natural and modified forms of distributed order fractional diffusion...

32
Natural and Modified Forms of Distributed Order Fractional Diffusion Equations Aleksei Chechkin Akhiezer Institute for Theoretical Physics, Kharkov, Ukraine (,) (,) ftr Dftr t /2 (,) (,) ftr D ftr t J.B. Perrin, 1909 Brockmann, Hufnagel, Geisel, 2006 “Normal” DE: Fractional DE: Hugo Steinhaus Center WUT, , 5 Oct 2011

Upload: others

Post on 29-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Natural and Modified Forms of Distributed Order

Fractional Diffusion Equations

Aleksei Chechkin

Akhiezer Institute for Theoretical Physics, Kharkov, Ukraine

( , ) ( , )f t r D f t rt

/ 2( , ) ( , )f t r D f t r

tJ.B. Perrin, 1909

Brockmann,

Hufnagel,

Geisel, 2006

“Normal” DE:

Fractional DE:

Hugo Steinhaus Center WUT, , 5 Oct 2011

Page 2: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

In collaboration with

Rudolf Gorenflo, FU Berlin

Igor Sokolov, HU Berlin

Joseph Klafter, TAU Tel Aviv

Vsevolod Gonchar, AITP, Kharkov

Nickolai Korabel, BIU, Ramat Gan

Review: A. Chechkin, I. Sokolov, J. Klafter, in: Fractional Dynamics,

S.C. Lim, R. Metzler, J. Klafter (Eds), World Scientific ( 2011 ? )

HSC SM, Wroclaw

Page 3: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Outline

Introduction: fractional kinetics, relation to random walk scheme,

time and space fractional derivatives

Time and space fractional diffusion equations in normal and

modified forms, equivalence of the two forms

Distributed order fractional derivative

Distributed order fractional diffusion equations (DODE) in normal

and modified forms

Summary: the Table

non-equivalence of the two forms

different regimes of anomalous diffusion

HSC SM, Wroclaw

Page 4: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Fractional Kinetics: Diffusion and Kinetic Equations with Fractional Derivatives “Strange” KineticS (Shlesinger, Zaslavsky, Klafter,

1993): connected with deviations

“Normal” Kinetics Fractional Kinetics

Diffusion

law

Relaxation Exponential Non-exponential

“Lévy flights in time”

Stationary

state

Maxwell-

Boltzmann

equilibrium

Confined Lévy flights

as non-Boltzmann

stationarity

2( )x t t

2( ) , 1x t t

2( ) ln , 0x t t

HSC SM, Wroclaw

Page 5: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Simplest Types of “Fractionalisation”

time – fractional diff eq

space – fractional diff eq

multi-dimensional / anisotropic time-space / velocity fractional

Caputo/Riemann-Liouville derivative

Riesz derivative : symmetric

combination of left/right side RL

derivatives

Question : Derivation ?

Answer: from Generalized Master Equation and/or

and/or Generalized Langevin Description

, 0 1t t

2

2, 0 2

| |x x

2

2

f fD

t x

DIFFUSION EQ

HSC SM, Wroclaw

Page 6: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Underlying physical picture:

Random walk with long jumps

and long waiting times Random walk x(t) , PDF f(x,t), consisting of

1( ) ( )i i ix t x t

1i i it t

Random jumps :

Random waiting times :

Question : Diffusion equation for f(x,t) in the long time – space limit ?

( )Jump PDF :

( )wWaiting time PDF :

2 2 ( )d

0

( )d w

mean square displacement

mean waiting time

Answer : Depends on the asymptotic behavior of ( ) and w( ) .

either finite or infinite

either finite or infinite

i=1,2,…

HSC SM, Wroclaw

Page 7: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Underlying physical picture:

Random walk with long jumps

and/or long waiting times

2 finite

finite

1

2

( ) 1/

0 2,

1( ) 1/

0 1,

w

2

2

f fD

t x

Space fractional DE

Time fractional DE Space-time fractional DE

Ordinary DE

| |

f fD

t x

2

2

f fD

t x | |

f fD

t x

Belongs to

domain of

attraction of

symmetric -

stable Lévy

law

Belongs to domain of attraction of one-sided

-stable Lévy law

HSC SM, Wroclaw

Page 8: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Time fractional derivatives

in Caputo and Riemann-Liouville forms

0

1: ( )

(1 )

td d

f d t fddt

Caputo Riemann-Liouville

0

1 ( ):

(1 ) ( )

t

td f

D f ddt t

1( ) : ( )d d

f t J f tdtdt

1( ) : ( )td

D f t J f tdt

0 < < 1

Laplace transform

1( ) (0)d f

s f s s fdt

( )tD f s f s

“natural” generalization (take = 1)

1

0

1( ) : ( ) ( ) ,

( )

t

J f t t f d +RFractional integral

(1) (2)

Laplace (Fourier) transform pair

definition

HSC SM, Wroclaw

Page 9: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Two Forms of Time Fractional Diffusion Equations

Caputo form

2

2( , ) ( , )f x t K f x t

t x

Riemann-Liouville form

21

2( , ) ( , )tf x t K D f x t

t x

0( , ) ( , ) ( , )ikx stf x t f k s dxe dte f x t

1

2( , )

sf k s

s K k

“normal” form “modified” form

normal form modified form

Normal and modified forms are equivalent

( , 0) ( )f x t x

0< 1

Fourier-Laplace

transform :

HSC SM, Wroclaw

Page 10: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

( )df

ikf kdx

( ) ( ) ( ) , ( ) ( )2

ikx ikxdkf x f k dx e f x f x e f k

Space fractional derivative via its Fourier transform

22 2

2( ) ( )

d fik f k k f k

dx

1st derivative: 2nd derivative:

Symmetric

Riesz der.:

/ 2( )

d fk f k

d x

2 22

2 2( )

2

ikxd f dk d fk f k e

dxd x

Coincide with the “usual”

second order derivative :

Fourier

transform

pair

HSC SM, Wroclaw

Page 11: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Two Forms of Space Fractional Diffusion Equations

where

“normal” form “modified” form

normal form modified form

Normal and modified forms are equivalent

| |

f fK

t x

2 2

2 2| |

fK f

tx x

( )| | ( )

| |

d xk k

d x

( , ) exp | |f k t K k t

Characteristic function:

0 < 2

( , ) ( , )f k t f x t

HSC SM, Wroclaw

Page 12: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Applications of fractional diffusion / kinetic equations

Fluid and plasma turbulence

Strange diffusion on DNA

Lévy flights of photons

Diffusion of guiding centers in

turbulent magnetized plasmas

Space fractional Time fractional

Propagation of light in fractal

media

Human travel

Transport in amorphous

materials

Transport of passive tracers

in underground water

Financial markets, stock

prices

Deterministic maps

Hamiltonian chaos

Deterministic maps

Hamiltonian chaos

See, e.g., R. Metzler, J. Klafter, Phys Rep 2000,

I. Sokolov, J. Klafter, A. Blumen, Physics Today 2002,

R. Metzler, A. Chechkin, J. Klafter, Encyclopedia of

Complexity and System Science, 2009.

HSC SM, Wroclaw

Page 13: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Normal and Anomalous diffusion

Time-fractional eq Space fractional eq

/2L t

L: typical (characteristic) scale of the solution

Slow diffusion, 0 < < 1 Fast diffusion, 0 < < 2

Normal diffusion eq

2

2

f fD

t x

2

2( , ) ( , )f x t D f x t

t x | |

f fD

t x

Invariance under the scale transformation

1/2,t t x x1/,t t x x

/ 2,t t x x

Normal diffusion

1/2L t

2 ( )x t t2 ( )x t t

1/L t

2/2 / ,

qq

x t q

HSC SM, Wroclaw

Page 14: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

However: many (most of ?) systems demonstrate non-scaling

or multiscaling anomalous behavior e.g.,

Q: Is it possible to extend the notion of fractional derivative operator in

order to describe such anomalous behavior ?

crossover between different power laws,

non-power-law logarithmic behavior …

A: Different possibilities !

Possibility 1. Tempered - stable Lévy distributions and exponentially

truncated Lévy flights

HSC SM, Wroclaw

Page 15: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Possibility 2. Diffusion equations with variable order

derivatives

( ) 2

( ) 2( , ) ( ) ( , )

t

tf x t K t f x t

t x?

2 ( )( ) tx t t

Time fractional, non-stationary media

Space fractional: Lévy turbulence in plasma

devices

020

( , )E r t Bdr

dt B( )

( ) ( , )rf

D r f r tt ?

Time fractional, inhomoheneous media

21 ( )

2( )

xt

fK x D f

t x

Ch, Gorenflo, Sokolov, 2005

HSC SM, Wroclaw

Page 16: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Possibility 3. Diffusion equations with

distributed order fractional derivative

Ordinary differential equations:

( ) ( )

b

a

dd p t

dt

C form

( ) ( )

b

t

a

d p D t

R-L form

( ) ( )| |

b

a

dd p x

d x

Riesz form

p( ) 0 ,

Caputo form: generalizing stress-strain relation of inelastic media (M. Caputo,

Elasticita e Dissipazione. Zanichelli Printer, Bologna,1969)

R-L form with constant weight (Nakhushev, 1998)

Ordinary diff equations containing sums of fractional derivatives (Podlubny, 1999)

Distributed order eqs within functional calculus technique (Kochubei, 2008)

Bagley and Torvik (2000), Diethelm and Ford (2001), numerical methods

Hartley and Lorenzo, review (2002)

( ) 1

b

a

d p

HSC SM, Wroclaw

Page 17: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

I. Natural Form of Distributed Order Time Fractional Diffusion Equation

1 2

20

( )f f

d pt x

1

0( ) 0 , ( ) 1p d p

0( , ) ( , ) ( , )ikx stf x t f k s dxe dte f x t

2

( )1( , )

( )

C

C

I sf k s

s I s k

1

0

( ) ( )CI s d s p

0( ) ( )p (mono)fractional diffusion equation If

(1)

Solution of Eq(1) is a PDF

22

0 0

( , ) ( , )Cu I k ukI

f k s du e du e G u ss

( )( )( , ) CuI sCI s

G u s es

2 /(4 )

0

( , ) ( , ) 04

x uef x t du G u t

u

G(u,t) is a PDF providing subordination

transformation from t to u. Indeed,

1. is completely monotonic ( , )G u s

2 0( , ) 1duG u t

Random process is subordinated to

a Gaussian process using

operational time

Fundamental solution in terms of Mellin-

Barnes integral

(2)

, where

Ch.,Gorenflo,

Sokolov, 2002

Page 18: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Decelerating Subdiffusion: more anomalous in

course of time

Generic case 1 1 2 2 1 2( ) ( ) ( ) ,p B B

1 2

20

( )f f

d pt x

22

20

( , )( )

k

f k sx s

k

Tauberian theorems: small / large s long / short t

2

1

2 , 0( )

,

t tx t

t t

2-parametric

Mittag-

Leffler

1 = 0.25 only

2 = 0.95 only

B1=0.03,

B2=0.97

B1=0.1,

B2=0.9

B1=0.3,

B2=0.7

Nu

me

rica

l sim

ula

tio

n

(Grü

nw

ald

-Letn

ikov)

Ch, Gonchar, Gorenflo,

Sokolov, 2003

Page 19: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Distributed order diffusion equation

for superslow diffusion

2 ( ) lnx t t1 2

12

0

( )f f

d pt x

1pwith

1/2

/ 2

( 1) | |( , ) exp

ln /

xf x t

D t

1

1( )

log( / )w t

t t

Relation to CTRW:

Extremely broad

waiting time PDF :

No moments

Laplace distribution

Example: iterated map (J. Drager, J. Klafter, 2000)

1

1 exp , 1

zz

t t tt

bx x ax z

x

Havlin, Weiss (1990):

disordered systems

Chechkin,

Klafter,

Sokolov,

2003

HSC SM, Wroclaw

Aging, ergodicity breaking etc ???

Page 20: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Fractional Fokker-Planck equation for superslow diffusion

1 1

0( ) / ( , ) ( ,0) ( )FPd p f t L f x t f x x

2

2

( )FP

U x fL D

x m x

(0)( ) ,

ln ( / )

nn

n

TT t t

t( , ) ( ) ( )f x t T t xSeparation ansatz:

Contrasts

with

Mittag-

Leffler

relaxation

~t

2

0( )

( )2F

B

F x t

x tk T

Einstein relation

(contrasts with

Sinai diffusion)

Interesting mathematical aspects of superslow diffusion equation:

Meerschaert & Scheffler, 2005, 2006; Hanyga, 2007, Kochubei,

2008.

Difference from Sinai model

Page 21: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

II. Modified Form of Distributed Order Time Fractional Diffusion

Equation

2( , ) RL

RL

If k s

s I k

1 21

20

( ) tf f

d p Dt x

11

0( ) ( )RLI s d s p

Thermodynamical interpretation

(no such for normal form)

Accelerating subdiffusion

/ /f t j x

( , ) ( , ) /tj x t f x t x

Flux dependent

on the past

history

1 1 2 2 1 2( ) ( ) ( ) , 0 1p B BGeneric case of two exponents :

1

2

2 ,( )

,

t short timesx t

t long times

Behavior is opposite to that for

normal form demonstrating

decelerating subdiffusion

PDF in terms of infinite series of the

Fox functions

Solution in F-L

space No general proof

of positivity

Positivity proved !

Page 22: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Numerical simulation of accelerating subdiffusion: approximation

by single order solution in the whole time domain

The system governed by the distributed-order time-fractional

diffusion equation has the properties very similar to the

system whose exponent varies in time : = (t) similarity

to fractional diffusion equations of variable order

Rescaled PDF for

t = 0.001; 0.01; 0.1; 1.0; 10; 100

Solution of double order eq

with 1 = 0.5; 2 = 1

Solution of single order eq

with eff = 0.5; 0.5; 0.6; 0.73;

0.8; 0.95

Deff = 1; 1.05; 1.7; 1.95; 2.0;

1.4

Page 23: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Distributed order time fractional diffusion equations

and random walk models

Normal

form

1 2

20

( )f f

d p Kt x

1( | ) 1/

0 1,

w

1

0( ) ( ) |w d p w

Waiting time PDF:

Mixture of waiting time PDFs:

the longest waiting time

survives at t

Decelerating subdiffusion

(mono)

fractional

Normal form

Subordination form, Langevin

description:

1 2( ) ( )

( ) , ( ) ( ) ...dx s dt s

s s sds ds

?

Page 24: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Distributed order time fractional diffusion equations

and random walk models (continued)

1 21

20

( ) tf f

d p KDt x

Modified

form

Mixture “pooling” of CTRW

processes:

The fastest survives at t

Accelerating subdiffusion

1

( ) ( )N

i ii

X t c X t

Subordination picture ?

From Cox and

Smith (1954):

“pooling” of

renewal

processes

?

Page 25: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Multifractal properties of underlying random processes

( ) ( )q qX t C q t

Random fractal (self-affine) process,

= const

In particular, the processes whose

PDFs obey (mono)fractional diffusion

equations:

( )( ) ( )q qX t C q t

(q) – nonlinear function

“standard” characterization of

non-self-affinity (multifractality)

( , )( ) ( )q q tX t C q t

Processes whose PDFs obey

distributed order fractional

diffusion equations

2

Time

fract

1 Space

fract

Page 26: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

III. Natural Form of Distributed Order Space Fractional

Diffusion Equation 2

0

( ) , ( ,0) ( )| |

f fd p p x x

t x

2

0( , ) exp ( ) | |f k t t d p k ( , ) ( 0, ) 1dx f x t f k t

Double order case 1 1 2 2( ) ( ) ( )p A A 1 2 1 20 2 , 0, 0A A

1 21 2( , ) exp | | | |f k t a k t a k t

1 2

1 21 2 1 2

1/ 1/

,0 ,01/ 1/ 1/ 1/1 21 2

( , ) 0t x x x

f x t dx L La a a t a t

,0( ) exp | |L k kLévy stable law

2

1

2/2 /

2 /

, 0( ; ) | |

,

qq

qt t

M t x

t t

Analogue of the second

moment, q < 1 , as a measure

of diffusion properties

Natural form leads to accelerating superdiffusion

Proved:

f(x,t) > 0

1 21/ 1/

Interesting application: together

with A. Iomin (in progress)

Page 27: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

IV. Modified Form of Distributed Order Space Fractional

Diffusion Equation

2 2 2

2 20

( ) , ( ,0) ( )| |

f fd p f x x

tx x

1

2

2/2 /

2 /

, 0( ; ) | |

,

qq

qt t

M t x

t t

Modified form leads to

decelerating superdiffusion,

in contrast to natural form

1 1 2 2( ) ( ) ( )p A A 1 2 1 20 2 , 0, 0A A

2

0

( , ) exp

( ) | |

tf k t

d p k

( , ) ( 0, ) 1dx f x t f k t

( , ) 0f x t

,

Double order case

Now: Take particular case 2 = 2

proved :

Characteristic

function : No general proof

of positivity

Sokolov, Ch, Klafter, Acta Phys

Polonica 2004

Page 28: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

“PLT LFs” : PDF resembles Lévy stable distribution in the central part

at greater scales the asymptotics decay in a power-law way, but faster, than

the Lévy stable ones, therefore, the Central Limit Theorem is

applied

at large times the PDF tends to Gaussian, however, very slowly

2x

Governing equation: Particular case of the modified form of distributed

order space FDE:

2 2

2 2

( , ) ( , )1

| |

f x t f x tC D

tx x

0 < < 2

5

(5 )sin / 2( , ) ,

DC tf x t x

x

At small times the Lévy distribution is truncated by a power law with a power between 3

and 5. Due to the finiteness of the second moment the PDF f(x,t) slowly converges to a

Gaussian

Fractional Diffusion Equation

for Power Law Truncated Lévy Process

(observation: Stanley’s group (2003): PDF of commodity prices;

Cohen, Venkatesh (2006): database of S&P index) Sokolov, Ch,

Klafter, 2005

Page 29: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Theory, = 1 Experiment on the ADITYA tokamak

Experiment on the ADITYA: probabilities of return to the origin for different radial positions of the

probes [R.Jha et al. Phys. Plasmas.2003.Vol.10.No.3.PP.699-704]. Insets: rescaled PDFs.

Power-law truncated Lévy flights: Probability to stay at the origin

| | 1/: (0, ) , 0 22

k tdkLFs f t e t

The slope –1/ in the double logarithmic

scale changes into -1/2 for the Gaussian

long

times

short times

Pro

babili

ty to s

tay a

t

the o

rigin

Page 30: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Superdiffusive behavior of fractional moments. Example: = 1.

Left: Mq versus time in log-log scale for q = 2.0, 1.5, 1.0, and 0.5 (lines 1, 2, 3 and 4, respectively).

Right: the quantity q(t) for the same q values as in the left panel.

Power-law truncated Lévy flights: Fractional-order moments

22

20

( , )( ) 2

k

f k tx t D t

k

2/2 / 1; : , 2

qq

qM t x t t faster than t q

1. Fractional moments for LFs:

“Normal” behavior of the

2nd moment for PLT LFs

Analogue of the 2nd moment

for LFs to characterize super-

diffusive behavior, q <

(1)

(2)

1lg ;

( ) 2(lg )

qq

d M tt

d t

1 : q = 2.0

2: q = 1.5

3 : q = 1.0

4 : q = 0.5

“effective”

index :

Ch, Gonchar,

Gorenflo,

Korabel,

Sokolov, 2008

Page 31: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Power-law truncated LFs: Evolution of the PDF

from truncated Cauchy ( = 1)

to the Gaussian with a power-law tail

PDF

at short time

(= 0.001)

PDF

at long time

( = 1000)

linear scale log-log scale

Ch, Gonchar,

Gorenflo,

Korabel,

Sokolov, 2008

Page 32: Natural and Modified Forms of Distributed Order Fractional Diffusion ...prac.im.pwr.edu.pl/~hugo/rockets/Wroclaw_Chechkin20111005.pdf · Space fractional Time fractional Propagation

Conclusions

2 2 2

2 20

( )| |

f fd p K

tx x

Decelerating super-

diffusion and power law

truncated Lévy flights

2

0

( )| |

f fd p K

t x

Accelerating

superdiffusion su

perd

iffu

sio

n

su

bd

iffu

sio

n

normal form modified form

1 21

20

( ) tf f

d p KDt x

Accelerating

subdiffusion

1 2

20

( )f f

d p Kt x

Decelerating

subdiffusion and

superslow diffusion

HSC SM, Wroclaw

Might be useful for description of the different anomalous diffusion

phenomena demonstrating non-scaling behavior