 2.4 (1.6-3.8)PFOS 24.6 (17.9-34)PFOA 5.4 (3.9-7.6)PFNA 0.6(0.5-0.9)

Mid-childhoodPFHxS 1.9 (1.2-3.4)PFOS 6.2 (4.2-9.7)PFOA 4.3 (3.0-6.0)PFNA 1.5 (1.1-02.3)

Maternal blood sampled 1th trimester week 9.7 in 1999-2002Mid-childhood blood at median age 7.7 yrs, 2007-2010

Among girls, higher PFOS, PFOA and PFDeA ↑ TG and/or LDL-C. However, boys and girls these PFAS combined ↑HDL-C and ↓ ALT.

Mora et al., 2018

North America

1993-2001 children and adolescents enrolled in the World Trade Center Health Registry (WTCHR)

≤7 yrs on 9/11/01 or born between 9/11/93 and 2001n=123 in the WTCHR group and n=185 in control group

C-C, multivariate regression analysis

↑ ↑ – – ns ns Median Control-WTCHRPFHxS: 0.53–0.67PFOS: 2.78–3.72PFOA: 1.39–1.81PFNA: 0.49–0.61

PFHxS decreased insulin resistance-8.6% change, (beta coefficient=-0.09 (95% CI-0.18, -0.003),

Koshy et al., 2017

36

Page 37: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Region Year ofsampling

Location, cohort

Study-group,n, age

Study design

Association between PFHxS and plasma lipids and cholesterol

PFAS serum level

Median (range) ng/mlor geometric mean

(GM)

Comments Reference

Europe 2003-2004 MoBa, Norway

Pregnant women, n=891,(18-44) yrs

C-S,Multivariate regression

ns ns – – ↑ ns Median and (P25-P75)PFHxS 0.60 (0.44–0.87)PFOS 13.03 (10.31–16.60)PFOA 2.25 (1.66-3.03)PFNA 0.39 (0.29-0.51)

Sampling 2nd trimester

PFOS, PFNA, PFDA, PFUnDA, and PFHxS showed positive linearassociations with HDL-cholesterol in adjusted models. Pr ln increase of PFHxS:=1.46 (95% CI: 0.19, 2.73).

Starling et al., 2014

Europe 2003-2008 INMA, Spain

Pregnant women, n=1240,(18-44) yrs

C-S, Multivariate linear regression

ns – – – – ↓a GM and rangPFHxS 0.55 (0.05-11.0)PFOS 5.77 (0.28-38.58)PFOA 2.31 (0.28-31.64)PFNA 0.64 (0.03-5.51)

Sampling 1st trimester

Both PFOS and PFHxS ↑ with impaired glucose tolerance;PFHxS OR=1.65 (95%CI: 0.99, 2.76) per log 10-unit increase aAssociation was nonlinear

Matilla-Santander et al., 2017

Europe 2003-2008 INMA, Spain

n=627 mother-child pair

C-P,Multivariate linear regression

ns ns – – ns ↑a at 4 yrs

GM and (P25–P75)PFHxS 0.61 (0.43–0.84)PFOS 5.80 (4.52–7.84)PFOA 2.32 (1.63–3.31)PFNA 0.66 (0.5–0.90)

Maternal plasma PFAS at 1st trimesterBlood lipids at age 4 (non-fasting)

aTRIG z-score [for a doubling of exposure, =0.11; 95% CI: 0.01, 0.21]

Manzano-Salgado et al., 2017

C8 Health Project, Ohio and West Virginia: community residents to a chemical plant, exposed to PFOA (and other PFAS) through drinking water; NHANES (National Health and Nutrition Examination Survey); MoBa (The Norwegian Mother and Child Cohort Study)C-C: case-control; C(P): cohort (prospective); C(R): cohort (retro perspective); C-S: cross-sectional↑ Positive association p≤0.05; ↓ negative association p≤0.05; Non-significant association: ↑ Positive association p>0.05; ↓ negative association p>0.05; - not studied; ns: non-significant;CI: confidence interval; IQR: interquartile range; Q: quartile; PFAS: perfluoroalkyl substances;PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; TC=total cholesterol; LDL-C=low-density lipoprotein-cholesterol; HDL-C=high density lipoprotein cholesterol, TRIG=triglycerides; ALT=alanine aminotransferase

37

Page 38: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 4.2. PFHxS serum levels and thyroid hormone associations

Region year of sampling

Location cohort

Study group,n, age Study design

Association between PFHxS and THs PFAS serum level,and matrix

Median (range) ng/mlor geometric mean

(GM)

Comments ReferenceTSH TT4 TT3 fT3 fT4

Asia 2006-2010

Republic of Korea

Cordblood n=279 (147 females, 132 males)

C(P), multiple linear regression models, cord blood PFAS and TH

ns ns ↑f – – PFHxS 0.38 (0.11-1.31)PFOS 0.66 (0.07-5.9)PFOA 0.91 (0.05-2.4)PFNA 0.2 (0.03-1.24)

PFOS and PFPeA ↑ T4 in femalePFNA ↓ TSH in femalePFDA ↑ T3 in female

PFDeA, PFNA , PFPeA and PFHxS were highly correlated in cord blood

Shan-Kulkarni et al., 2016

Asia 2009-2010

Republic of Korea

Neonates, blood 1–3 months after birth(27) cases, (13) controls

C-C,Cases=congenital hypothyroidism (CH) infants

ns ns ns – – CasesPFHxS 1.23 (0.13-3.11)PFOS 5.33 (0.50-23.9)PFOA 5.4 (0.79-15.7)PFNA 1.93 (0.31-4.59)

ControlsPFHxS 1.17 (0.2-3.45)PFOS 4.05 (0.64-11.6)PFOA 2.12 (0.36-4.55)PFNA 0.63 (nd-1.64)

In the control group:PFPeA and PFHpA was ↑ with relevant microsomal antibodies

Case group received medication for congenital hypothyroidism and this may have impacted the results.

Kim et al., 2016

In infants with congenital hypothyroidism (n=27) PFHxS and PFOA as well as total PFSAs and total PFAS was ↓ with thyroid stimulating–immunoglobulin (TSI)

North America

2011-2012

NHANES, United States

Children (158 boys, 158 girls)12-<20 yrs

C-S,Multiple linear regression)

ns ↓m ns ns ns Median and (P25-P75)

PFHxS 0.83 (0.56, 1.74)PFOS 3.76 (2.33, 5.57)PFOA 1.53 (1.15, 2.15)PFNA 0.73 (0.52, 1.10)

In male: PFOS and PFNA↑ with TSHIn female: PFOA ↓ with TSH

Lewis et al., 2015

North America

2007-2008

CHirP study, Vancover, Canada

Pregnant women, n=152

C-S,Multiple linear regression, IQR

ns ns – – ns Maternal analysis (15 wk gestation, 2nd

trimester)

PFHxS 1.0 <0.5-12)PFOS 4.8 (1.2-16)PFOA 1.7 (<0.5-4.6)PFNA 0.6 (<0.5-1.8)

No PFAS were associated with TSH, T4 or fT4 in women with normal TPOAb.

In women with TPOAb ≥9 UI/ml (n=14): 46-69% ↑ in TSH observed with IQR ↑ in PFNA, PFOA or PFOS.

IQR ↑ in all 4 PFAS gave 3-4%↑in fT4

Webster et al., 2014

North America

2005-2006

Edmonton, Alberta, Canada

Pregnant women(96) cases,(175) controls

C-C,Cases=hypothyroxinemiaConditional logistic regression

Neither PFOS, PFOA or PFHxS were association with maternal hypothyroxinemia;PFHxS adjusted analysis OR=1.12 (95%CI :0.89, 1.41)

PFHxS GM nmol/L cases 2.86 (1.46-5.70)control 2.59 (1.35-4.90)

PFOS GM 14.15 PFOA GM 3.10

Serum levels provided in nmol/L

Hypothyroxinaemic cases were defined as reduced fT4 (≤8.8 pmol/L) despite normal TSH (0.15-≤4 mUI/ml)

Chan et al., 2011

38

Page 39: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Region year of sampling

Location cohort

Study group,n, age Study design

Association between PFHxS and THs

PFAS serum level,and matrix

Median (range) ng/mlor geometric mean

(GM)

Comments Reference

North America

1999-2002

Project Viva,Boston, Massa-chusetts, United States

Pregnant women (732)Neonates (480)

C (P)multiple linear regression models, IQR

#TT4 were only TH measured in neonates.

ns* ns*

↓m#

– – ↓* Maternal analysis (9.6 wk gestation)PFHxS 2.4 <LOD-43.2)PFOS 24.0 (2.8-115)PFOA 5.6 (0.3-36.7)

Neonates analysisPFHxS 2.3 <LOD-43.2)PFOS 23.5 (4.6-115)PFOA 5.5 (0.9-20.1)

* Maternal analysis: PFHxS was neg associated with free T4 index (-4.19% pr quartile increase in PFHxS)Q2-4 vs Q4: - 4.19% (95% CI:-7.43, -0.85)

TPOAb positive (n=98): maternal TSH was neg correlated with PFOS and PFNA, but not significant for PFHxS IQR=-4.87 (95%CI:-12.7, 3.88)

# Neonates analysis: neonate PFOS, PFOA and PFHxS were negatively associated with T4 levels in male neonatesPFHxS Q4 vs Q1: beta=-2.51 µg/dL (95% CI: -3.99, -1.04)Plasma T4 levels in male neonates were also negativly associated with prenatal (maternal) PFAS levels; beta=-0.46 (95%CI: -0.85, -0.10)

Preston et al., 2018

Asia 2000-2001

Taiwan Pregnant women (285), mean 28.8 yrs, neonated (116)

C (P)multivariate linear regression models

↑ ns ns – ns Median and (P25-P75)PFHxS 0.81 (0.30-1.35)PFOS 12.73 (9.65-17.48)PFOA 2.39 (1.54-3.40)PFNA 1.51 (0.85-2.51)

PFAS and TH in maternal serum (3rd T), Cord blood TH only

Positive association between PFHxS and TSH in pregnant women, beta=0.105 (95%CI: 0.002, 0.207).

No association between PFHxS in maternal serum and cord blood.

Wang et al., 2014

Europe 2007-2009

Northern Norway contam. Cohort Study (MISA)

Pregnant women (391)

C (P)multivariate linear regression models, IQR, included also thyroid hormone binding protein

↑* ns ns ns ns PFHxS 0.44 (0.3-1.1)PFOS 8.03 PFOA 1.53PFNA 0.56

* Both PFOS, PFOA and PFHxS concentrations were associated with higher TSH concentration. However, when including PFOS as covariate significance for PFOA and PFHxS were no longer present.

Berg et al., 2015

Europe 2003-2004

MoBa,Norway

Pregnant women (903), mean (range) 30 (18-44) yrs

C (P)multiple linear regression models

ns – – – – Median and (P25-P75)PFHxS 0.60 (0.43-0.84)PFOS 12.81 (10.13-16.49)PFOA 2.51 (1.57-2.95)PFNA 0.39 (0.28-0.51)

Maternal plasma (17-18 gws)

A small positive association was observed between PFOS and TSH.

Wang et al., 2013

39

Page 40: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Region year of sampling

Location cohort

Study group,n, age Study design

Association between PFHxS and THsPFAS serum level,

and matrix

Median (range) ng/mlor geometric mean

(GM)

Comments Reference

North America

2008-2009

Time to pregnancy cohort

Women 30-44yrsn=99

C-(P), Multiple linear regression,IQR of natural log PFAS

ns ns ns – – GM (95%CI)PFHxS 1.59 (1.37, 1.84)PFOS 9.29 (8.31, 10.38)PFOA 2.79 (2.48, 3.16)PFNA 0.84 (0.74, 0.97)

Women with history of infertility, polycystic ovaries, ovarian disease, pelvic inflammatory disease, endometriosis etc were excluded from the study

Sum PFAS ↑T3

Crowford et al., 2017

North America

2011-2012

NHANES, United States

n=1682 >12-80 yrs

C-S,Multiple linear regression

ns ns ↑ f 50-80 yrs

ns ns Median and (P25-P75) PFHxS females20-40 yrs: 0.69 (0.43, 1.10) 60-80 yrs: 1.47 (0.9, 2.34)

In women age 50-80 TT3 increased with 2.0 % (95% CI: 0.2, 3.9) per doubling in PFHxS level.

No association was observed in men.

Lewis et al., 2015

North America

2007-2008and 2009-10

NHANES, United States

n=1540, ≥12 years

C-S, multivariate linear, IQR

– ↑ – – – – Jain et al., 2013

North America

2007-2008 and2009-2010

NHANES, United States

n=1181 ≥20 years

C-S,IQR of natural log PFAS, multivariable linear

ns ↑f ↑f ns ↓m GM (95% CI)PFHxS 2.0, (1.89-2.11)PFOS 14.2, (13.59-14.86)PFOA 4.15, (4.02-4.29)PFNA 1.54, (1.48-1.59)

f in women, min menhypothyroidism (defined as TSH<0.24 mIU/L)

hyperthyroidism (defined as TSH>5.43 mIU/L)

Wen et al., 2013

In women: ↑risk of sub-clinical hypothyroidism with increasing PFHxS levels, OR 3.10 CI (1.22-7.86), ↑risk of sub-clinical hyperthyroidism with increasing PFHxS levels, OR 2.27 CI (1.07-4.80)

North America

2007-2008

NHANES, US

n=1525 ≥18 years(8% were in the high TPOAb group and 28% had urinary iodine levels<100 µg/L)

C-S, IQR of ln PFAS multivariate linear

↑ and ↑ a

ns ↑ a

and ↑b

↑ a ↓ a PFHxS 2.0 (<LOD-81.6)PFOS 14.2 (<LOD-253)PFOA 4.2 (<LOD-104)PFNA 1.2 (<LOD-25.7)

a p<0.05 for the group with both high TPOAb and low urinary iodineb p<0.05 for the group with low urinary iodineTPOAb>9 IU/ml is a vulnerable group if Combined with low iodine

Webster et al., 2016

fT3/fT4 ratio ↑ a

Asia Southern-China Guangdong, Guangxi and Hainan provinces

n=202,Infant-90 yrs(group 20-44 yrs, n=115)

C-S, IQR ofln PFAS multivariate linear

ns – – ns ns PFHxS 0.2 (<LOD-2.3)PFOS 1.3 (0.05-19)PFOA 1.6 (0.24-7.4)

FT3 and FT4 ↓ with PFAS8 (n=202)FT3 and FT4 ↓ with PFAS8 in the group with hyperthyroidism (increased FT3 and FT4 and reduced TSH, n=57) PFAS8=PFOS, PFOA, PFHxS, PFPrA, PFPeA, PFBA, PFHxA, PFBS

Li et al., 2017

Asia 2008 Republic of Korea

n=633≥12 years

C-S, IQR,multivariable linear

ns ns – – – PFHxSMale 2.19Female: 1.1

Levels of PFHxS was significant correlated with consumption of vegetables, potato and fish/shellfish, PFTrDA was ↓ correlated with TT4

Ji et al., 2012

NHANES (National Health and Nutrition Examination Survey), MoBa (The Norwegian Mother and Child Cohort Study)

40

Page 41: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

C-C: case-control; C(P): cohort (prospective); C(R): cohort (retro perspective); C-S: cross-sectional↑ Positive association p≤0.05; ↓ negative association p≤0.05; - not studied; b: boys; CI: confidence interval; FT4: free thyroxin; g: girls; IQR: interquartile range; ln: natural log transformed; ns: non-significant; PFAS: perfluoroalkyl substances;PFHxS: perfluorohexane sulfonate; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonate; Q: quartile; TSH: thyroid-stimulating hormone; TT4: total thyroxin; TT3: total triiodothyronine; fT3: free T3; fT4: free T4;Autoimmune hypothyroidism (Hashimoto's disease, TPOAb ≥9 UI/ml and TSH), Hyperthyroidism: (high fT4, low TSH), Hypothyroxinemia (low fT4 without expected increase in TSH)

41

Page 42: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

References Aas CB, Fµglei E, Herzke D, Yoccoz NG, Routti H (2014). Effect of body condition on tissue distribution of perfluoroalkyl substances (PFASs) in Arctic fox (Vulpes lagopus). Environ Sci Technol. 48(19):11654-61. Erratum in: Environ Sci Technol. 48(22):13558.

Ahrens L, Xie Z, Ebinghaus R (2010). Distribution of perfluoroalkyl compounds in seawater from northern Europe, Atlantic Ocean, and Southern Ocean. Chemosphere. 78(8):1011-6.

Ahrens, L., Siebert, U., Ebinghaus, R., (2009). Total body burden and tissue distribution of polyfluorinated compounds in harbor seals (Phoca vitulina) from the German Bight. Mar Pollut Bull, 58(4), 520-525.

Alava JJ, McDoµgall MRR, Bobor-Córdova MJ, Calle P, Riofrio M, Calle N, Ikonomou MG, Gobas FAPC (2015). Chapter 3. Perfluorinated chemicals in sediments, lichens and seabirds from the Antarctic peninsula–environmental assessment and managment perspectives in Emerging pollutants in the environment–current and further implications. https://www.intechopen.com/books/emerging-pollutants-in-the-environment-current-and-further-implications/perfluorinated-chemicals-in-sediments-lichens-and-seabirds-from-the-antarctic-peninsula-environmenta

Andreasen, B., Hoydal, K., Mortensen, R., Ehrenbjerg, S.V., Dam, M. AMAP Faroe Islands 2013–2016: Heavy Metals and POPs Core Programme, Arctic Monitoring and Assessment Programme, Environment Agency, Faroe Islands (in preparation).

Antignac JP, Veyrand B, Kadar H, Marchand P, Oleko A, Le Bizec B, Vandentorren S (2013). Occurrence of perfluorinated alkylated substances in breast milk of French women and relation with socio-demographical and clinical parameters: results of the ELFE pilot study. Chemosphere. 91(6):802-8.

Allred BM, Lang JR, Barlaz MA, Field JA (2014). Orthogonal zirconium diol/C18 liquid chromatography-tandem mass spectrometry analysis of poly and perfluoroalkyl substances in landfill leachate. J Chromatogr A. 12;1359:202-11.

Arbuckle TE, Kubwabo C, Walker M, Davis K, Lalonde K, Kosarac I, Wen SW, Arnold D L (2013). Umbilical cord blood levels of perfluoroalkyl acids and polybrominated flame retardants. Int J Hyg Environ Health. 216(2):184-94.

Averina M, Brox J, Huber S, Furberg AS (2018). Perfluoroalkyl substances in adolescents in northern Norway: Lifestyle and dietary predictors. The Tromsø study, Fit Futures 1. Environ Int. 114:123-130.

Ballesteros V, Costa O, Iñiguez C, Fletcher T, Ballester F, Lopez-Espinosa MJ (2017). Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies. 99:15-28.

Bangma JT, Reiner JL, Jones M, Lowers RH, Nilsen F, Rainwater TR, Somerville S, Guillette LJ, Bowden JA (2017). Variation in perfluoroalkyl acids in the American alligator (Alligator mississippiensis) at Merritt Island National Wildlife Refµge. Chemosphere. 166:72-79.

Bečanova J, Komprdova K, Vrana B, Klanova J (2016). Annual dynamics of perfluorinated compounds in sediment: A case study in the Morava River in Zlín district, Czech Republic. Chemosphere. 151:225-33.

Beesoon S, Webster GM, Shoeib M, Harner T, Benskin JP, Martin JW (2011). Isomer profiles of perfluorochemicals in matched maternal, cord, and house dust samples: manufacturing sources and transplacental transfer. Environ Health Perspect. 119(11):1659-64.

Benskin JP, Muir DC, Scott BF, Spencer C, De Silva AO, Kylin H, Martin JW, Morris A, Lohmann R, Tomy G, Rosenberg B, Taniyasu S, Yamashita N (2012). Perfluoroalkyl acids in the Atlantic and Canadian Arctic Oceans. Environ Sci Technol. 46(11):5815-23.

Berg V, Nøst TH, Hansen S, Elverland A, Veyhe AS, Jorde R, Odland JØ, Sandanger TM (2015). Assessing the relationship between perfluoroalkyl substances, thyroid hormones and binding proteins in pregnant women; a longitudinal mixed effects approach. Environ Int. 77:63-9.

Berg V, Nøst TH, Huber S, Rylander C, Hansen S, Veyhe AS, Fuskevåg OM, Odland JØ, Sandanger TM (2014). Maternal serum concentrations of per- and polyfluoroalkyl substances and their predictors in years with reduced production and use. Environ Int.69:58-66

Beškoski VP, Takemine S, Nakano T, Slavković Beškoski L, Gojgić-Cvijović G, Ilić M, Miletić S, Vrvić MM (2013). Perfluorinated compounds in sediment samples from the wastewater canal of Pančevo (Serbia) industrial area. Chemosphere. 91(10):1408-15.

Bignert, A., Danielsson, S., Strandmark, A., Nyberg, E., Asplund, L., Eriksson, U., Berger, U., Wilander, A., Haglund P. (2008). Sakrapport: Metaller och organiska miljögifter i marin biota, trend- och områdesövervakning. Comments Concerning the National Swedish Contaminant Monitoring Programme in Marine Biota, 2008. Retrieved from http://www.nrm.se/download/18.61d98c3a11a91af311a80001279/Marina+programmet +2008.pdf

Bjerregaar-Olesen C, Bossi R, Liew Z, Long M, Bech BH, Henriksen TB, Berg V, Nøst TH, Zhang JJ, Odland JØ, Bonefeld-Jørgensen EC (2017). Maternal serum concentrations of perfluoroalkyl acids in

42

Page 43: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

fiveinternational birth cohorts. International Journal of Hygiene and Environmental Health 220: 86–93.

Boiteux V, Dauchy X, Rosin C, Munoz JF (2012). National screening study on 10 perfluorinated compounds in raw and treated tap water in France. Arch Environ Contam Toxicol. 63(1):1-12.

Bossi R, Riget FF, Dietz R, Sonne C, Fauser P, Dam M, Vorkamp K (2005). Preliminary screening of perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish, birds and marine mammals from Greenland and the Faroe Islands. Environ Pollut. 136(2):323-9.

Braune BM, Letcher RJ (2013). Perfluorinated sulfonate and carboxylate compounds in eggs of seabirds breeding in the Canadian Arctic: temporal trends (1975-2011) and interspecies comparison. Environ Sci Technol. 47(1):616-24.

Braune BM, Gaston AJ, Elliott KH, Provencher JF, Woo KJ, Chambellant M, Ferguson SH, Letcher RJ (2014). Organohalogen contaminants and total mercury in forage fish preyed upon by thick-billed murres in northern Hudson Bay. Mar Pollut Bull. 78(1-2):258-66.

Bräunig J, Baduel C, Heffernan A, Rotander A, Donaldson E, Mueller JF (2017). Fate and redistribution of perfluoroalkyl acids throµgh AFFF-impacted groundwater. SciTotal Environ. 596-597:360-368.

Brumovský M, Karaskova P, Borghini M, Nizzetto L (2016). Per- and polyfluoroalkyl substances in the Western Mediterranean Sea waters. Chemosphere. 159:308-316.

Busch J, Ahrens L, Xie Z, Sturm R, Ebinghaus R (2010). Polyfluoroalkyl compounds in the East Greenland Arctic Ocean. J Environ Monit. 12(6):1242-6.

Butt CM, Berger U, Bossi R, Tomy GT (2010). Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ. 408(15):2936-65. Review.

Butt CM, Mabury SA, Muir DC, Braune BM (2007). Prevalence of long-chained perfluorinated carboxylates in seabirds from the Canadian Arctic between 1975 and 2004. Environ Sci Technol. 41(10):3521-8.

Bytingsvik J, van Leeuwen SP, Hamers T, Swart K, Aars J, Lie E, Nilsen EM, Wiig O, Derocher AE, Jenssen BM (2012). Perfluoroalkyl substances in polar bear mother-cub pairs: a comparative study based on plasma levels from 1998 and 2008. Environ Int. 15;49:92-9.

Cai M, Zhao Z, Yin Z, Ahrens L, Huang P, Cai M, Yang H, He J, Sturm R, Ebinghaus R, Xie Z (2012). Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean. Environ Sci Technol. 46(2):661-8.

Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (2007). Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000. Environ Health Perspect. 115(11):1596-602.

Caliebe C, Gerwinski W, Theobald N, Hühnerfuss H (2005). Occurrence of perfluorinated 465 organic acids in the water of the North Sea and Arctic North Atlantic. In Poster presented at Fluoros, Toronto, Canada. (http://www.chem.utoronto.ca/symposium/fluoros/pdfs/ANA010Theobald.pdf). Last accessed 16 May 2017.

Campo J, Lorenzo M, Pérez F, Picó Y, Farré Ml, Barceló D (2016). Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain). Sources, partitioning and relationships with water physical characteristics. Environ Res. 147:503-12.

Carlsson P, Herzke D, Kallenborn R (2014). Polychlorinated biphenyls (PCBs), polybrominateddiphenyl ethers (PBDEs) and perfluorinated alkylated substances (PFASs) in traditional seafood items from western Greenland. Environ Sci Pollut Res Int. 21(6):4741-50.

Casal P, Gonzalez-Gaya B, Zhang YF, Reardon AJF, Martin JW, Jimenez B, Dachs J. (2017). Accumulation of Perfluoroalkylated Substances in Oceanic Plankton. Environmental Science & Technology 51(5):2766-2775.

Chan E, Burstyn I, Cherry N, Bamforth F, Martin JW (2011). Perfluorinated acids and hypothyroxinemia in pregnant women. Environ Res. 111(4):559-64.

Chen M, Wang Q, Shan G, Zhu L, Yang L, Liu M (2018). Occurrence, partitioning and bioaccumulation of emerging and legacy per- and polyfluoroalkyl substances in Taihu Lake, China. Sci Total Environ. 5;634:251-259.

Chu S, Wang J, Leong G, Woodward LA, Letcher RJ, Li QX (2015). Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean. Chemosphere.138:60-6.

Codling G, Halsall C, Ahrens L, Del Vento S, Wiberg K, Bergknut M, Laudon H, Ebinghaus R. (2014). The fate of per- and polyfluoroalkyl substances within a melting snowpack of a boreal forest. Environ Pollut.191:190-8.

CONCAWE (2016). Environmental fate and effects of polyand perfluoroalkyl substances (PFAS).

43

Page 44: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Crawford NM, Fenton SE, Strynar M, Hines EP, Pritchard DA, Steiner AZ (2017). Effects of perfluorinated chemicals on thyroid function, markers of ovarian reserve, and natural fertility. Reprod Toxicol. 69:53-59. doi: 10.1016/j.reprotox.2017.01.006. Epub 2017 Jan 19.

Cui Q, Pan Y, Zhang H, Sheng N, Dai J (2018). Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment. Environ Pollut. 241:684-691.

D'Agostino LA, Mabury SA (2017). Certain Perfluoroalkyl and Polyfluoroalkyl Substances Associated with Aqueous Film Forming Foam Are Widespread in Canadian Surface Waters. Environ Sci Technol. 5; 51 (23):13603-13613.

Dassuncao C, Hu XC, Zhang X, Bossi R, Dam M, Mikkelsen B, Sunderland EM (2017). Temporal Shifts in Poly- and Perfluoroalkyl Substances (PFASs) in North Atlantic Pilot Whales Indicate Large Contribution of Atmospheric Precursors. Environ Sci Technol. 51(8):4512-4521.

Dietz R, Rigét FF, Galatius A, Sonne C, Teilmann J, Bossi R (2012). Spatial trends of perfluorochemicals in harbor seals (Phoca vitulina) from Danish waters. Sci Total Environ. 1;414:732-7.

Dreyer A, Weinberg I, Temme C, Ebinghaus R (2009). Polyfluorinated compounds in the atmosphere of the Atlantic and Southern Oceans: evidence for a global distribution. Environ Sci Technol. 43(17):6507-14.

ECHA (2017a). Member state committee support document for the identification of perfluorohexane-1-sulphonic acid and its salts as substances of very high concern because of their vPvB (Article 57 E) properties. (https://echa.europa.eu/documents/10162/40a82ea7-dcd2-5e6f-9bff-6504c7a226c5). Last accessed 04 October 2017

EFSA 2012. European Food Safety Authority; Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA Journal., 2012; 10(6):2743. [55 pp.] doi:10.2903/j.efsa.2012.2743. Available online: www.efsa.europa.eu/efsajournal

Ericson Jogsten & Yeung (2017). Analysis of ultra-short chain perfluoroalkyl substances in Swedish environmental waters. Örebro universitet, Forskningscentrum Människa-Teknik-Miljö (MTM)

Ericson I, Domingo JL, Nadal M, Bigas E, Llebaria X, van Bavel B, Lindström G (2009). Levels of perfluorinated chemicals in municipal drinking water from Catalonia, Spain: public health implications. Arch Environ Contam Toxicol. 57(4):631-8.

Eriksson U, Haglund P, Kärrman A (2017). Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs). J Environ Sci (China). 61:80-90.

Eschauzier C, Haftka J, Stuyfzand PJ, de Voogt P. (2010). Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes. EnvironSci Technol. 44(19):7450-5.

Fair PA, Adams J, Mitchum G, Hulsey TC, Reif JS, Houde M, Muir D, Wirth E, Wetzel D, Zolman E, McFee W, Bossart GD (2010). Contaminant blubber burdens in Atlantic bottlenose dolphins (Tursiops truncatus) from two southeastern US estuarine areas: concentrations and patterns of PCBs, pesticides, PBDEs, PFCs, and PAHs. Sci Total Environ. 1;408(7):1577-97.

Fair PA, Houde M, Hulsey TC, Bossart GD, Adams J, Balthis L, Muir DC (2012). Assessment of perfluorinated compounds (PFCs) in plasma of bottlenose dolphins from two southeast US estuarine areas: relationship with age, sex and geographic locations. Mar Pollut Bull. 64(1):66-74.

Falandysz J, Taniyasu S, Gulkowska A, Yamashita N, Schulte-Oehlmann U (2006). Is fish a major source of fluorinated surfactants and repellents in humans living on the Baltic Coast? Environ Sci Technol. 1;40(3):748-51.

Falk S, Brunn H, Schröter-Kermani C, Failing K, Georgii S, Tarricone K, Stahl T (2012). Temporal and spatial trends of perfluoroalkyl substances in liver of roe deer (Capreolus capreolus). Environ Pollut. 171:1-8.

Fisher M, Arbuckle TE, Liang CL, LeBlanc A, Gaudreau E, Foster WG, Haines D, Davis K, Fraser WD (2016). Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study. Environ Health. 4;15(1):59.

Fisher M, Arbuckle TE, Wade M, Haines DA (2013). Do perfluoroalkyl substances affect metabolic function and plasma lipids? -Analysis of the 2007-2009, Canadian Health Measures Survey (CHMS) Cycle 1. Environ Res.121:95-103. Erratum in: Environ Res.126:221.

Fraser AJ, Webster TF, Watkins DJ, Strynar MJ, Kato K, Calafat AM, Vieira VM, McClean MD (2013). Polyfluorinated Compounds in dust from homes, offices and vehicles as predictors of concentrations in office workers' serum. Environ Int. 60: 128–136.

Fraser AJ, Webster TF, Watkins DJ, Nelson JW, Stapleton HM, Calafat AM, Kato K, Shoeib M, Vieira VM, McClean MD (2012). Polyfluorinated Compounds in Serum Linked to Indoor Air in Office Environments. Environmental Science & Technology, 2012; 46: 1209-1215.

Fromme H, Mosch C, Morovitz M, Alba-Alejandre I, Boehmer S, Kiranoglu M, Faber F, Hannibal I, Genzel-Boroviczény O, Koletzko B, Völkel W (2010). Pre- and postnatal exposure to perfluorinated compounds (PFCs). Environ Sci Technol. 44(18):7123-9.

44

Page 45: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Fry K, Power MC. (2017). Persistent organic pollutants and mortality in the United States, NHANES 1999-2011. Environmental Health 16.

Fu JJ, Gao Y, Cui L, Wang T, Liang Y, Qu GB, Yuan B, Wang YW, Zhang AQ, Jiang GB (2016). Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China. Scientific Reports 6: 38039

Galatius A, Bossi R, Sonne C, Rigét FF, Kinze CC, Lockyer C, Teilmann J, Dietz R (2013). PFAS profiles in three North Sea top predators: metabolic differences among species? Environ Sci Pollut Res Int. 20(11):8013-20.

Galatius A, Dietz R, Rigét FF, Sonne C, Kinze CC, Lockyer C, Bossi R (2011). Temporal and life history related trends of perfluorochemicals in harbor porpoises from the Danish North Sea. Mar Pollut Bull. 62(7):1476-83.

Gallen C, Baduel C, Lai FY, Thompson K, Thompson J, Warne M and Mueller J (2014). Spatio-temporal assessment of perfluorinated compounds in the Brisbane River system, Australia: Impact of a major flood event. Marine Pollution Bulletin, 85, pp 597-605.

Gallen C, Drage D, Eaglesham G, Grant S, Bowman M, Mueller JF (2017). Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates. J Hazard

Gallen C, Drage D, Kaserzon S, Baduel C, Gallen M, Banks A, Broomhall S, Mueller JF (2016). Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids. J Hazard Mater. 312:55-64.Mater. 331:132-141.

Gamberg et al., 2018. Northern Contaminants Program, 2017/2018 report (in preparation).

Gebbink WA, Glynn A, Darnerud PO, Berger U (2015). Perfluoroalkyl acids and their precursors in Swedish food: The relative importance of direct and indirect dietary exposure. Environ Pollut. 198:108-15.

Genualdi S, Lee SC, Shoeib M, Gawor A, Ahrens L, Harner T (2010). Global pilot study of legacy and emerging persistent organic pollutants using sorbent-impregnated polyurethane foam disk passive air samplers. Environ Sci Technol. 44(14):5534-9.

Gewurtz SB, Martin PA, Letcher RJ, Burgess NM, Champoux L, Elliott JE, Weseloh DVC (2016). Spatio-temporal trends and monitoring design of perfluoroalkyl acids in the eggs of gull (Larid) species from across Canada and parts of the United States. Sci Total Environ. 15;565:440-450.

Glynn, A., Danerud, P.O., Pihlström, T., Berger, U., Vestergren, R., Cousins, I.T., Johansson, J., Bignert, A. (2012). Temporal trends of perfluorinated alkyl acids in eggs, milk and farmed fish from the Swedish food production. Retrieved from https://www.kemi.se/global/pm/2012/pm-17-12.pdf

Gómez-Ramírez P, Bustnes JO, Eulaers I, Herzke D, Johnsen TV, Lepoint G, Pérez-García JM, García-Fernandez AJ, Jaspers VLB (2017). Per- and polyfluoroalkyl substances in plasma and feathers of nestling birds of prey from northern Norway. Environ Res. 158:277-285.

Gonzalez-Gaya B, Dachs J, Roscales JL, Caballero G, Jiménez B (2014). Perfluoroalkylated substances in the global tropical and subtropical surface oceans. Environ Sci Technol. 48(22):13076-84.

Greaves AK, Letcher RJ, Sonne C, Dietz R, Born EW (2012). Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears. Environ Sci Technol. 46(21):11575-83.

Groffen T, Lopez-Antia A, D'Hollander W, Prinsen E, Eens M, Bervoets L. (2017). Perfluoroalkylated acids in the eggs of great tits (Parus major) near a fluorochemical plant in Flanders, Belgium. Environ Pollut. 228:140-148.

Grønnestad R, Villanger GD, Polder A, Kovacs KM, Lydersen C, Jenssen BM, Borgå K (2017). Maternal transfer of perfluoroalkyl substances in hooded seals. Environ Toxicol Chem. 36(3):763-770.

Gützkow KB, Haµg L.S, Thomsen C, Sabaredzovic A, Becher G, Brunborg, G (2012). Placental transfer of perfluorinated compounds is selectiveea Norwegian Mother and Child sub-cohort study. Int. J. Hyg. Environ. Health 215, 216-21

Haµg LS, Hubert S, Schlablach M, Becher G, Thomsen C (2011). Investigation on Per- and Polyfluorinated Compounds in Paired Samples of House Dust and Indoor Air from Norwegian Homes Environ. Sci. Technol. 2011, 45, 7991–7998

Haukås M, Berger U, Hop H, Gulliksen B, Gabrielsen GW (2007). Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ Pollut. 148(1):360-71.

He X, Liu Y, Xu B, Gu L, Tang W (2018). PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003-2012. Sci Total Environ. 625:566-574.

Health Canada (2013). Second Report on Human Biomonitoring of Environmental Chemicals in Canada: Results of the Canadian Health Measures Survey Cycle 2 (2009-2011). Minister of Health, Ottawa, ON.

45

Page 46: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Retrieved March 13, 2018. https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/second-report-human-biomonitoring-environmental-chemicals-canada-health-canada-2013.html.

Hemat H, Wilhelm M, Völkel W, Mosch C, Fromme H, Wittsiepe J (2010). Low serum levels of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) in children and adults from Afghanistan. Sci Total Environ. 408(16):3493-5.

Herzke D, Olsson E, Posner S (2012). Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway–A pilot study. Chemosphere 88 (2012) 980–987.

Higgins CP, Field JA, Criddle CS, Luthy RG (2005). Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol. 39(11):3946-56

Houde M, Bujas TA, Small J, Wells RS, Fair PA, Bossart GD, Solomon KR, Muir DC (2006). Biomagnification of perfluoroalkyl compounds in the bottlenose dolphin (Tursiops truncatus) food web. Environ Sci Technol. 40(13):4138-44.

Hu XC, Dassuncao C, Zhang X, Grandjean P, Weihe P, Webster GM, Nielsen F, Sunderland EM (2018). Can profiles of poly- and Perfluoroalkyl substances (PFASs) in human serum provide information on major exposure sources? Environ Health. 17(1):11.

Huber S, Haµg LS, Schlabach M (2011). Per- and polyfluorinated compounds in house dust and indoor air from northern Norway - a pilot study. Chemosphere. 84(11):1686-93.

Huber S, Warner NA, Nygård T, Remberger M, Harju M, µggerud HT, Kaj L, Hanssen L (2015). A broad cocktail of environmental pollutants found in eggs of three seabird species from remote colonies in Norway. Environ Toxicol Chem. 34(6):1296-308.

Jain RB (2013). Association between thyroid profile and perfluoroalkyl acids: data from NHNAES 2007-2008. Environ Res. 126:51-9.

Ji K, Kim S, Kho Y, Paek D, Sakong J, Ha J, Kim S. Choi K (2012). Serum concentrations of major perfluorinated compounds among the general population in the Republic of Korea: dietary sources and potential impact on thyroid hormones. Environ. Int. 45: 78-85.

Kaboré HA, Vo Duy S, Munoz G, Méité L, Desrosiers M, Liu J, Sory TK, Sauvé S (2018). Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci Total Environ. 616-617:1089-1100

Kallenborn R, Berger U, Järnberg U (2004). Perfluorinated alkylated substances (pfas) in the nordic environment. TemaNord 2004:552, Nordic Council of Ministers, Copenhagen 2004

Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Van Wouwe N, Yang JH, Aldoust KM (2004). Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol. 38(17):4489-95.

Karaskova P, Venier M, Melymuk L, Bečanova J, Vojta Š, Prokeš R, Diamond ML, Klanova J (2016). Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environment International 94: 315–324.

Kärrman A, Ericson I, van Bavel B, Darnerud PO, Aune M, Glynn A, Lignell S, Lindström G (2007). Exposure of perfluorinated chemicals throµgh lactation: levels of matched human milk and serum and a temporal trend, 1996-2004, in Sweden. Environ Health Perspect. 115(2):226-30.

Kato, K., Calafat, A.M., Needham, L.L., (2009). Polyfluoroalkyl chemicals in house dust. Environ. Res. 109, 518–523

Khalil N, Ebert JR, Honda M, Lee M, Nahhas RW, Koskela A, Hangartner T, Kannan K (2018). Perfluoroalkyl substances, bone density, and cardio-metabolic risk factors in obese 8-12 year old children: A pilot study. Environ Res. 160:314-321.

Kim DH, Kim UJ, Kim HY, Choi SD, Oh JE (2016). Perfluoroalkyl substances in serum from South Korean infants with congenital hypothyroidism and healthy infants - Its relationship with thyroid hormones. Environ Res. 147:399-404.

Kim SK, Lee KT, Kang CS, Tao L, Kannan K, Kim KR, Kim CK, Lee JS, Park PS, Yoo YW, Ha JY, Shin YS, Lee JH (2011). Distribution of perfluorochemicals between sera and milk from the same mothers and implications for prenatal and postnatal exposures. Environ Pollut. 159(1):169-74.

Koshy TT, Attina TM, Ghassabian A, Gilbert J, Burdine LK, Marmor M, Honda M, Chu DB, Han X, Shao Y, Kannan K, Urbina EM, Trasande L (2017). Serum perfluoroalkyl substances and cardiometabolic consequences in adolescents exposed to the World Trade Center disaster and a matched comparison group. Environ Int. 109:128-135.

Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D (2015). Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ Sci Pollut Res Int. 22(19):14546-59.

Kubwabo, C.; Stewart, B.; Zhu, J; Marro, L (2005). Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. J. Environ. Monit. 7, 1074–1078.

46

Page 47: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Kumar K, Zushi Y, Masunaga S, Gilligan M, Pride C, Sajwan KS (2009). Perfluorinated organic contaminants in sediment and aquatic wildlife, including sharks, from Georgia, United States. Mar Pollut Bull. 58(4):621-9.

Kwok KY, Yamazaki E, Yamashita N, Taniyasu S, Murphy MB, Horii Y, Petrick G, Kallerborn R, Kannan K, Murano K, Lam PK (2013). Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources. Sci Total Environ. 447 :46-55.

Lam NH, Cho CR, Kannan K, Cho HS (2017). A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles. J Hazard Mater.323(Pt A):116-127.

Lescord GL, Kidd KA, De Silva AO, Williamson M, Spencer C, Wang X, Muir DC (2015). Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic. Environ Sci Technol. 49(5):2694-702.

Letcher RJ, Morris AD, Dyck M, Sverko E, Reiner EJ, Blair DAD, Chu SG, Shen L (2018). Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada. Sci Total Environ. 610-611:121-136.

Letcher RJ, Su G, Moore JN, Williams LL, Martin PA, de Solla SR, Bowerman WW (2015). Perfluorinated sulfonate and carboxylate compounds and precursors in herring gull eggs from across the Laurentian Great Lakes of North America: Temporal and recent spatial comparisons and exposure implications. Sci Total Environ.15;538:468-77.

Lewis RC, Johns LE, Meeker JD (2015). Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011-2012. Int J Environ Res Public Health. 12(6):6098-114. doi: 10.3390/ijerph120606098.

Li Y, Cheng Y, Xie Z, Zeng F (2017). Perfluorinated alkyl substances in serum of the southern Chinese general population and potential impact on thyroid hormones. Sci Rep. 7:43380.

Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, Jakobsson K (2018). Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup Environ Med. 75(1):46-51

Lin AY, Panchangam SC, Ciou PS (2010). High levels of perfluorochemicals in Taiwan's wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere. 80(10):1167-74.

Lin AY, Panchangam SC, Lo CC (2009a). The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environ Pollut. 157(4):1365-72.

Lin CY, Lin Y-C, Chen P-C, Lin L-Y L (2009b). Association among serum perfluoroalkyl chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care. 32 (4): 702-707.

Lindh CH, Rylander L, Toft G, Axmon A, Rignell-Hydbom A, Giwercman A, Pedersen HS, Góalczyk K, Ludwicki JK, Zvyezday V, Vermeulen R, Lenters V, Heederik D, Bonde JP, Jönsson BA (2012). Blood serum concentrations of perfluorinated compounds in men from Greenlandic Inuit and European populations. Chemosphere. 88(11):1269-75.

Llorca M, Farré M, Tavano MS, Alonso B, Koremblit G, Barceló D (2012). Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica. Environ Pollut. 163:158-66. 88(11):1269-75.

Long M, Knudsen A-K S, Pedersen HS, Bonefeld-Jørgensen EC (2015). Food intake and serum persistent organic pollutants in the Greenlandic pregnant women: The ACCEPT sub-study. Science of the Total Environment 529: 198–212.

Ma X, Shan G, Chen M, Zhao J, Zhu L (2018). Riverine inputs and source tracing of perfluoroalkyl substances (PFASs) in Taihu Lake, China. Sci Total Environ. 15; 612:18-25.

MacInnis JJ, French K, Muir DC, Spencer C, Criscitiello A, De Silva AO, Young CJ (2017). Emerging investigator series: a 14-year depositional ice record of perfluoroalkyl substances in the High Arctic. Environ Sci Process Impacts. 19(1):22-30.

Mak YL, Taniyashu S, Yeung LWY, Lu G, Jin L, Yang Y, Lam PKS, Kannan K, Yamashita N (2009). Perfluorinated compounds in tap water from China and several other countries. Environ. Sci. Technol. 43, 4824–4829.

Manzano-Salgado CB, Casas M, Lopez-Espinosa MJ, Ballester F, Iñiguez C, Martinez D, Romaguera D, Fernandez-Barrés S, Santa-Marina L, Basterretxea M, Schettgen T, Valvi D, Vioque J, Sunyer J, Vrijheid M (2017). Prenatal Exposure to Perfluoroalkyl Substances and Cardiometabolic Risk in Children from the Spanish INMA Birth Cohort Study. Environ Health Perspect. 125(9):097018.

Matilla-Santander N, Valvi D, Lopez-Espinosa MJ, Manzano-Salgado CB, Ballester F, Ibarluzea J, Santa-Marina L, Schettgen T, Guxens M, Sunyer J, Vrijheid M (2017). Exposure to Perfluoroalkyl Substances and Metabolic Outcomes in Pregnant Women: Evidence from the Spanish INMA Birth Cohorts. Environ Health Perspect. 125(11):117004.

Mora AM, Fleisch AF, Rifas-Shiman SL, Woo Baidal JA, Pardo L, Webster TF, Calafat AM, Ye X, Oken E, Sagiv SK (2018). Early life exposure to per- and polyfluoroalkyl substances and mid-childhood lipid and alanine aminotransferase levels. Environ Int. 111:1-13.

47

Page 48: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Munoz G, Giraudel JL, Botta F, Lestremau F, Dévier MH, Budzinski H, Labadie P (2015). Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: a French nationwide survey. Sci Total Environ. 517:48-56.

Naile JE, Khim JS, Hong S, Park J, Kwon BO, Ryu JS, Hwang JH, Jones PD, Giesy JP (2013). Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea. Chemosphere. 90(2):387-94.

NCP (2013). Canadian Arctic Contaminants Assessment Report on Persistent Organic Pollutants–2013.

Nelson JW, Hatch EE, Webster TF (2010). Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 118(2):197-202.

Nguyen MA, Wiberg K, Ribeli E, Josefsson S, Futter M, Gustavsson J, Ahrens L (2017). Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe. Environ Pollut. 220:1438-1446.

Noorlander CW, J. van Leeuwen SP, Dirk te Biesebeek J, Mengelers MJB, Zeilmaker MJ (2011). Levels of Perfluorinated Compounds in Food and Dietary Intake of PFOS and PFOA in Netherlands. J. Agric. Food Chem. 59, 7496–7505

Norwegian Environment Agency (2017a). Monitoring of environmental contaminants in air and precipitation. Report M-757/2017. http://www.miljodirektoratet.no/no/Publikasjoner/2017/September-2017/Monitoring-of-environmental-contaminants-in-air-and-precipitation/

Norwegian Environment Agency (2017b). Screening program 2017. Selected PBT compounds. Report M-806/2017 http://www.miljodirektoratet.no/Documents/publikasjoner/M806/M806.pdf

Numata J, Kowalczyk J, Adolphs J, Ehlers S, Schafft H, Fuerst P, Müller-Graf C, Lahrssen-Wiederholt M, Greiner M (2014). Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet. J Agric Food Chem. 62(28):6861-70.

Olsen GW, Lange CC, Ellefson ME, Mair DC, Church TR, Goldberg CL, Herron RM, Medhdizadehkashi Z, Nobiletti JB, Rios JA, Reagen WK, Zobel LR (2012). Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000−2010. Environ. Sci. Technol. 46, 6330−6338.

Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (2007). Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 115(9):1298-305.

Pan Y, Zhu Y, Zheng T, Cui Q, Buka SL, Zhang B, Guo Y, Xia W, Yeung LW, Li Y, Zhou A, Qiu L, Liu H, Jiang M, Wu C, Xu S, Dai J (2017). Novel Chlorinated Polyfluorinated Ether Sulfonates and Legacy Per-/Polyfluoroalkyl Substances: Placental Transfer and Relationship with Serum Albumin and Glomerular Filtration Rate. Environ Sci Technol. 51(1):634-644

Preston EV, Webster TF, Oken E, Claus Henn B, McClean MD, Rifas-Shiman SL, Pearce EN, Braverman LE, Calafat AM, Ye X, Sagiv SK (2018). Maternal Plasma per- and Polyfluoroalkyl Substance Concentrations in Early Pregnancy and Maternal and Neonatal Thyroid Function in a Prospective Birth Cohort: Project Viva (United States). Environ Health Perspect. 126(2):027013.

Rankin K, Mabury SA, Jenkins TM, Washington JW (2016). A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere. 161:333-41.

Rauert C, Shoieb M, Schuster JK, Eng A, Harner T (2018a). Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ Pollut. 238:94-102.

Rauert C, Harner T, Schuster JK, Eng A, Fillmann G, Castillo LE, Fentanes O, Villa Ibarra M, Miglioranza KSB, Moreno Rivadeneira I, Pozo K, Aristizabal Zuluaga BH (2018b). Atmospheric concentrations of new POPs and emerging chemicals of concern in the Group of Latin America and Caribbean (GRULAC) region. Environ Sci

Technol. [Epub ahead of print]

Reiner JL, O'Connell SG, Moors AJ, Kucklick JR, Becker PR, Keller JM (2011). Spatial and temporal trends of perfluorinated compounds in Belµga Whales (Delphinapterus leucas) from Alaska. Environ Sci Technol. 45(19):8129-36.

Rigét F, Bossi R, Sonne C, Vorkamp K, Dietz R (2013). Trends of perfluorochemicals in Greenland ringed seals and polar bears: indications of shifts to decreasing trends. Chemosphere 93(8):1607-14.

Roos A, Berger U, Järnberg U, van Dijk J, Bignert A (2013). Increasing concentrations of perfluoroalkyl acids in Scandinavian otters (Lutra lutra) between 1972 and 2011: a new threat to the otter population? Environ Sci Technol. 15;47(20):11757-65.

Rotander A, Kärrman A, van Bavel B, Polder A, Rigét F, Auðunsson GA, Víkingsson G, Gabrielsen GW, Bloch D, Dam M (2012). Increasing levels of long-chain perfluorocarboxylic acids (PFCAs) in Arctic and North Atlantic marine mammals, 1984-2009. Chemosphere. 2012 Jan;86(3):278-85.

48

Page 49: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Routti H, Aars J, Fµglei E, Hanssen L, Lone K, Polder A, Pedersen ÅØ, Tartu S, Welker JM, Yoccoz NG (2017). Emission Changes Dwarf the Influence of Feeding Habits on Temporal Trends of Per- and Polyfluoroalkyl Substances in Two Arctic Top Predators. Environ Sci Technol. 51(20):11996-12006.

Routti H, Gabrielsen GW, Herzke D, Kovacs KM, Lydersen C (2016). Spatial and temporal trends in perfluoroalkyl substances (PFASs) in ringed seals (Pusa hispida) from Svalbard. Environ Pollut. 214:230-8.

Routti H, Krafft BA, Herzke D, Eisert R, Oftedal O (2015). Perfluoroalkyl substances detected in the world's southernmost marine mammal, the Weddell seal (Leptonychotes weddellii). Environ Pollut. 197:62-7.

Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, Lunderberg DM, Lang JR, Peaslee GF (2017). Fluorinated compounds in U.S. fast food packaging. Environ. Sci. Technol. Lett., 4 (3): 105–111.

Schiavone A, Corsolini S, Kannan K, Tao L, Trivelpiece W, Torres D Jr, Focardi S (2009). Perfluorinated contaminants in fur seal pups and penguin eggs from South Shetland, Antarctica. Sci Total Environ. 407(12):3899-904.

Senthil Kumar K, Zushi Y, Masunaga S, Gilligan M, Pride C, Sajwan KS (2009). Perfluorinated organic contaminants in sediment and aquatic wildlife, including sharks, from Georgia, United States. Mar Pollut Bull. 58(4):621-9.

Senthilkumar K, Ohi E, Sajwan K, Takasµga T, Kannan K (2007). Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bull Environ Contam Toxicol. 79(4):427-31.

Shah-Kulkarni S, Kim B-M, Hong Y-C, Kim HS, Kwon EJ, Park H, Kim YJ, Ha E-H (2016). Prenatal exposure to perfluorinated compounds affects thyroid hormone levels in newborn girls. Environ Int (2016), 94: 607-613.

Siebenaler R, Cameron R, Butt CM, Hoffman K, Higgins CP, Stapleton HM (2017). Serum perfluoroalkyl acids (PFAAs) and associations with behavioral attributes. Chemosphere.184: 687-693.

Smithwick M, Muir DC, Mabury SA, Solomon KR, Martin JW, Sonne C, Born EW, Letcher RJ, Dietz R (2005a). Perflouroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus). Environ Toxicol Chem. 24(4):981-6.

Smithwick M, Mabury SA, Solomon KR, Sonne C, Martin JW, Born EW, Dietz R, Derocher AE, Letcher RJ, Evans TJ, Gabrielsen GW, Nagy J, Stirling I, Taylor MK, Muir DC (2005b). Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environ Sci Technol. 39(15):5517-23.

So MK, Miyake Y, Yeung WY, Ho YM, Taniyasu S, Rostkowski P, Yamashita N, Zhou BS, Shi XJ, Wang JX, Giesy JP, Yu H, Lam PK (2007). Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere. 68(11):2085-95

So MK, Yamashita N, Taniyasu S, Jiang Q, Giesy JP, Chen K and Lam PKS (2006). Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China. Environmental Science Technology 40:2924-2929.

Starling AP, Engel SM, Whitworth KW, Richardson DB, Stuebe AM, Daniels JL, Haµg LS, Eggesbø M, Becher G, Sabaredzovic A, Thomsen C, Wilson RE, Travlos GS, Hoppin JA, Baird DD, Longnecker MP (2014). Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study. Environ Int. 62:104-12.

Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V (2009). Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 170(10):1268-78

Stock NL, Furdui VI, Muir DC, Mabury SA (2007). Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination. Environ Sci Technol. 41(10):3529-36.

Strynar, M. J.; Lindstrom, A. B (2008). Perfluorinated compounds in house dust from Ohio and North Carolina, United States. Environ. Sci. Technol. 42, 3751–3756.

Su G, Letcher RJ, Moore JN, Williams LL, Grasman KA (2017). Contaminants of emerging concern in Caspian tern compared to herring gull eggs from Michigan colonies in the Great Lakes of North America. Environ Pollut. 222:154-164.

Sundström M, Chang SC, Noker PE, Gorman GS, Hart JA, Ehresman DJ, Bergman A, Butenhoff JL (2012). Comparative pharmacokinetics of perfluorohexanesulfonate (PFHxS) in rats, mice, and monkeys. Reprod Toxicol. 33(4):441-51.

Sundström M, Ehresman DJ, Bignert A, Butenhoff JL, Olsen GW, Chang SC, Bergman A (2011). A temporal trend study (1972-2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environ Int. 37(1):178-83.

Svihlikova V, Lankova D, Poustka J, Tomaniova M, Hajslova J, Pulkrabova J (2015). Perfluoroalkyl substances (PFASs) and other halogenated compounds in fish from the upper Labe River basin. Chemosphere. 129:170-8.

49

Page 50: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Swedish EPA (2016). Högfluoreradeämnen (PFAS) och Bekämpningsmedel. En sammantagen bild av förekomsten i miljön. Report 6709 (in Sewdish).

Tao, L., Kannan, K., Wong, C.M., Arcaro, K.F., Butenhoff, J.L., (2008a). Perfluorinated compounds in human milk from Massachusetts, U.S.A. Environmental Science and Technology 42, 3096-3101.

Tao, L., Ma, J., Kunisue, T., Libelo, E.L., Tanabe, S., Kannan, K., (2008b). Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environmental Science and Technology 42, 8597-8602

Tartu S, Bourgeon S, Aars J, Andersen M, Lone K, Jenssen BM, Polder A, Thiemann GW, Torget V, Welker JM, Routti H (2017). Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard. Environ Pollut. 229:146-158.

Thompson J, Eaglesham G and Mueller J (2011a). Concentrations of PFOS, PFOA and other perfluorinated alkyl acids in Australian drinking water. Chemosphere, 83(10), pp 1320-1325.

Thompson J, Roach A, Eaglesham G, Bartkow ME, Edge K and Mueller J (2011b). Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbour and surroundings. Marine Pollution Bulletin, 62, pp 2869-2875.

Tipton JJ, Guillette LJ Jr, Lovelace S, Parrott BB, Rainwater TR, Reiner JL (2017). Analysis of PFAAs in American alligators part 1: Concentrations in alligators harvested for consumption during South Carolina public hunts. J Environ Sci (China). 61:24-30.

Toms LM, Thompson J, Rotander A, Hobson P, Calafat AM, Kato K, Ye X, Broomhall S, Harden F, Mueller JF (2014). Decline in perfluorooctane sulfonate and perfluorooctanoate serum concentrations in an Australian population from 2002 to 2011. Environ Int. 71:74-80

van Leeuwen S.P.J. and de Boer J. (2006). Survey on PFOS and other perfluorinated compounds in Dutch fish and shellfish http://library.wur.nl/WebQuery/wurpubs/345709

Wang J, Zhang Y, Zhang F, Yeung LW, Taniyasu S, Yamazaki E, Wang R, Lam PK, Yamashita N, Dai J (2013). Age- and gender-related accumulation of perfluoroalkyl substances in captive Chinese alligators (Alligator sinensis). Environ Pollut. 179:61-7.

Wang Y, Fu J, Wang T, Liang Y, Pan Y, Cai Y, Jiang G (2010). Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China. Environ Sci Technol.1;44(21):8062-7.

Wang Y, Rogan WJ, Chen PC, Lien GW, Chen HY, Tseng YC, Longnecker MP, Wang SL (2014). Association between maternal serum perfluoroalkyl substances during pregnancy and maternal and cord thyroid hormones: Taiwan Maternal and Infant Cohort Study. Environ Health Perspect 122:529–534

Wang Y, Starling AP, Haµg LS, Eggesbo M, Becher G, Thomsen C, Travlos G, King D, Hoppin JA, Rogan WJ, Longnecker MP (2013). Association between perfluoroalkyl substances and thyroid stimulating hormone among pregnant women: a cross-sectional study. Environ Health. 12(1):76

Webster GM, Rauch SA, Marie NS, Mattman A, Lanphear BP, Venners SA (2016). Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S. Adults: Variation According to TPOAb and Iodine Status (NHANES 2007-2008). Environ Health Perspect. 124(7):935-42.

Webster GM, Venners SA, Mattman A, Martin JW (2014). Associations between perfluoroalkyl acids (PFASs) and maternal thyroid hormones in early pregnancy: a population-based cohort study. Environ Res. 133:338-47.

Wei S, Chen LQ, Taniyasu S, So MK, Murphy MB, Yamashita N, Yeung LW, Lam PK (2007). Distribution of perfluorinated compounds in surface seawaters between Asia and Antarctica. Mar Pollut Bull. 54(11):1813-8.

Wen LL, Lin LY, Su TC, Chen PC, Lin CY (2013). Association between serum perfluorinated chemicals and thyroid function in U.S. adults: the National Health and Nutrition Examination Survey 2007-2010. J Clin Endocrinol Metab. 98(9):E1456-64.

Wong F, Shoeib M, Katsoyiannis A, Eckhardt S, Stohl A, Bohlin-Nizzetto P, Li H, Fellin P, Su Y, Hung H (2018). Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP). Atmospheric Environment 172:65–73.

Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T (2005). A global survey of perfluorinated acids in oceans. Mar Pollut Bull. 51(8-12):658-68.

Yang L, Li J, Lai J, Luan H, Cai Z, Wang Y, Zhao Y, Wu Y (2016). Placental Transfer of Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure Study. Sci Rep. 6:21699.

Yao Y, Zhao Y, Sun H, Chang S, Zhu L, Alder AC, Kannan K (2018). Per- and Polyfluoroalkyl Substances (PFASs) in Indoor Air and Dust from Homes and Various Microenvironments in China: Implications for Human exposure. Environ. Sci. Technol. 2018, 52, 3156−3166

50

Page 51: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Yeung LW, So MK, Jiang G, Taniyasu S, Yamashita N, Song M, Wu Y, Li J, Giesy JP, Gurµge KS and Lam PK (2006). Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China. Environmental Science & Technology 40(3):715-20.

Yeung LWY, Dassuncao C, Mabury S, Sunderland EM, Zhang X, Lohmann R (2017). Vertical Profiles, Sources, and Transport of PFASs in the Arctic Ocean. Environmental Science & Technology 51(12):6735-6744.

Yeung LWY, Robinson SJ, Koschorreck J, Mabury SA (2013). Part II. A Temporal Study of PFOS and Its pecursors in Human Plasma from Two German Cities in 1982–2009. Environmental Sci Technol. 47 (8): 3875-3882.

Zafeiraki E, Costopoulou D, Vassiliadou I, Leondiadis L, Dassenakis E, Hoogenboom RL, van Leeuwen SP (2016). Perfluoroalkylated substances (PFASs) in home and commercially produced chicken eggs from the Netherlands and Greece. Chemosphere.144:2106-12.

Zafeiraki E, Costopoulou D, Vassiliadou I, Leondiadis L, Dassenakis E, Traag W, Hoogenboom RL, van Leeuwen SP (2015). Determination of perfluoroalkylated substances (PFASs) in drinking water from the Netherlands and Greece. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(12):2048-57.

Zhang YZ, Zeng XW, Qian ZM, Vaµghn MG, Geiger SD, Hu LW, Lu L, Fu C, Dong GH (2017). Perfluoroalkyl substances with isomer analysis in umbilical cord serum in China. Environ Sci Pollut Res Int. 24(15):13626-13637.

Zhang Y, Beesoon S, Zhu L, and Martin JW (2013). Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ. Sci. Technol. 47:10619-10627.

Zhao Z, Xie Z, Möller A, Sturm R, Tang J, Zhang G, Ebinghaus R (2012). Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast. Environ Pollut. 170:71-7.

Zhao Z, Xie Z, Tang J, Sturm R, Chen Y, Zhang G, Ebinghaus R (2015). Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea. Chemosphere. 129:118-25.

Zhou, Z., Shi, Y., Vestergren, R., Wang, T., Liang, Y., & Cai, Y. (2014). Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun lake, China. Environ Sci Technol, 48(7), 3864-3874.

51

Page 52: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Appendix IPerfluorohexane sulfonic acid and its PFHxS-related substances identified by OECD 2018 (http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/).

No. CAS number Chemical name

1 423-50-7 Perfluorohexanesulfonyl fluoride

2 355-46-4 Perfluorohexanesulfonic acid

3 3871-99-6 Potassium perfluorohexanesulfonate

4 55120-77-9 Lithium perfluorohexanesulfonate

5 68259-08-5 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, ammonium salt (1:1)

6 70225-16-0 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, compd. with 2,2'-iminobis[ethanol] (1:1)

7 68259-15-4 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-methyl-

8 68555-75-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)-N-methyl-

9 34455-03-3 1-Hexanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)-

10 50598-28-2 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

11 68957-61-9 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, hydrochloride (1:1)

12 68957-32-4 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

13 67584-53-6 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, potassium salt (1:1)

14 68555-70-4 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, sodium salt (1:1)

15 68298-09-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(phenylmethyl)-

16 68957-58-4 1-Propanaminium, N,N,N-trimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, iodide (1:1)

17 52166-82-2 1-Propanaminium, N,N,N-trimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, chloride (1:1)

18 66008-72-8 1-Propanaminium, N-(2-carboxyethyl)-N,N-dimethyl-3-[methyl[(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)sulfonyl]amino]-, inner salt

19 68227-98-5 2-Propenoic acid, 4-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]butyl ester

20 67584-57-0 2-Propenoic acid, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester

21 67584-61-6 2-Propenoic acid, 2-methyl-, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester

22 38850-52-1 1-Propanaminium, 3-[(carboxymethyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-N,N,N-trimethyl-, inner salt

23 1893-52-3 2-Propenoic acid, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester

24 38850-60-1 1-Propanesulfonic acid, 3-[[3-(dimethylamino)propyl][(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-

25 80621-17-6 1-Propanesulfonic acid, 3-[methyl[3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]propyl]amino]-, sodium salt (1:1)

52

Page 53: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

No. CAS number Chemical name

26 67906-70-1 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester

27 38850-58-7 1-Propanaminium, N-(2-hydroxyethyl)-N,N-dimethyl-3-[(3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, inner salt

28 73772-32-4 1-Propanesulfonic acid, 3-[[3-(dimethylamino)propyl][(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-2-hydroxy-, sodium salt (1:1)

29 81190-38-7 1-Propanaminium, N-(2-hydroxyethyl)-3-[(2-hydroxy-3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-N,N-dimethyl-, hydroxide, sodium salt (1:1:1)

30 67939-92-8 1-Hexanesulfonamide, N,N'-[phosphinicobis(oxy-2,1-ethanediyl)]bis[N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

31 68815-72-5 Benzoic acid, 2,3,4,5-tetrachloro-6-[[[3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]oxy]phenyl]amino]carbonyl]-, potassium salt (1:1)

32 56372-23-7 Poly(oxy-1,2-ethanediyl), ë±-[2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl]-ìä-hydroxy-

33 55591-23-6 Perfluorohexanesulfonyl chloride

34 41997-13-1 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

35 1270179-82-2 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N,N-dimethyl-

36 1427176-17-7 1-Hexanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-methyl-

37 1270179-93-5 1-Hexanesulfonamide, N,N-diethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

38 149652-30-2 Benzene, 1-fluoro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

39 85665-64-1 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)-N-propyl-

40 76848-59-4 Benzene, 1-chloro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

41 1427176-20-2 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N,N-bis(2-methoxyethyl)-

42 254889-10-6 Pyridinium, 1-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, inner salt

43 85665-66-3 Glycine, N-propyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, potassium salt (1:1)

44 93416-31-0 Isoxazolidine, 4-(4-methoxyphenyl)-2-methyl-5-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

45 76848-68-5 1H-Benzimidazolium, 1,3-diethyl-2-methyl-5-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, 4-methylbenzenesulfonate (1:1)

46 355-03-3 *cyclic Cyclohexanesulfonyl fluoride, 1,2,2,3,3,4,4,5,5,6,6-undecafluoro-

47 3107-18-4 *cyclic Cyclohexanesulfonic acid, 1,2,2,3,3,4,4,5,5,6,6-undecafluoro-, potassium salt (1:1)

48 67584-48-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-2-propen-1-yl-

49 67906-71-2 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester, polymer with octadecyl 2-propenoate and 2-propenoic acid

50 67939-61-1 2-Propenoic acid, 2-methyl-, 4-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]butyl ester

51 67969-65-7 1-Hexanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-[2-(phosphonooxy)ethyl]-

52 68239-74-7 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(4-hydroxybutyl)-N-methyl-

53 68259-38-1 Poly[oxy(methyl-1,2-ethanediyl)], ë±-[2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl]-ìä-hydroxy-

53

Page 54: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

No. CAS number Chemical name

54 68299-21-8 Benzenesulfonic acid, [[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]methyl]-, sodium salt (1:1)

55 68891-98-5 Chromium, diaquatetrachloro[ë_-[N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]glycinato-ë¼O:ë¼O']]-ë_-hydroxybis(2-propanol)di-

56 68957-53-9 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, ethyl ester

57 70248-52-1 1-Propanaminium, N,N,N-trimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, sulfate (2:1)

58 73772-33-5 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, acetate (1:1)

59 73772-34-6 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-[2-[2-(2-hydroxyethoxy)ethoxy]ethyl]-

60 82382-12-5 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, sodium salt (1:1)

61 148240-80-6 Fatty acids, C18-unsatd., trimers, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl esters

62 51619-73-9 1-Octanesulfonamide, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-N-(2-hydroxyethyl)-N-methyl-

63 68298-74-8 2-Propenoic acid, 2-methyl-, 2-[[[[5-[[[2-[ethyl[(tridecafluorohexyl)sulfonyl]amino]ethoxy]carbonyl]amino]-2-methylphenyl]amino]carbonyl]oxy]propyl ester (9CI)

64 70900-36-6 2-Propenoic acid, 2-methyl-, 2-[[[[2-methyl-5-[[[4-[methyl[(tridecafluorohexyl)sulfonyl]amino]butoxy]carbonyl]amino]phenyl]amino]carbonyl]oxy]propyl ester (9CI)

65 130114-31-7 1-Propanaminium, N-(carboxymethyl)-N,N-dimethyl-3-[(2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-1-oxoheptyl)amino]-, inner salt

66 141607-32-1 ë_-Alanine, N-[3-(dimethylamino)propyl]-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

67 178094-71-8 1-Hexanesulfonamide, N-[3-(dimethyloxidoamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, potassium salt (1:1)

68 30295-56-8 1-Hexanesulfonamide, N-[3-(dimethyloxidoamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

69 70776-36-2(polymer)

2-Propenoic acid, 2-methyl-, octadecyl ester, polymer with 1,1-dichloroethene, 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]methylamino]ethyl 2-propenoate, N-(hydroxymethyl)-2-propenamide, 2-[methyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-propenoate and 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-propenoate

70 68555-90-8(polymer)

2-Propenoic acid, butyl ester, polymer with 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]methylamino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-propenoate and 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-propenoate

71 68877-32-7 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]amino]ethyl ester, polymer with 2-[ethyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate and 2-methyl-1,3-butadiene

72 68586-14-1 2-Propenoic acid, 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]methylamino]ethyl ester, telomer with 2-[methyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-propenoate, α-(2-methyl-1-oxo-2-propen-1-yl)-ω-hydroxypoly(oxy-1,2-ethanediyl), α-(2-methyl-1-oxo-2-propen-1-yl)-ω-[(2-methyl-1-oxo-2-propen-1-yl)oxy]poly(oxy-1,2-ethanediyl), 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5-

54

Page 55: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

No. CAS number Chemical name

undecafluoropentyl)sulfonyl]amino]ethyl 2-propenoate and 1-octanethiol

73 68555-92-0 2-Propenoic acid, 2-methyl-, 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]methylamino]ethyl ester, polymer with 2-[methyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate and octadecyl 2-methyl-2-propenoate

74 68555-91-9 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]amino]ethyl ester, polymer with 2-[ethyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-methyl-2-propenoate and octadecyl 2-methyl-2-propenoate

55

Page 56: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Appendix IINon-exhaustive lists of perfluorohexane sulfonic acid and its related substances identified in Norwegian Environment Agency report M-792

Table 1. Perfluorohexane sulfonic acid (PFHxS) and its related substances (non-exhaustive list)CAS number Chemical name Structure REACH related information55591-23-6 PFHxS-Cl salt: 1,1,2,2,3,3,4,4,5,5,6,6,6-

tridecafluorohexane-1-sulphonyl chlorideEC InventoryAnnex III InventoryPre-registration process

67584-48-9 Precursor for PFHxS: N-allyltridecafluorohexanesulphonamide

EC InventoryAnnex III InventoryPre-registration process

67939-61-1 Precursor for PFHxS: 4-[methyl[(tridecafluorohexyl)sulphonyl]amino]butyl methacrylate

EC InventoryAnnex III InventoryPre-registration process

67969-65-7 Precursor for PFHxS: N-ethyltridecafluoro-N-[2-(phosphonooxy)ethyl]hexanesulphonamide

EC InventoryAnnex III InventoryPre-registration process

68239-74-7 Precursor for PFHxS: Tridecafluoro-N-(4-hydroxybutyl)-N-methylhexanesulphonamide

EC InventoryAnnex III InventoryPre-registration process

68299-21-8 Precursor for PFHxS: Sodium [[[(tridecafluorohexyl)sulphonyl]amino]methyl]benzenesulphonate

EC InventoryAnnex III InventoryPre-registration process

68891-98-5 Precursor for PFHxS: Diaquatetrachloro[μ-[N-ethyl-N-[(tridecafluorohexyl)sulphonyl]glycinato-O1:O1']]-μ-hydroxybis(propan-2-ol)dichromium

EC InventoryAnnex III InventoryPre-registration process

68957-53-9 Precursor for PFHxS: Ethyl N-ethyl-N-[(tridecafluorohexyl)sulphonyl]glycinate

EC InventoryAnnex III InventoryPre-registration process

70225-16-0 Precursor for PFHxS: Tridecafluorohexanesulphonic acid, compound with 2,2'-iminodiethanol (1:1)

EC InventoryAnnex III InventoryPre-registration process

70248-52-1 Precursor for PFHxS: Bis[trimethyl-3-[[(tridecafluorohexyl)sulphonyl]amino]propylammonium] sulphate

EC InventoryAnnex III InventoryPre-registration process

73772-33-5 Precursor for PFHxS No information73772-34-6 Precursor for PFHxS No information

56

Page 57: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information82382-12-5 PFHxS-Na salt No information68555-70-4 Precursor for PFHxS: Sodium N-ethyl-N-

[(tridecafluorohexyl)sulphonyl]glycinateEC InventoryAnnex III InventoryPre-registration process

423-50-7 1-Hexanesulfonyl fluoride, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

Hazard classification & labelling, C&L Inventory; EC Inventory, Annex III Inventory, Pre-registration process

355-46-4 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

Hazard classification & labelling, C&L Inventory; EC Inventory, Annex III inventory, Identification of substances of VHC-previous consultation, PACT list of substances, Pre-registration process, Registry of submitted SVHC intentionshttps://echa.europa.eu/substance-information/-/substanceinfo/100.005.989https://echa.europa.eu/documents/10162/40a82ea7-dcd2-5e6f-9bff-6504c7a226c5

3871-99-6 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, potassium salt (1:1)

EC Inventory, Annex III inventory, PACT list of substances, Pre-registration process, C&L Inventory, Hazard Classification and labellinghttps://echa.europa.eu/substance-information/-/substanceinfo/100.021.268

55120-77-9 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, lithium salt (1:1)

No information

57

Page 58: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information68259-08-5 1-Hexanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,6-

tridecafluoro-, ammonium salt (1:1)EC Inventory, Annex III inventory, PACT list of substances, Pre-registration process, C&L Inventory, Hazard Classification and labellinghttps://echa.europa.eu/substance-information/-/substanceinfo/100.063.173

41997-13-1 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

Hazard classification & labelling, C&L Inventory;

1270179-82-2 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N,N-dimethyl-

No information

68259-15-4 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-methyl-

Hazard classification & labelling, C&L Inventory; EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.063.178

1427176-17-7 1-Hexanesulfonamide, N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-methyl-

No information

1270179-93-5 1-Hexanesulfonamide, N,N-diethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

No information

68555-75-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)-N-methyl-

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.064.938

58

Page 59: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information34455-03-3 1-Hexanesulfonamide, N-ethyl-

1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)-

Hazard classification & labelling, C&L Inventory; EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.047.299

85665-64-1 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-(2-hydroxyethyl)-N-propyl-

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.080.113

76848-59-4 Benzene, 1-chloro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

No information

50598-28-2 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.051.473

68957-61-9 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-, hydrochloride (1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.066.665

1427176-20-2 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N,N-bis(2-methoxyethyl)-

No information

68957-32-4 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.066.645

59

Page 60: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information68298-09-9 1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-

tridecafluoro-N-(phenylmethyl)-No information

254889-10-6 Pyridinium, 1-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, inner salt

No information

67584-53-6 Glycine, N-ethyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, potassium salt (1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.060.646

68957-58-4 1-Propanaminium, N,N,N-trimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, iodide (1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.066.662

52166-82-2 1-Propanaminium, N,N,N-trimethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, chloride (1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.052.436

85665-66-3 Glycine, N-propyl-N-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, potassium salt (1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.080.115

60

Page 61: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information68227-98-5 2-Propenoic acid, 4-

[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]butyl ester

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.063.066

67584-57-0 2-Propenoic acid, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.060.650

67584-61-6 2-Propenoic acid, 2-methyl-, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.060.654

38850-52-1 1-Propanaminium, 3-[(carboxymethyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-N,N,N-trimethyl-, inner salt

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.049.216

1893-52-3 2-Propenoic acid, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.015.984

38850-60-1 1-Propanesulfonic acid, 3-[[3-(dimethylamino)propyl][(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.049.218

61

Page 62: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information80621-17-6 1-Propanesulfonic acid, 3-[methyl[3-

[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]propyl]amino]-, sodium salt (1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.049.218

67906-70-1 2-Propenoic acid, 2-methyl-, 2-[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl ester

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.061.554

38850-58-7 1-Propanaminium, N-(2-hydroxyethyl)-N,N-dimethyl-3-[(3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-, inner salt

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.049.217

73772-32-4 1-Propanesulfonic acid, 3-[[3-(dimethylamino)propyl][(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-2-hydroxy-, sodium salt (1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.070.518

81190-38-7 1-Propanaminium, N-(2-hydroxyethyl)-3-[(2-hydroxy-3-sulfopropyl)[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]-N,N-dimethyl-, hydroxide, sodium salt (1:1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.072.436

62

Page 63: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information67939-92-8 1-Hexanesulfonamide, N,N'-[phosphinicobis(oxy-

2,1-ethanediyl)]bis[N-ethyl-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.061.677

93416-31-0 Isoxazolidine, 4-(4-methoxyphenyl)-2-methyl-5-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

No information

76848-68-5 1H-Benzimidazolium, 1,3-diethyl-2-methyl-5-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-, 4-methylbenzenesulfonate (1:1)

(Image is of 76848-67-4, related)

No information

68815-72-5 Benzoic acid, 2,3,4,5-tetrachloro-6-[[[3-[[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]oxy]phenyl]amino]carbonyl]-, potassium salt (1:1)

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.065.790

68555-90-8 2-Propenoic acid, butyl ester, polymer with 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)sulfonyl]methylamino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)sulfonyl]amino]ethyl 2-propenoate, 2-[methyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]amino]ethyl 2-propenoate and 2-[methyl[(1,1,2,2,3,3,4,4,5,5,5-undecafluoropentyl)sulfonyl]amino]ethyl 2-propenoate

(Image is of 68084-62-8, related)

No information

63

Page 64: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information56372-23-7 Poly(oxy-1,2-ethanediyl), α-[2-

[ethyl[(1,1,2,2,3,3,4,4,5,5,6,6,6-Poly(oxy-1,2-ethanediyl), alpha-(2-(ethyl((1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl)amino)ethyl)-omega-hydroxy-

Pre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.133.708

*111393-39-6 1-Hexanesulfonyl bromide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

No information

89863-64-9 2,4-Pentanedione, 3-[1-(2-furanyl)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethyl]-

No information

89863-63-8 2,4-Pentanedione, 3-[1-(2-thienyl)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethyl]-

No information

89863-56-9 Furan, 2-[1-(nitromethyl)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethyl]-

No information

89863-55-8 Thiophene, 2-[1-(nitromethyl)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethyl]-

No information

89863-50-3 Benzene, 1-methyl-4-[1-(phenylthio)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethyl]-

No information

64

Page 65: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

CAS number Chemical name Structure REACH related information89863-49-0 Furan, 2-[1-(phenylthio)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-

tridecafluorohexyl)sulfonyl]ethyl]-No information

89863-48-9 Thiophene, 2-[1-(phenylthio)-2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethyl]-

No information

Table 2. Commercially available olefinic esters of PFHxSCAS number Name Structure REACH related information

680187-86-4 Hexane, 1-(ethenylsulfonyl)-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

No information

86525-52-2 Benzene, 1-methoxy-4-[2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethenyl]-

No information

86525-51-1 Benzene, 1-methyl-4-[2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethenyl]-

No information

86525-48-6 Furan, 2-[2-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]ethenyl]-

No information

86525-43-1 Thiophene, 2-[2-[(tridecafluorohexyl)sulfonyl]ethenyl]- No information

65

Page 66: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 3. Commercially available aryl esters of PFHxSCAS number Chemical name Structure REACH related information171561-95-8 Benzene, 1-nitro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6-

tridecafluorohexyl)sulfonyl]-No information

149652-30-2 Benzene, 1-fluoro-4-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

No information

147029-28-5 Benzenamine, 4-[(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)sulfonyl]-

No information

30295-56-8 1-Hexanesulfonamide, N-[3-(dimethyloxidoamino)propyl]-1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-

No information

70900-36-6 2-Propenoic acid, 2-methyl-, 2-[[[[2-methyl-5-[[[4-[methyl[(tridecafluorohexyl)sulfonyl]amino] butoxy]carbonyl]amino]phenyl]amino]carbonyl]oxy]propyl ester

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.068.166

70776-36-2 Polymer based on 67584-57-0 No information

68298-74-8 2-Propenoic acid, 2-methyl-, 2-[[[[5-[[[2-[ethyl [(tridecafluorohexyl)sulfonyl]amino]ethoxy]carbonyl]amino]-2-methylphenyl]amino]carbonyl] oxy]propyl ester

EC InventoryAnnex III inventoryPre-registration processhttps://echa.europa.eu/substance-information/-/substanceinfo/100.063.235

66

Page 67: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

Table 4. Polymers containing the n-C6F13SO2- fragmentCAS number Chemical name Structure REACH related information68555-90-8 Polymer based on 67584-57-0 No information

68877-32-7 Polymer based on 67906-70-1 No information

68586-14-1 Polymer based on 67584-57-0 No information

68555-92-0 Polymer based on 67584-61-6 No information

68555-91-9 Polymer based on 67906-70-1 No information

67

Page 68: NATIONS UNIES - chm.pops.intchm.pops.int/.../0/download.aspx?d=UNEP-POPS-POPRC.…  · Web viewAs referred to in the note by the Secretariat on a draft risk profile on perfluorohexane

UNEP/POPS/POPRC.14/INF/4

DefinitionPACT list: The Public Activities Coordination Tool (PACT) lists the substances for which a risk management option analysis (RMOA) or an informal hazard assessment for PBT/vPvB (persistent, bioaccumulative and toxic/very persistent and very bioaccumulative) properties or endocrine disruptor properties is either under development or has been completed since the implementation of the SVHC Roadmap commenced in February 20131.

C& L inventory: This database contains classification and labelling information on notified and registered substances received from manufacturers and importers. It also includes the list of harmonised classifications. The database is refreshed regularly with new and updated notifications. However, updated notifications cannot be specifically flagged because the notifications that are classified in the same way are aggregated for display purposes.

Annex III inventory: REACH Annex III criteria are the following:

(a) Substances predicted (i.e. by the use of QSARs or other evidence) to likely meet criteria for CMR category 1A or 1B or Annex XIII criteria (i.e. PBT and vPvB);

(b) Substances with dispersive or diffuse use(s) AND predicted to likely meet criteria for any health or environmental hazard classes or differentiations under CLP Regulation. A substance (or any of its constituents, impurities or additives) is on this Annex III inventory, it means that there are indications that either one or both of the Annex III criteria are fulfilled.

In this case full Annex VII information has to be submitted unless there are substantiated reasons to disregard the information provided in the inventory.

Pre-registration: Pre-registration is only for companies planning to register phase-in (existing) substances. After pre-registration, potential registrants of the same substance can find each other's contact details in REACH-IT, so they can get in contact to agree on the sameness of their substance, form a substance information exchange forum (SIEF), share data and submit a registration dossier jointly2.

Registry of intentions: ECHA (at the request of the Commission) or Member States may prepare dossiers for the identification of substances of very high concern (SVHCs) and dossiers proposing restrictions (Annex XV of REACH). Dossiers proposing harmonised classification and labelling of substances may be prepared by MSCAs and manufacturers, importers or downstream users3.

EC inventory: It comprises the following lists:

(a) EINECS (European Inventory of Existing Commercial Chemical Substances) as published in O.J. C 146A, 15.6.1990. EINECS is an inventory of substances that were deemed to be on the European Community market between 1 January 1971 and 18 September 1981. EINECS was drawn up by the European Commission in the application of Article 13 of Directive 67/548/EEC, as amended by Directive 79/831/EEC, and in accordance with the detailed provisions of Commission Decision 81/437/EEC. Substances listed in EINECS are considered phase-in substances under the REACH Regulation.

(b) ELINCS (European List of Notified Chemical Substances) in support of Directive 92/32/EEC, the 7th amendment to Directive 67/548/EEC. ELINCS lists those substances which were notified under Directive 67/548/EEC, the Dangerous Substances Directive Notification of New Substances (NONS) that became commercially available after 18 September 1981.

(c) NLP (No-Longer Polymers). The definition of polymers was changed in April 1992 by Council Directive 92/32/EEC amending Directive 67/548/EEC, with the result that substances previously considered to be polymers were no longer excluded from regulation. Thus, the No-longer Polymers (NLP) list was drawn up, consisting of such substances that were commercially available between 18 September 1981 and 31 October 1993.4

_______________________________

1 https://echa.europa.eu/addressing-chemicals-of-concern/substances-of-potential-concern/pact.2 https://echa.europa.eu/regulations/reach/registration/data-sharing/pre-registration.3 https://echa.europa.eu/addressing-chemicals-of-concern/registry-of-intentions.4 https://echa.europa.eu/information-on-chemicals/ec-inventory.

68