natural product xn on matrices, by w. b. vasantha kandasamy, florentin smarandache

344
8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 1/344

Upload: science2010

Post on 06-Apr-2018

227 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 1/344

Page 2: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 2/344

 

 1$785$/352'8

××××Q210$75,&(6 

W. B. Vasantha KandasamFlorentin Smarandache 

Page 3: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 3/344

This book can be ordered from:

Zip Publishing1313 Chesapeake Ave.Columbus, Ohio 43212, USAToll Free: (614) 485-0721E-mail: [email protected] Website: www.zippublishing.com 

Copyright 2012 by Zip Publishing and the Authors 

Peer reviewers:Prof. Mihàly Bencze, Department of Mathematics

Áprily Lajos College, Braúov, RomaniaDr. Sebastian Nicolaescu, 2 Terrace Ave., West Orange, NJ 07052,Professor Paul P. Wang, Department of Electrical & Computer EngPratt School of Engineering, Duke University,Durham, NC 27708, USA

Many books can be downloaded from the followingDigital Library of Science:http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm

Page 4: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 4/344

 

&217(176

3UHIDFH

 &KDSWHU2QH

,1752'8&7,21 &KDSWHU7ZR

32/<120,$/6:,7+0$75,;&2()),&,(17

 &KDSWHU7KUHH

$/*(%5$,&6758&785(686,1*0$75,;

&2()),&,(1732/<120,$/6

Page 5: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 5/344

&KDSWHU6L[

683(50$75,;/,1($5$/*(%5$6 

&KDSWHU6HYHQ

$33/,&$7,2162)7+(6($/*(%5$,&6758&785(6:,7+1$785$/352'8&7

&KDSWHU(LJKW

68**(67('352%/(06

)857+(55($',1* 

,1'(; 

$%2877+($87+256 

Page 6: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 6/344

 

 35()$&( 

In this book the authors introduce a new product onatural product. We see when two row matrices multiplied, the product is taken component wise; fo

x2, x3, …, xn) and Y = (y1, y2, y3, … , yn) then X ×

…, xnyn) which is also the natural product of X wi

find the product of a n × 1 column matrix with anmatrix, infact the product is not defined. Thus if 

X =

1

2

n

x

x

x

ª º« »

« »« »« »¬ ¼

# and Y =

1

2

n

y

y

y

ª º« »

« »« »« »¬ ¼

#  

under natural product

Page 7: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 7/344

this product is more natural which is just identica

replaced by multiplication on these matrices.Another fact about natural product is this enables th

two super matrices of same order and with same type see on supermatrices products cannot be defined easilyfrom having any nice algebraic structure on the col

matrices of same type.This book has eight chapters. The first chapter is

nature. Polynomials with matrix coefficients are introdtwo. Algebraic structures on these polynomials with mis defined and described in chapter three. Chapter

natural product on matrices. Natural product on suintroduced in chapter five. Super matrix linear algebrachapter six. Chapter seven claims only after this notion we can find interesting applications of them. The final

over 100 problems some of which are at research level.

We thank Dr. K.Kandasamy for proof reading and supportive.

:%9$6$1

)/25(17

Page 8: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 8/344

&KDSWHU2QH

,1752'8&7,21

 In this chapter we only indicate as referenc

concepts we are using in this book. Howevereader should refer them for a complete under

book.In this book we define the notion of nat

matrices so that we have a nice natural prod

column matrices, m × n (m ≠ n) matrices. This

Page 9: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 9/344

The concept of polynomials with matrix coef

used. That is if p(x) = i

ii 0

a x∞

=

¦  

where x is an indeterminate and if ai is a matrix (a sq

or a row matrix of a column matrix or a m × n mathen p(x) is a polynomial in the variable x wcoefficients (‘or’ used in the mutually exclusive sense

Suppose

p(x) =

32

0

1

ª º« »« »« »« »−¬ ¼

+

23

1

5

−ª º« »« »« »« »¬ ¼

x +

01

0

2

ª º« »« »« »« »¬ ¼

x3 +

70

1

0

ª º« »« »« »« »¬ ¼

x5

is a polynomial with column matrix coefficients.

We also introduce polynomial matrix coefficien

We call usual matrices as simple matrices.

The super matrix concepts are used. If X = (a1 a2 | a

∈ R (or Q or Z) then X is a super row matrix [8, 19].

Page 10: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 10/344

 

then Y is a super column matrix.

Let

M =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

x x x x

x x x x

x x x xx x x x

ª º« »« »« »« »« »¬ ¼

 

with xi ∈ R (or Q or Z); 1 ≤ i ≤ 16 be a super squ

P =1 4 7 10 13 16

2 5 8 11 14 17

3 6 9 12 15 18

a a a a a a

a a a a a a

a a a a a a

ª º« « « ¬ ¼

is a super row vector.

S =

1 2 3 4 5 6 7 8

9 10 11 16

17 18 19 24

25 26 27 32

a a a a a a a a

a a a ... ... ... ... a

a a a ... ... ... ... a

a a a ... ... ... ... a

ª º« »

« »« »« »¬ ¼

Page 11: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 11/344

B =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

a a a

a a aa a a

a a a

a a a

a a a

a a a

ª º

« »« »« »« »« »« »« »« »« »¬ ¼

with ai ∈ R (or Q or Z

is a super column vector [8, 19].

Also we use the notion of vector spaces, Svector spaces and Smarandache linear algebra [17].

Page 12: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 12/344

&KDSWHU7ZR

32/<120,$/6:,7+0$75,;

&2()),&,(176 

In this chapter we define polynomials in thecoefficients from the collection of matrices of scall such polynomials as matrix coefficient polynomials with matrix coefficients. We fexamples before we define operations on them.

 Example 2.1: Let p(x) = (5, 3, 0, –3, 2) + (0, 10, 1, 0, 1)x2 + (–7, –9, 10, 0, 0)x5 – (3, 2, 1, 2, 1is a polynomial in the variable x with row matrix

Page 13: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 13/344

 Example 2.3: Let

p(x) =3 0

1 2

ª º« »−¬ ¼

+1 0

0 2

ª º« »¬ ¼

x2 +0 1

0 3

ª º« »¬ ¼

x3 +1

4

ª « ¬

1 4

0 0

ª º« »¬ ¼

x8 +0 0

1 2

ª º« »¬ ¼

x9 +0 1

5 0

ª º« »¬ ¼

x10

be a square matrix coefficient polynomial.

 Example 2.4: Let

T(x) =2 10 1

5 2

ª º« »« »« »¬ ¼

+1 01 1

1 0

ª º« »« »« »¬ ¼

x +1 20 3

4 0

ª º« »« »« »¬ ¼

x3 +90

6

ª « « « ¬

be a polynomial with 3 × 2 matrix coefficient.

Now we define some operations on the collection.

DEFINITION 2.1:  Let 

V  R =∞

=

¯

¦ i

i

i 0

a x ai = (x1 ,…, xn)

are 1 ×  n row matrices, xi ∈ R (or Q or Z); 1 ≤  i

collection of all row matrix coefficient polynomia

group under addition.

Page 14: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 14/344

 

0 = (0,…,0) + (0,…,0)x + … + (0,… ,defined as the row matrix coefficient zero polyno

 Let p(x) =∞

=

¦ i

i

i 0

a x now –p(x) =∞

=

−¦ i

i 0

a x

the inverse of the row matrix coefficient polyno

+) is an abelian group of infinite order.

 Example 2.5: Let

VR =i

ii 0 a x

=

-®̄¦ ai = (x1, x2, x3, x4) with x j ∈ Q

be the collection of row matrix coefficient polyngroup under addition.

For if p(x) = (0, 2, 1, 0) + (7, 0, 1, 2)x + (0, 1, 2, 0)x5 and

q(x) = (7, 8, 9, 10) + (3, 1, 0, 7)x + (3,0,1,4)x4 + (7, 1, 0, 0)x5 + (1, 2, 3, 4)x8 are in VR then

p(x) + q(x) = ((0, 2, 1, 0) + (7, 8, 9, 10)) + (1, 0, 7))x + ((1, 1, 1, 1) + (3, 0, 1, 4))x3 + ((0, 0,4))x4 + ((0, 1, 2, 0) + (7, 1, 0, 0))x5 + (1, 2, 3, 4)x

= (7 10 10 10) + (10 1 1 9)x + (4 1 2

Page 15: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 15/344

 Example 2.6: Let

VR = ii

i 0

a x∞

=

-®¯¦ ai = (x1, x2, x3); x j ∈ Z12; 1 ≤ j

be the collection of all row coefficient polynomialgroup under modulo addition 12.

 Example 2.7: Let

VR =10

ii

i 0

a x=

-®¯¦ ai = (d1, d2) with d j ∈ Q; 1 ≤ j

be the row coefficient polynomial. VR is a gaddition.

 Example 2.8: Let

VR =5

ii

i 0

a x=

-®¯¦ ai = (x1, x2); x1, x2 ∈ Z10}

be the row coefficient polynomial. VR is a finite gaddition.

We now can define other types of operations on V

We see if (1,1,1,1)x3 – (0, 0, 8, 27) = p(x) then ((0, 0, 2, 3)3 = p(x)

Page 16: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 16/344

We know VR is a group under addition.

Now we can define product on VR as follows

Let p(x) = (0,1,2) + (3,4,0)x + (2,1,5)x2 + (3

q(x) = (6,0,2) + (0,1,4)x + (3,1,0)x2 + (1,2,3)

We define product of p(x) with q(x) as follow

p(x) × q(x)

= [(0,1,2) + (3,4,0)x+ (2,1,5)x2 + (3,0,2)x

(0,1,4)x + (3,1,0)x2

+ (1,2,3)x4

]= (0,1,2) (6,0,2) + (3,4,0) (6,0,2)x+(2,1

(3,0,2) (6,0,2)x3 + (0,1,2) (0,1,4)x + (3,(2,1,5) (0,1,4)x3 + (3,0,2) (0,1,4)x4 + (0(3,4,0) (3,1,0)x3 + (2,1,5) (3,1,0)x4 + (3

(0,1,2) (1,2,3)x

4

+ (3,4,0) (1,2,3)x

5

+ (2(3,0,2) (1,2,3)x7 

= (0,0,4) + (18,0,0)x + (12,0,10)x2 + (18,0+ (0,4,0)x2 + (0,1,20)x3 + (0,0,8)x4

(9,4,0)x3 + (6,1,0)x4 + (9,0,0)x5 + (0,2,

+(2,2,15)x

6

+ (3,0,6)x

7

 = (0,0,4) + (18,1,8)x + (12,5,10)x2 +

(6,3,14)x4 + (12,8,0)x5 + (2,2,15)x6 + (3,

Page 17: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 17/344

 

 Example 2.9: Let

VR =5

ii

i 0

a x=

-®¯¦ ai = (x1, …, x8); xi ∈ Q; 1 ≤ i

be a semigroup of row matrix polynomials. VR iunder product.

Now we see (VR, +, ×) is a commutativpolynomials with row matrix coefficients.

We give examples of them.

 Example 2.10: Let

VR = {p(x) = ii

i 0

a x∞

=

¦ ; a j = (x1, x2…, x18); xi ∈ R; 1

be a ring of polynomials with row matrix coefficients

Now we have shown examples of polynomial coefficients in the variable x.

 Example 2.11: Let

VC = ii

i 0

a x∞

=

-®¯¦ a j =

1

2

3

4

x

xx

x

ª º

« »« »« »« »« »« »¬ ¼

with xi ∈ Z; 1 ≤ i ≤

Page 18: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 18/344

 

q (x) =

42

1

4

0

ª º« »« »« »« »−« »

« »¬ ¼

+

23

4

5

0

ª º« »« »« »« »« »« »¬ ¼

x +

23

1

4

5

ª º« »« »« »« »« »« »¬ ¼

x2 +

21

1

0

4

ª º« »−« »« »« »« »« »¬ ¼

x3 +

21

2

3

0

ª « −« « « « « ¬

p(x) + q(x) =

3

0

1

02

ª º« »« »« »

« »« »« »¬ ¼

+

4

2

1

40

ª º« »« »« »

« »−« »« »¬ ¼

+

1 2

0 3

x0 4

2 50 0

ª º ª º« » « »« » « »« » « »+

« » « »« » « »« » « »¬ ¼ ¬ ¼

+

+

2

1

1

0

4

ª º« »−

« »« »« »« »« »¬ ¼

x3 +

2

1

2

3

0

ª º« »−

« »« »« »« »« »¬ ¼

x4 

=

7 3

2 3

x2 4

ª º ª º« » « »« » « »« » « »+ +« » « »

2

4

3

ª º« »« »« »« »

x2 +

2

1

1

ª º« »−« »« »« »

x3 +

2

1

2

ª « −« « «

Page 19: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 19/344

Thus

VC = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

n

x

x

x

ª º« »« »« »« »¬ ¼

#; xi ∈ Q (or R or Z) ; 1

is an abelian group under addition with polynomcoefficients are column matrices.

Now Vn×m denotes the collection of all polynomcoefficients are n×m matrices. Vn×m is a group under

Now if m ≠ n then on Vn×m we cannot define prwill illustrate this situation by an example.

 Example 2.12: Let

V5×3 = ii

i 0

a x∞

=

-®¯¦ a j =

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

x x x

x x x

x x x

x x x

x x x

ª º

« »« »« »« »« »« »¬ ¼

where xi ∈ R;

be the group of polynomials under addition whose are 5×3 matrix.

 Example 2.13: Let

Page 20: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 20/344

Thus we can say

Vn×m = ii

i 0

a x∞

=

-®¯¦ ai =

11 12

21 22

n1 n2

a a ... aa a ... a

a a ... a

ª « « « « ¬

# #

is the group of polynomials in the variable x w

as n × m matrices. Clearly if n ≠ m we cannot dVn×m.

Now we can define product on Vn×n, that is wfirst illustrate this by an example.

 Example 2.14: Let

Vn×n = ii

i 0

a x∞

=

-®¯¦ ai =

11 12

21 22

n1 n 2

a a ...

a a ... a

a a ... a

ª « « « « ¬

# #

where aij ∈ R; 1 ≤ i, j ≤ n}

be the group of polynomials under addition witmatrix coefficients. We see on Vn×n, one can

Vn×n is only a semigroup which is non commutativWe will illustrate this situation by examples.

 Example 2.15: Let

Page 21: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 21/344

We will show how addition in V3×3 is carried out.

Let p(x) =

0 3 2

1 0 0

0 0 4

−§ ·¨ ¸¨ ¸¨ ¸© ¹

+

2 1 0

3 0 2

1 2 3

§ ·¨ ¸¨ ¸¨ ¸© ¹

x2 +

0

1 2

2 1

§ ¨ ¨ ¨ ©

and

q(x) =

1 2 1

0 1 3

6 1 2

§ ·¨ ¸¨ ¸¨ ¸−© ¹

+

1 2 3

0 1 5

5 0 1

§ ·¨ ¸¨ ¸¨ ¸−© ¹

x +

1 2

2 3

3 2

−§ ¨

−¨ ¨ −©

0 1 0

9 0 1

0 2 3

§ ·¨ ¸¨ ¸¨ ¸© ¹

x3 be in V3×3.

p(x) + q(x) =0 3 21 0 0

0 0 4

−§ ·¨ ¸¨ ¸¨ ¸© ¹

+1 2 10 1 3

6 1 2

§ ·¨ ¸¨ ¸¨ ¸−© ¹

+10

5

§ ¨ ¨ ¨ −©

+

2 1 0 1 2 3

3 0 2 2 3 11 2 3 3 2 1

ª º−§ · § ·

« »¨ ¸ ¨ ¸+ −« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »−© ¹ © ¹¬ ¼

x2 

0 1 2 0 1 0ª º§ · § ·

Page 22: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 22/344

1 3 3

1 3 32 4 4

§ ·¨ ¸¨ ¸¨ ¸−© ¹

x2

+

0 2 2

10 2 12 3 3

§ ·¨ ¸¨ ¸¨ ¸© ¹

x

We see V3×3 is an abelian group under additio

 Example 2.16: Let

V2×2 = ii

i 0

a x∞

=

-®¯¦ ai = 1 2

3 4

x x

x x

§ ·¨ ¸© ¹

; xi ∈ R; 1

be the semigroup of polynomials in the vcoefficients from the collection of all 2 × 2 product.

p(x) =1 2

0 4

§ ·¨ ¸© ¹

+0 1

2 3

§ ·¨ ¸© ¹

x +1 2

3 0

§ ·¨ ¸© ¹

x

q(x) = 0 12 0

§ ·¨ ¸© ¹

+ 1 02 3

§ ·¨ ¸© ¹

x + 1 23 4

§ ·¨ ¸© ¹

x3 b

Now

p(x) . q(x) = 1 20 4

§ ·¨ ¸© ¹

  0 12 0

§ ·¨ ¸© ¹

+ 0 12 3

§ ·¨ ¸© ¹

§ ¨ ©

1 2§ · 0 1§ · 2 1 2§ · 1 2§

Page 23: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 23/344

 

+ 1 23 0§ ·¨ ¸© ¹

1 23 4§ ·¨ ¸© ¹

x5 + 4 18 0§ ·¨ ¸© ¹

+ 2 06 2§ ·¨ ¸© ¹

+4 1

0 3

§ ·¨ ¸© ¹

x2 +5 6

8 12

§ ·¨ ¸© ¹

x +2 3

8 9

§ ·¨ ¸© ¹

x2

+5 6

3 0

§ ·¨ ¸© ¹

x3 +7 10

12 16

§ ·¨ ¸© ¹

x3 +3 4

11 16

§ ·¨ ¸© ¹

x4 +7

3

§ ¨ ©

=4 1

8 0

§ ·¨ ¸© ¹

+7 6

14 14

§ ·¨ ¸© ¹

x +6 4

8 12

§ ·¨ ¸© ¹

x2 +12 1

15 1

§ ¨ ©

3 4

11 16

§ ·¨ ¸© ¹

x4 +7 10

3 6

§ ·¨ ¸© ¹

x5.

This is the way product is defined. Thus V2×2 is aunder multiplication.

V2×2 is a monoid and infact V2×2 has zero divisors

This is a polynomial ring.

 Example 2.17: Let

V i∞-

®¦

11 12 13 14

21 22 23 24

a a a a

a a a a

§ ·¨ ¨

Page 24: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 24/344

V4×4 is a group under addition and V4×4 is a s

product (V4×4, +, ×) is a ring which is non comring has zero divisors and units and all p(x) ofthan or equal to one have no inverse.

 Example 2.18: Let

V2×2 = ii

i 0a x

=

-®¯¦ ai = 11 12

21 22

a aa a

§ ·¨ ¸© ¹

;aij ∈ R; 1

be the ring of polynomials with 2×2 matrix covariable x. V2×2 is non commutative and has ze

no p(x) ∈V2×2, of degree greater than one hacannot have idempotent in them.

We can differentiate and integrate these pomatrix coefficients apart from finding roots in the

Now we first illustrate this situation by some

 Example 2.19: Let

p(x) =3 0

1 2

ª º« »¬ ¼

+2 6

1 5

ª º« »¬ ¼

x +7 0

0 8

ª º« »¬ ¼

x2 –

+8 1

0 1

ª º« »¬ ¼

x4 –0 4

2 0

ª º« »−¬ ¼

x5 

Page 25: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 25/344

 

dp(x)dx = 0 + 2 61 5ª º« »¬ ¼

+ 2 7 00 8ª º« »¬ ¼

x – 3 3 10 0ª « ¬

+ 48 1

0 1

ª º« »¬ ¼

x3 – 50 4

2 0

ª º« »−¬ ¼

x4 

=2 6

1 5

ª º« »¬ ¼

+14 0

0 16

ª º« »¬ ¼

x –9 3

0 0

ª º« »¬ ¼

x2

+32 4

0 4

ª º« »¬ ¼

x3 –0 20

10 0

ª º« »−¬ ¼

x4.

We seedp(x)

dxis again a matrix coefficient po

the variable x.

We can find the second derivative of p(x).

Consider

2d p(x)

dx

=14 0

0 16

ª º« »¬ ¼

– 29 3

0 0

ª º« »¬ ¼

x

+ 332 4

0 4

ª º« »¬ ¼

x2 – 40 20

10 0

ª º« »−¬ ¼

x3 

Page 26: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 26/344

 Example 2.20: Let

V2×4 = ii

i 0

a x∞

=

-®¯¦ ai = 1 2 3

5 6 7

x x x

x x x

§ ¨ ©

where xi ∈ R; 1 ≤ i ≤ 8}

be the 2 × 4 matrix coefficient polynomial.

Let p(x) =1 0 2 4

0 3 0 5

§ ·¨ ¸© ¹

+3 1 5

0 4 0

§ ¨ ©

+ 3 4 2 40 0 0 3

−§ ·¨ ¸© ¹

x3 + 1 1 02 0 2

−§ ¨

−©

be a 2 × 4 matrix coefficient polynomial. To finof p(x).

dp(x)

dx=

3 1 5 2

0 4 0 5

§ ·¨ ¸© ¹

+ 33 4 2

0 0 0

−§ ¨ ©

+ 41 1 0 2

2 0 2 0

−§ ·¨ ¸

−© ¹

x3 

=3 1 5 2

0 4 0 5

§ ·¨ ¸© ¹

+9 12 6 1

0 0 0 9

−§ ¨ ©

Page 27: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 27/344

Consider

2

2

d p(x)

dx= 2

9 12 6 12

0 0 0 9

−§ ·¨ ¸© ¹

x + 34 4 0

8 0 8

−§ ¨

−©

=18 24 12 24

0 0 0 18

−§ ·¨ ¸

© ¹

x +12 12 0 2

24 0 24

−§ ¨

−©

We see2

2

d p(x)

dx ∈ V2×4.

If we consider the third derivative of p(x);

3

3

d p(x)

dx=

18 24 12 24

0 0 0 18

−§ ·¨ ¸© ¹

+

2

12 12 0 24

24 0 24 0

−§ ·

¨ ¸−© ¹ x

=18 24 0 24

0 0 0 18

−§ ·¨ ¸© ¹

+24 24 0 4

48 0 48 0

−§ ¨

−©

We see3

3

d p(x)dx

 ∈ V2×4.

Further the forth derivative.

Page 28: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 28/344

  Example 2.21: Let

VR = ii

i 0

a x∞

=

-®¯¦ ai = (x1, …, x6); xi ∈ Z; 1

be a row matrix coefficient polynomial.

p(x) = (2,0,1,0,1,5) + (3,2,1,0,0,0)x + (0,1,0+ (0,–2,–3,0,0,0)x3 + (8,0,7,0,1,0)x5

To find the derivative of 

p(x) = dp(x)dx

 

= 0 + (3,2,1,0,0,0) + 2(0,1,0,2,0,4)x + 3(0,–5(8,0,7,0,1,0)x4 

= (3,2,1,0,0,0) + (0,2,0,4,0,8)x + (0,–6,(40,0,35,0,5,0)x4.

We seedp(x)

dxis in VR.

2

2

d p(x)

dx= (0,2,0,4,0,8) + 2 (0, –6,–9,0,0,0)

+ 4 (40,0,35,0,5,0)x3 

Page 29: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 29/344

 Example 2.22: Let

VC = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

3

4

x

x

x

x

ª º« »« »« »« »¬ ¼

where xi ∈ Q; 1 ≤ i

be a 4 × 1 column matrix coefficient polynomial.

Let p(x) =

2

0

4

0

ª º« »« »« »« »¬ ¼

+

3

2

1

4

ª º« »« »« »« »−¬ ¼

x +

0

1

2

3

ª º« »« »« »« »¬ ¼

x3 +

4

5

2

1

ª º« »« »« »« »¬ ¼

x6 belon

dp(x)

dx

=

3

2

14

ª º« »« »

« »« »−¬ ¼

+ 3

0

1

23

ª º« »« »

« »« »¬ ¼

x2 + 6

4

5

21

ª º« »« »

« »« »¬ ¼

x5 

=

3

2

14

ª º« »« »

« »« »−¬ ¼

+

0

3

69

ª º« »« »

« »« »¬ ¼

x2 +

24

30

126

ª º« »« »

« »« »¬ ¼

x5 ∈ VC.

0ª º 24ª º

Page 30: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 30/344

 

=

0

6

12

18

ª º« »« »« »« »¬ ¼

x +

120

150

60

30

ª º« »« »« »« »¬ ¼

x4 ∈ VC.

3

3

d p(x)

dx=

0

6

12

18

ª º« »« »« »« »¬ ¼

+ 4

120

150

60

30

ª º« »« »« »« »¬ ¼

x3 

=

0

6

12

18

ª º« »« »« »« »¬ ¼

+

480

600

240

120

ª º« »« »« »« »¬ ¼

x3 ∈ VC.

4

4

d p(x)

dx= 3

480

600

240

120

ª º« »« »« »

« »¬ ¼

x2 =

1440

1800

720

360

ª º« »« »« »

« »¬ ¼

x2 ∈ VC.

Thus we see VC, Vm×n, Vn×n and VR are suderivative and all higher derivatives are in VC

Page 31: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 31/344

 Example 2.23: Let

p(x) =

3 0 1

5 6 0

1 0 8

ª º« »« »« »¬ ¼

+

0 2 1

6 1 0

1 2 6

ª º« »« »« »¬ ¼

x

+

8 0 0

0 7 0

0 0 11

ª º« »« »« »¬ ¼

x2 +

0 0 2

0 9 0

10 0 0

ª º« »« »« »¬ ¼

x3.

To integrate p(x) . ³ p(x)dx = 3 0 15 6 0

1 0 8

ª º« »« »« »¬ ¼

x + ½ 06

1

ª « « « ¬

1/3

8 0 0

0 7 00 0 11

ª º« »« »« »¬ ¼

x3

+ 1/4

0 0 2

0 9 010 0 0

ª º« »« »« »¬ ¼

x4

+

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

ª º« »« »« »¬ ¼

3 0 1

5 6 0

1 0 8

ª º« »« »« »¬ ¼

x +

0 1 1/ 2

3 1/ 2 0

1/ 2 1 3

ª « « « ¬

8/3 0 0

0 7 / 3 0

ª º« » 3

0 0 1/ 2

0 9 / 4 0

ª º« » 4

1aª «

Page 32: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 32/344

To integrate p(x), ³ p(x)dx= (1,2,3,4,5)x + ½ (0,1,0,3,–1)x2 + 1/3(5,0,8

+ 1/4 (1,2,0,4,5)x4 + 1/5(–2,1,4,3,0)x5 + (ai ∈ Q; 1 ≤ i ≤ 5.

= (1,2,3,4,5) + (0,1/2,0,3/2, -1/2)x2 + (5/3,0+ (1/4,1/2,0,1,5/4)x4 + (–2/5, 1/5,4/5,3/5,0+ (a1,a2,a3,a4,a5).

 Example 2.25: Let

p(x) =

3

0

12

4

5

ª º« »« »« »« »« »« »« »« »¬ ¼

+

0

1

20

4

8

ª º« »« »« »« »« »« »« »« »¬ ¼

x +

1

0

98

7

0

−ª º« »« »« »−« »« »« »« »« »¬ ¼

x3 +

7

8

910

3

7

ª º« »« »« »« »« »« »« »« »¬ ¼

x4 +

be a column matrix polynomial.

³ p(x)dx =

3

0

1

2

4

5

ª º« »« »« »

« »« »« »« »« »¬ ¼

x + 1/2

0

1

2

0

4

8

ª º« »« »« »

« »« »« »« »« »¬ ¼

x2

+ 1/4

1

0

9

8

7

0

−ª º« »« »« »−

« »« »« »« »« »¬ ¼

x4

 

Page 33: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 33/344

 

=

3

0

1

2

45

ª º« »« »« »« »« »« »« »« »¬ ¼

x +

0

1/ 2

1

0

24

ª º« »« »« »« »« »« »« »« »¬ ¼

x2 +

1/ 4

0

9/ 4

2

7 / 40

−ª º« »« »« »−« »« »« »« »« »¬ ¼

x4 +

7 /5

8/ 5

9 /5

2

3/ 57 /5

ª º« »« »« »« »« »« »« »« »¬ ¼

x5 +

4 /3

1/ 3

2 /3

5/ 6

5/ 65/3

ª º« « « « « « « « ¬ ¼

 Example 2.26: Let

p(x) =0 2 1 4

6 0 1 0

ª º« »¬ ¼

+3 6 2 9

0 2 1 7

ª º« »¬ ¼

x +0 2

2 0

ª « ¬

+2 1 0 0

0 0 1 2

ª º« »

¬ ¼

x4 +0 1 2 0

6 0 0 3

ª º« »

¬ ¼

x5.

We find the integral of p(x).

³ p(x)dx =0 2 1 4

6 0 1 0

ª º« »¬ ¼

x + 1/23 6 2

0 2 1

ª « ¬

+ 1/40 2 4 4

2 0 1 2

ª º« »¬ ¼

x4 + 1/52 1 0

0 0 1

ª « ¬

Page 34: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 34/344

+0 1/ 2 1 1

1/ 2 0 1/ 4 1/ 2

ª º« »¬ ¼

x4 +2 /5 1/ 5

0 0

ª « ¬

+0 1/ 6 1/ 3 0

1 0 0 1/ 2

ª º« »¬ ¼

x6 + 1 2

5 6

a a

a a

ª « ¬

We see VC, VR, Vn×m and Vn×n under integrprovided the entries of the coefficient matrices tfrom Q or R. If they take the from Z they are nintegration only closed under differentiation.

We will illustrate this situation by a few exam

 Example 2.27: Let

p(x) = (3, 8, 4, 0) + (2, 0, 4, 9)x + (1, 2, 1, 1)x3 + (3, 4, 8, 9)x5 where the coefficients matrices with entries from Z.

We find integral of p(x).³ p(x)dx = (3, 8, 4, 0)x + 1/2(2, 0, 4, 9)x2 + 1+ 1/4(1, 0, 1, 1)x4 + 1/6(3, 4, 8, 9)

We see (1, 0, 2, 9/4), (1/3, 2/3, 1/3, 1/3), (1(1/2, 2/3, 4/3, 3/2) ∉ Z × Z × Z × Z. Thus w

matrix coefficient polynomials with matrix entrnot closed under intervals that is ³ p(x)dx ∉ VC oVm×n if the entries are in Z.

Page 35: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 35/344

  ³ p(x) dx =

2

34

0

ª º« »

« »« »« »¬ ¼

x + 1/2

1

23

4

ª º« »

« »« »« »¬ ¼

x2 +1/3

0

01

1

ª º« »

« »« »« »¬ ¼

x3 

+ 1/4

0

10

3

ª º

« »« »« »« »¬ ¼

x4 + 1/5

3

00

4

ª º

« »« »« »« »¬ ¼

x5 +

1

2

3

4

a

aa

a

ª º

« »« »« »« »¬ ¼

 

=

2

34

0

ª º

« »« »« »« »¬ ¼

x +

1/ 2

13/ 2

2

ª º

« »« »« »« »¬ ¼

x2 +

0

01/ 3

1/ 3

ª º

« »« »« »« »¬ ¼

x3 +

0

1/ 40

3/ 4

ª º

« »« »« »« »¬ ¼

x4

+

3/ 5

0

0

4 /5

ª º« »« »« »« »¬ ¼

x5 +

1

2

3

4

a

a

a

a

ª º« »« »« »« »¬ ¼

.

Clearly these column matrices do not take their Z.

 Example 2.29: Let

Page 36: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 36/344

 

³ p(x)dx =3 0 1 1

6 6 0 0

ª º« »¬ ¼ x + 1/2

1 2

0 1

ª « ¬

+ 1/33 0 0 1

0 2 2 0

ª º« »¬ ¼

x3 + 1/42 1 1

0 2 0

ª « ¬

+ 1/51 0 1 0

0 1 0 1

ª º« »¬ ¼

x5 + 1 2 3 4

5 6 7 8

a a a a

a a a a

ª º« »¬ ¼

ai 

³ p(x)dx = 3 0 1 16 6 0 0ª º« »¬ ¼

x + 1/ 20 1ª « ¬

+1 0 0 1/ 3

0 2 /3 2/ 3 0

ª º« »¬ ¼

x3 +1/ 2 1/ 4

0 1/ 2

ª « ¬

+1/ 5 0 1/ 5 0

0 1/5 0 1/ 5

ª º« »¬ ¼

x5 + 1

5

a a

a a

ª « ¬

In view of this we have the following theorem

THEOREM 2.1:    Let V  R (or V C  or V n× m or V m× mcoefficient polynomials with matrix entries from

Q The derivatives of every polynomial in V (o

Page 37: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 37/344

COROLLARY 1:    If in theorem, Z is replaced by Q

then every integral of the matrix coefficient polynom

(or V C or V n× m or V m× m). 

Now we find or show some polynomial identicase of matrix coefficient polynomials.

Consider (1, 1, 1, 1, 1)x2 – (4, 9, 16, 25, 81) =

ii

i 0

a x∞

=

-®¯¦ a = (x1, x2, x3, x4, x5) with xi ∈ Z or Q or C

≤ 5}. Given (1, 1, 1, 1, 1)x2 – (4, 9, 16, 25, 81) = (0).

((1, 1, 1, 1, 1)x – (2, 3, 4, 5, 9)) ×((1, 1, 1, 1, 1)5, 9)) = (0)

Thus x = (2,3,4,5,9) or – (2,3,4,5,9).

Take the matrix coefficient polynomial(1,1,1)x3 – (27,8,125) = (0)

We can factorize (1,1,1)x3 – (27,8,125) = 0 as[(1,1,1)x – (3,2,5)] [(1,1,1)x2 + (3,2,5)x + (9,4

Take (1,1,1,1)x4 – (16,81,625,16) = (0)

We can factorize this polynomial as [(1(4,9,25,4)] [(1,1,1,1)x2 – (4,9,25,4)] = (0,0,0,0)

x2 = – (4,9,25,4)

Page 38: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 38/344

Now we see yet another equation

 p(x) = (1,1,1,1)x2 + (4,4,4,4)x + (4,4,4,4) = (

a matrix coefficient polynomial in the variable x

x =

2(4,4,4,4) (4,4,4,4) 4 (1,1,1,1)

(2,2,2,2)

r u

=(4,4,4,4) (0)

(2,2,2,2)

r

=(4,4,4,4)

(2,2,2,2)

= – (2,2,2,2).

Thus p(x) has coincident roots.

Consider (1,1,1)x3 – (6,3,9)x2 + (12,3,27)x +

= p(x) = (0,0,0) be a matrix coefficient polyn

To find the roots of p(x).

 p(x) = (1,1,1)x3 – 3(2,1,3)x2 + 3(4,1,9)x –

= ((1,1,1)x – (2,1,3))3.

Thus x = (2,1,3), (2,1,3) and (2,1,3).

Now p(2,1,3) = (1,1,1) (2,1,3)3 – 3(2,1,3) (2,

Page 39: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 39/344

Consider

1 0 2 1x

0 1 0 2

ª º§ · § ·−« »¨ ¸ ¨ ¸

© ¹ © ¹¬ ¼ 

1 0 3 7x

0 1 0 1

ª º§ · § ·+« »¨ ¸ ¨ ¸

© ¹ © ¹¬ ¼

Clearly p2 1

0 2

§ ·¨ ¸

© ¹

= (0) and p3 7

0 1

§ ·¨ ¸

© ¹

= (0).

We can consider any product of linear polynmatrix coefficients. However we see it is difficuequations in the matrix coefficients as even solving eusual polynomials is not an easy problem.

Now having seen the properties of matrix polynomials we now proceed onto discuss otherassociated with it.

Page 40: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 40/344

&KDSWHU7KUHH

$/*(%5$,&6758&785(686,1*

&2()),&,(1732/<120,$/6

  In this chapter we introduce several typestructures on these matrix coefficient polynomthem.

Throughout this chapter VR denotes the colle

matrix coefficient polynomials. VR = ii

i 0

a x∞

=

-®¯¦

where yi  ∈ R (or Q or C or Z); 1 ≤ ii d i }

Page 41: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 41/344

 

Now Vn×m = ii

i 0

a x∞

=

-®¯¦ ak =

11 1m

21 2m

n1 nm

a ... a

a ... a

a ... a

§ ·¨ ¸¨ ¸¨ ¸¨ ¸© ¹

# # #aij ∈

Z or C); 1 ≤ i ≤ n; 1 ≤ j ≤ m} denotes the collection

matrix coefficient polynomial.

Finally Vn×n = ii

i 0

a x∞

=

-®¯¦ ak =

11 12

21 22

n1 n 2

a a ... a

a a ... a

a a ... a

§ ¨ ¨ ¨ ¨

©

# #

∈ R (or Q or Z or C); 1 ≤ i, j ≤ n} denotes the colln × n matrix coefficient polynomial.

We give algebraic structures on them.

THEOREM 3.1: V  R , V C  , V n× m and V n× n (m ≠ n) are graddition.

THEOREM 3.2:  V  R and V n× n are semigroups (mon

multiplication.

THEOREM 3.3: V  R and V n× n are rings

(i) V  R is a commutative ring.

(ii) Vn×n is a non commutative ring

Page 42: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 42/344

We give examples of zero divisors.

 Example 3.1: Let VR[x] = ii

i 0

a x∞

=

-®¯¦ ai = (x1, x2,

Q or R or Z, 1 ≤ j ≤ 5} be a matrix coefficient po

Take p(x) = (3,2,0,0,0) + (6,3,0,0,0)x

+ (7,0,0,0,0)x2 + (8,1,0,0,0)x4

q(x) = (0,0,1,2,3) + (0,0,0,4,2)x2 + (0,0+ (0,0,0,3,4)x4 + (0,0,0,5,2)x7 be elements in VR.

p(x) q(x) = (0,0,0,0,0).

Thus VR has zero divisors.

Considera(x) = (5,0,0,0,2) + (3,0,0,0,0)x + (0,0,0,0,7

+ (2,0,0,0,-1)x3 + (6,0,0,0,0)x5 and

b(x) = (0,1,2,3,0) + (0,0,1,2,0)x + (0,1,0,0,0+ (0,1,0,7,0)x3 + (0,2,0,4,0)x8 in VR.

We see (a(x)) × (b(x)) = (0,0,0,0,0). We see

constant polynomial certainly (q(x))2  ≠ q(x) forthen deg ((q(x). q(x)) = n2.

We show that VR and Vn×n have several non t

Page 43: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 43/344

 Example 3.3: Let Vn×n be a ring.

Take p(x) =3 16 2

§ ·¨ ¸© ¹

x3 +2 15 7

§ ·¨ ¸© ¹

x2 + 1 be in Vn×

Clearly ¢p(x)² generates a two sided ideal.

But p(x)Vn×n generates only one sided ideal. (Vn×n) (p(x)) is not a two sided ideal. Thus Vn×n

number of right ideals which are not left ideal andideals. Further Vn×n has left ideals which are not right

 Example 3.4: Let

V4×4[x] = ii

i 0

a x∞

=

-®¯¦ ai = 1 2

3 4

x x

x x

§ ·¨ ¸© ¹

where x j ∈ Q;

be the matrix coefficient polynomial ring. Let

P = ii

i 0

a x∞

=

-®¯¦ ai = 1 2

3 4

x xx x

§ ·¨ ¸© ¹

where x j ∈ Z; 1 ≤ j ≤

P is only a subring of V4×4 and is not an ideal of V4×4.

THEOREM 3.6:    Let V  R and V n× n be matrix

  polynomial rings. Both V  R and V n× n have subringsnot ideals. We see if p(x) ∈ V  R or V n× n; degree of p(x

of usual polynomials is the highest power of x whi

 zero coefficient.

Page 44: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 44/344

p(x) =

3 1 2

0 1 50 0 1

§ ·¨ ¸

¨ ¸¨ ¸© ¹

+

7 2 1

0 5 76 1 2

§ ·¨ ¸

¨ ¸¨ ¸© ¹

x

2

+

2

00

§ ¨

¨ ¨ ©

+

2 1 5

6 7 8

0 1 2

§ ·¨ ¸¨ ¸

¨ ¸© ¹

x8.

The degree of p(x) is 8.

Now in case of usual polynomials if their from a field then every polynomial p(x) can be ma

However the same does not hold good in cand Vn×n.

Considerp(x) = (0,3,0,0)x4 + (1,2,3,4)x3 + (2,0,0,1)

VR. Clearly p(x) cannot be made into a

coefficient polynomial for (0,3,0,0) has no inverto multiplication.

Let q(x) = (5,7,8, –4)x5 + (1,2,3,0)x3 + (7,0,1be in VR. Now q(x) can be made as a monic matrpolynomial. For multiply q(x) by

t = (1/5, 1/7, 1/8, –1/4). Now tq(x) = (1,1,1,3/8, 0)x3 + (7/5,0,1/8, – 5/4)x + (8/5, 9/7, 0, –matrix coefficient polynomial of degree five.

Page 45: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 45/344

 

Clearly 3 01 0

§ ·¨ ¸© ¹

has no inverse or the matrix 31

§ ¨ ©

invertible.

Hence p(x) cannot be made into a monic matrix

polynomial in V2×2. Consider

p(x) =7 0

0 8

§ ·¨ ¸© ¹

x5 +1 8

7 5

§ ·¨ ¸© ¹

x4

+ 0 12 0

§ ·¨ ¸© ¹

x3 + 0 11 0

§ ·¨ ¸© ¹

x2 + 1 02 5

§ ·¨ ¸© ¹

in V2×

We see p(x) can be made into a monic polynomia

A =1/ 7 0

0 1/8

§ ·¨ ¸© ¹ is such that

1/ 7 0

0 1/8

§ ·¨ ¸© ¹

7 0

0 8

§ ·¨ ¸© ¹

=1 0

0 1

§ ·¨ ¸© ¹

.

Thus

1/ 7 0

0 1/8

§ ·¨ ¸© ¹

p(x) =1 0

0 1

§ ·¨ ¸© ¹

x5 +1/ 7 0

0 1/8

§ ·¨ ¸© ¹

 1

7

§ ¨ ©

Page 46: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 46/344

=0 1

1 0

§ ·¨ ¸

© ¹

x5 +1/ 7 8/ 7

7 /8 5/8

§ ·¨ ¸

© ¹

x4 +0

1/ 4

§ ¨

©

+0 1/ 7

1/8 0

§ ·¨ ¸© ¹

x2 +1/ 7 0

1/ 4 5/8

§ ·¨ ¸© ¹

 

has been made into a monic polynomial.

We have shown only some of the mapolynomials can be made and not all mapolynomials as the collection of row matrices n×n matrices are not field just a ring with zero div

Thus we have seen some of the propecoefficient polynomials. Unlike the number synot zero divisors, we cannot extend, all the rmatrix coefficients can also be zero divisors.

Thus we can say a matrix coefficient polyno

(or Vn×n) divides another matrix coefficient polVR (or Vn×n) if q(x) = p(x) b(x) where deg (b(x))deg p(x) < deg q(x).

We illustrate this by some examples. Suppose

p(x) = ((3,2,1) + (7,–1,9)x) ((1,1,2) + (1,1,1– (2,5,1)x) and

q(x) = ((7,–1,9)x + (3,2,1)) ((1,1,1)x + (1,1,(2 5 1) )) ((2 4 6) 2 (3 1 2) (1

Page 47: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 47/344

Suppose X = (a1, a2, …, an) is a row matrix with ≤ n; we say X is a prime row vector or row matrix if

prime and none of the ai is zero. Thus (3,5,11,13)23,31) and (11,23,29,43,41,53,59,47,7,11) are matrices.

We say or define the row matrix (a1, …, an) divimatrix (b1, b2, …, bn) if none of the ai’s are zero fo

and ai /bi for every i, 1 ≤ i ≤ n. That is we say (a1, …, …, bn) if (b1 /a1, …, bn /an) = (c1, …, cn) and ci  ∈Z(ai ≠ 0; i = 1, 2, …, n).

We will illustrate this situation by some examples

Let (5,7,2,8) = x and y = (10,14,8,8) we say x/y(10/5, 14/7, 8/2, 8/8) = (2,2,4,1).

Now if x = (0,2,3,5,7,8) and y = (5,4,6,10,21,24or y/x is not defined.

So when matrix coefficient polynomials are deavery very difficult to define division in VR.

Clearly if x = (a1, …, an) with ai ≠ 0 and ai primthen we see there does not exist any y = (b1, …, bn)

and bi ≠ 1 dividing x, (1 ≤ i ≤ n). Thus the only div(a1, …, an) are y = (1,1,…, 1) and y = (a1, a2, …, an) we face a lot of problems in dealing with matrix mand however we only multiply the two row matric

Page 48: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 48/344

as follows; if x =

1

2

n

a

a

a

ª º« »

« »« »« »¬ ¼

#and y =

1

2

n

b

b

b

ª º« »

« »« »« »¬ ¼

#then the na

x with y denoted by x ×n y =

1

2

n

a

a

a

ª º« »« »« »« »¬ ¼

# ×n 

1

2

n

b

b

b

ª º« »« »« »« »¬ ¼

# =

2

n

a

a

a

ª « « « « ¬

This product is defined as natural producolumn matrices and the natural product operatio

×n.

 Example 3.5: Let x =

7

2

0

15

ª º« »« »« »« »« »« »¬ ¼

and y =

1

3

5

27

ª º« »« »« »« »« »« »¬ ¼

.

Now the natural product of x with y is x ×n y =

7 1º 7ª º

Page 49: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 49/344

Now if x =

1

1

1

ª º« »

« »« »« »¬ ¼

#and y =

1

2

n

a

a

a

ª º« »

« »« »« »¬ ¼

#be any two n ×

matrices when x ×n y = y ×n x = y.

Thus x =

1

1

1

ª º« »« »« »« »¬ ¼

#acts as the natural product identi

infact any n × 1 collection of column vectors is aunder natural multiplication or natural product and i

and is a commutative monoid.

THEOREM 3.7:  Let 

V =

-ª º°« »

°« »®« »°« »°¬ ¼¯

#

1

2

n

a

a

a

ai ∈ Q (or Z or R); 1 ≤  i ≤  n}

be the collection of all n ×  1 column matrice

commutative semigroup under natural pro

multiplication) of column matrices.

Proof is direct and hence is left as an exercise to t

E l 3 6 L t

Page 50: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 50/344

We see x ×n y =

1

2

3

0

0

0

ª º« »

« »« »« »« »« »« »« »¬ ¼

 ×n 

0

0

0

0

1

2

ª º« »

« »« »« »« »« »« »« »¬ ¼

=

0

0

0

0

0

0

ª º«

« « « « « « « ¬ ¼

Thus x is a zero divisor. Inview of thifollowing result.

THEOREM 3.8: Let 

V =

-ª º°« »°« »®« »°« »°¬ ¼¯

#

1

2

n

a

a

a

ai ∈ Z (or Q or R); 1 ≤  i

be the semigroup under natural multiplicationdivisors.

This proof is also very simple.

 Example 3.7: Let

V =

1

2

a

a

-ª º°« »°« »®« »#

ai ∈ Z; 1 ≤ i ≤ 6}

Page 51: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 51/344

Take

W =

1

2

6

a

a

a

-ª º°« »°« »®« »°« »°¬ ¼¯

#ai ∈ 3Z; 1 ≤ i ≤ 6} ⊆ V;

W is a subsemigroup of V. Infact W is an ideal of the

V. Thus we have several ideals for V.

 Example 3.8: Let

V =

1

2

10

a

a

a

-ª º°« »°« »®

« »°« »°¬ ¼¯

#ai ∈ Q; 1 ≤ i ≤ 10}

be the semigroup under natural product.

Consider

W =

1

2

10

aa

a

-ª º°« »°« »®« »°« »°¬ ¼¯

#ai ∈ Z; 1 ≤ i ≤ 10} ⊆

W is only a subsemigroup of V and is not an ideal of V

Take

a-ª º

Page 52: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 52/344

From this example we see a subsemigroup ian ideal.

Inview of this we give the following resuwhich is simple.

THEOREM 3.9:  Let 

V =

-ª º°« »°« »®« »°« »°¬ ¼¯

#

1

2

n

a

a

a

ai ∈ Q (or R); 1 ≤  i ≤  

be a semigroup under natural product. V has

which are not ideals. However every ideal is a s

Proof is left as an exercise for the reader.

Now we have the concept of Smarandache swill illustrate this situation by an example.

 Example 3.9: Let

V =

1

2

8

a

a

a

-ª º

°« »°« »®« »°« »°¬ ¼¯

#ai ∈ Q; 1 ≤ i ≤ 8}

Page 53: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 53/344

M is a subring as well as a group under natural produwe see M is not an ideal of V. Thus V is a S

semigroup.

Inview of this we can easily prove the following th

THEOREM 3.10:  Let 

V =

-ª º°« »°« »®« »°« »°¬ ¼¯

#

1

2

n

m

m

m

mi ∈ Q (or R); 1 ≤  i ≤  n}

be a semigroup under natural product. V is a Smsemigroup.

 Proof: For take

M =

1

2

m

a

a

a

-ª º

°« »°« »®« »°« »°¬ ¼¯

#ai ∈ Q \ {0} or (ai ∈ R \ {0}); 1 ≤ i ≤

M is a group under natural product as every elemeinvertible, hence the theorem.

Now we proceed onto give an example or two.

Example 3 10: Let

C id h

Page 54: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 54/344

Consider the set

P =1 1 1 11 , 1 , 1 , 1 ,

1 1 1 1

- − −ª º ª º ª º ª º°« » « » « » « »− −®« » « » « » « »°« » « » « » « »− −¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼¯

1 1 11 , 1 , 1 ,

1 1 1

− −ª º ª º ª º« » « » « »− « » « » « »« » « » « »− ¬ ¼ ¬ ¼ ¬ ¼

is a group under product. Thus Z is a Smarandac

Infact B =

1 1

1 , 1

1 1

- ½−ª º ª º° °« » « »−® ¾« » « »° °« » « »−¬ ¼ ¬ ¼¯ ¿

 ⊆ M is also a grou

Smarandache semigroup as B ⊆ P.

Now we wish to prove the following theorem

THEOREM 3.11:   Let 

 M =

-ª º°« »°« »®« »°« »°¬ ¼¯

#

1

2

n

aa

a

ai ∈ Z (or Q or R); 1 ≤  i

be a semigroup under natural product. Smarandache subsemigroup then M is a

semigroup. However even if M is a Smaranda

every subsemigroup of M need not be a

W th th t f th th b

Page 55: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 55/344

We prove the other part of the theorem by an exam

Consider

Y =

1

2

n

x

x

x

-ª º°« »°« »®« »°« »°¬ ¼¯

#xi ∈ Z; 1 ≤ i ≤ n}

be a semigroup under natural product.

Y is a Smarandache semigroup as

Page 56: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 56/344

Y is a Smarandache semigroup as

P =

1 11 1

1 1

1 1,

1 1

1 1

1 1

1 1

- ½−ª º ª º° °« » « »−° °« » « »° °« » « »−° °« » « »

−° °« » « »® ¾« » « »−

° °« » « »° °−« » « »° °« » « »−° °« » « »° °−« » « »¬ ¼ ¬ ¼¯ ¿

 ⊆ Y

is a group under natural multiplication. Hesemigroup.

Take

W =

1

2

7

a

a

a

-ª º°« »°

« »®« »°« »°¬ ¼¯

# ai ∈ 3Z; 1 ≤ i ≤ 7} ⊆ Y

W is only a subsemigroup of Y and is not subsemigroup of Y. Hence even if Y is a S-semsubsemigroups whch are not Smarandache Hence the theorem.

Now we have seen ideals and subsemisubsemigroups about column matrix semigroup

DEFINITION 3 1: Let

Page 57: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 57/344

DEFINITION 3.1:  Let 

 M =

-ª º°« »°« »®« »°« »°¬ ¼¯

# # #

11 12 1n

21 22 2n

m1 m2 mn

a a ... a

a a ... a

a a ... a

aij ∈ Z (or Q or

1 ≤  i ≤  m and 1 ≤  j ≤  n}

be the collection of all m × n (m ≠ n) matrices. M un

multiplication / product × n is a semigroup.

If X =

ª º

« »« »« »« »¬ ¼

# # #

11 12 1n

21 22 2n

m1 m2 mn

a a ... a

a a ... a

a a ... a

and Y =

ª

« « « « ¬

# #

11 12

21 22

m1 m2

b b

b b

b b

be any two m × n matrices in M.

We define X × m Y =

ª « « « «

¬

# #

11 11 12 12 1n

21 21 22 22 2n

m1 m1 m2 m2 mn

a b a b ... a

a b a b ... a

a b a b ... a

Clearly X × m Y is in M. (M, × n) is defined as the

under natural product.

be any two 3 × 5 matrices We find the natur

Page 58: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 58/344

be any two 3 × 5 matrices. We find the naturwith Y.

X ×n Y =

2 1 0 5 1

0 3 1 2 5

1 4 3 0 1

ª º« »« »« »−¬ ¼

 ×n

3 2 0

4 0 1

0 1 2

ª « « « ¬

=6 2 0 5 30 0 1 10 35

0 4 6 0 5

ª º« »« »« »¬ ¼

.

 Example 3.12: Let

S =

1 2 3

4 5 6

28 29 30

a a a

a a a

a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

# # #ai ∈ Z; 1 ≤ i ≤

be the semigroup under natural product. S issemigroup with identity. S has infinite numbesubsemigroups which are not ideals.

 Example 3.13: Let

1 2a a

a a

-ª º°« »°« »

Take

Page 59: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 59/344

Take

I =

1 2

3 4

a a

0 0

0 0

0 0

a a

-ª º

°« »°« »°« »°

« »®« »°« »°« »°

« »°¬ ¼¯

# #ai ∈ Q; 1 ≤ i ≤ 4}

It is easily verified I is an ideal of P under natu×n.

Consider the subsemigroup

S =

1 2

3 4

5 6

a a

a a

0 0

0 0

a a

-ª º°« »°« »°« »°

« »®

« »°« »°« »°« »°¬ ¼¯

# #ai ∈ Q; 1 ≤ i ≤ 6} ⊆ P

under natural product. Clearly S is an ideal of P.

Suppose

T =

1 2

3 4

a a

a a

-ª º°« »°« »®« »# #

ai ∈ Z; 1 ≤ i ≤ 12} ⊆ P

our natural product we are able to define some

Page 60: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 60/344

our natural product we are able to define some on column matrices and rectangular matrices. N

onto define natural product on usual square matri

Let A = (aij)n×n and B = (bij)n×n be square mat(or Q or R); 1 ≤ i, j ≤ n. We define the natural pr

A ×n B as A ×n B = (aij)n×n (bij)n×n 

= (aij bij)n×n = (cij)n×n.

We will illustrate this by few examples.

 Example 3.14: Let

A =

6 1 2

0 3 4

2 1 0

§ ·¨ ¸¨ ¸¨ ¸© ¹

and B =

3 0 1

2 1 0

0 1 2

§ ¨ ¨ ¨ ©

be two 3 × 3 matrices. To find the natural produc

A ×n B =

6 1 2

0 3 4

2 1 0

§ ·¨ ¸¨ ¸¨ ¸© ¹

 

3 0 1

2 1 0

0 1 2

§ ·¨ ¸¨ ¸¨ ¸© ¹

=

18

0

0

§ ¨ ¨ ¨ ©

Now the usual matrix product of A with B is

6 1 2§ ·¨ ¸

3 0 1§ ·¨ ¸

We see A.B ≠ A ×n B in general. Further

Page 61: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 61/344

We see A.B ≠ A ×n B in general. Further operation ‘.’ the usual matrix multiplication is non c

where as the natural product ×n is commutative.

We just consider the following examples.

 Example 3.15: Let

M = 3 42 0

ª º« »¬ ¼

and N = 1 20 1

ª º« »¬ ¼

 

be any two 2 × 2 matrices.

M.N = 3 42 0

ª º« »¬ ¼

1 20 1

ª º« »¬ ¼

= 3 102 4

ª º« »¬ ¼

 

and N.M =1 2

0 1

ª º« »¬ ¼

3 4

2 0

ª º« »¬ ¼

=7 4

2 0

ª º« »¬ ¼

.

We see M.N ≠ N.M.

However M ×n N =3 4

2 0

ª º« »¬ ¼

×n 1 2

0 1

ª º« »¬ ¼

 

=3 8

0 0

ª º« »¬ ¼

and

 Example 3.16: Let

Page 62: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 62/344

p

M =

7 0 0 00 8 0 0

0 0 2 0

0 0 0 4

ª º« »« »« »« »¬ ¼

and N =

1 0 00 2 0

0 0 3

0 0 0

ª « « « « ¬

We find M.N =

7 0 0 00 8 0 0

0 0 2 0

0 0 0 4

ª º« »« »« »« »¬ ¼

1 00 2

0 0

0 0

ª « « « « ¬

=

7 0 0 0

0 16 0 0

0 0 6 0

0 0 0 16

ª º« »« »« »« »¬ ¼

.

Also

N.M =

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

ª º« »« »« »« »

¬ ¼

7 0 0 0

0 8 0 0

0 0 2 0

0 0 0 4

ª º« »« »« »« »

¬ ¼

=

7

0

0

0

ª « « « «

¬

7 0 0 0ª º 1ª

7 0 0 0ª º« »

Page 63: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 63/344

=

0 16 0 0

0 0 6 0

0 0 0 16

ª º« »

« »« »« »¬ ¼

. We see M.N = M ×n N

In view of this we have the following theorem.

THEOREM 3.12:  Let 

 M =

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

# # # # #

1

2

3

n

a 0 0 0 ... 0

0 a 0 0 ... 0

0 0 a 0 ... 0

0 0 0 0 ... a

ai ∈ Q (or Z or

1 ≤  i ≤  n}

be the collection of all n ×  n diagonal matricesemigroup under natural product and M is also a

under usual product of matrices and both the ope

identical on M.

 Proof: Let

1

2

a 0 0 0 ... 0

0 a 0 0 ... 0

ª º« »« »

1b 0 0 0 ... 0ª º« »

Page 64: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 64/344

and

1

2

3

4

n

0 b 0 0 ... 0

0 0 b 0 ... 0

0 0 0 b 0

...

0 0 0 0 ... b

« »

« »« »« »« »« »« »« »¬ ¼

# # # # #

be two matri

Now let us consider the natural product of 

A ×n B =

1 1

2 2

3 3

4 4

a b 0 0 0 ...

0 a b 0 0 ...

0 0 a b 0 ...

0 0 0 a b

...

0 0 0 0 ...

ª «

« « « « « « « ¬

# # # #

Consider the matrix product;

A.B =

1 1

2 2

3 3

4 4

a b 0 0 0 ...

0 a b 0 0 ...

0 0 a b 0 ...0 0 0 a b

...

0 0 0 0

ª « « « « « « « «¬

# # # #

multiplication. Both the operations on M are

Page 65: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 65/344

general.

The proof is direct and hence left as an exerreader.

THEOREM 3.14:  Let 

 M = {(aij) | aij ∈ Z (or Q or R or C); 1 ≤  i, j ≤

be a semigroup under natural product. M is a Smsemigroup.

 Proof: Let P = {(aij) | aij ∈ Z \ {0}, (R] {0} or Q]{0}) 1 ≤ i ≤ n} ⊆ M be a group under natural muSo M is a S-semigroup.

It is pertinent to mention here that these semigideals subsemigroups, zero divisors and idempotenSmarandache analogue.

Now we proceed onto give more structures

product.

DEFINITION 3.2:  Let 

 M =

-ª º°« »

°« »®« »°« »°¬ ¼¯

#

1

2

m

a

a

a

ai ∈ Q (or Z or R or C); 1 ≤  i ≤

 Example 3.17: Let

Page 66: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 66/344

M =

1

2

3

4

aa

a

a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ R (or Q or Z); 1 ≤ i

be a ring under + and ×n. The reader can eaA ×n (B+C) = A ×n B + A ×n C where A, B acolumn matrices.

Consider A =

1

2

n

a

a

a

ª º« »« »« »« »¬ ¼

# , B =

1

2

n

b

b

b

ª º« »« »« »« »¬ ¼

# and C =

A ×n (B+C) =

1

2

n

a

a

a

ª º« »

« »« »« »¬ ¼

# ×n 

1 1

2 2

n n

b c

b c

b c

§ ª º ª ¨ « » «

¨ « » « +¨ « » « ¨ « » « ¨ ¬ ¼ ¬ ©

# #

=

1

2

n

a

a

a

ª º

« »« »« »« »¬ ¼

# ×n 

1 1

2 2

n n

b c

b c

b c

+ª º

« »+« »« »« »

+¬ ¼

#=

1 1 1

2 2 2

n n n

a (b c

a (b c

a (b c

« +« « «

#

Now consider A ×n B + A ×n C

Page 67: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 67/344

=

1

2

n

aa

a

ª º« »« »« »« »¬ ¼

# ×n 

1

2

n

bb

b

ª º« »« »« »« »¬ ¼

#+

1

2

n

aa

a

ª º« »« »« »« »¬ ¼

# ×n 

1

2

n

cc

c

ª º« »« »« »« »¬ ¼

=

1 1 1 1

2 2 2 2

n n n n

a b a c

a b a c

a b a c

ª º ª º« » « »« » « »+« » « »« » « »¬ ¼ ¬ ¼

# #=

1 1 1 1

2 2 2 2

n n n n

a b a c

a b a c

a b a c

+ª º« »+« »« »« »

+¬ ¼

#.

Thus we see ×n distributes over addition. Now collection of all m × n matrices (m ≠ n) with entriesZ or Q or C or R. We see this collection also uaddition and natural product is a ring. Let

M = {(aij)m×n | m ≠ n; aij ∈ R (or Z or Q or C1 ≤ i ≤ m and 1 ≤ j ≤ n};

M is a ring infact a commutative ring.

However M is not a ring under matrix addition

product.

 Example 3.18: Let

1 1ª º« »

Page 68: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 68/344

M is a commutative ring with unit

1 1

1 1

1 1

« »

« »« »« »¬ ¼

.

M has units, zero divisors, subrings and ideal

Take a =

3 45 8

1 9

4 7

ª º« »« »« »« »¬ ¼

and b =

1/ 3 1/ 41/ 5 1/8

1 1/ 9

1/ 4 1/ 7

ª « « « « ¬

clearly ab = ba =

1 1

1 1

1 1

1 1

ª º« »« »« »« »¬ ¼

.

Consider a = 1 2

3 4

0 0

a a

a a

0 0

ª º« »« »« »« »¬ ¼

and b =

1 2

3 4

a a

0 0

0 0

a a

ª « « « « ¬

0 0

0 0

ª º« »

Take

-ª º

Page 69: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 69/344

P =

1

2

3

4

a 0

a 0

a 0

a 0

-ª º

°« »°« »®« »°« »°¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 4} ⊆ M;

P is an ideal of M.

Consider

T =

1 2

3 4

5 6

7 8

a a

a a

a a

a a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ Z; 1 ≤ i ≤ 8} ⊆ M;

clearly T is only a subring of M and is not an ideal oM has subrings which are not ideals. We can subrings which are not ideals.

 Example 3.19: Let

N = 1 2 3

4 5 6

a a a

a a a

-ª º°®« »

¬ ¼°̄ai ∈ Z; 1 ≤ i ≤ 6}

be the ring under matrix addition and natural produM has no units.

 Example 3 20: Let

Page 70: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 70/344

 Example 3.20: Let

M =

1 2 3

4 5 6

31 32 33

a a a

a a a

a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

# # #ai ∈ Q; 1 ≤ i ≤

be a ring under matrix addition and natural prodring.

For consider

P =

1 2 3

4 5 6

31 32 33

b b b

b b b

b b b

-ª º°

« »°« »®« »°« »°¬ ¼¯

# # #bi ∈ 3Z; 1 ≤ i ≤

P is not an ideal of M. M has units, zero diviso

ideals.

Take

W =

1 2 3

4 5 6

a a a

0 0 0

0 0 0

a a a

-ª º°« »°« »

°« »®« »°« »°« »°¬ ¼¯

# # # ai ∈ Q; 1 ≤ i ≤ 6

Consider

Page 71: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 71/344

S =

1 2 3a a a0 0 0

0 0 0

-ª º°« »°« »®« »°« »°¬ ¼¯

# # #ai ∈ Z; 1 ≤ i ≤ 3} ⊆

is only a subring and not an ideal.

 Example 3.21: Let

M =

1 2

3 4

21 22

a a

a a

a a

-ª º°« »°« »®« »°« »°¬ ¼¯

# # ai ∈ Q; 1 ≤ i ≤ 22}

be a ring M is commutative ring with

1 1

1 1

1 1

ª º« »« »

« »« »¬ ¼

# #

a

respect to natural multiplication. M is not an integM has zero divisors and every element M is torsion fr

For consider x =

1 2

3 4

a a

a aª º« »« »« »« »

# # ∈ M.

Page 72: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 72/344

 Example 3.24: Let

Page 73: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 73/344

P =

1 2 3

4 5 6

31 32 33

a a aa a a

a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

# # #ai ∈ Z; 1 ≤ i ≤ 33

be a ring P has no units. P has ideals. P has subringnot ideals. P has no idempotents or nilpotents.

Every element x in P is such that for no n ∈ Z+,

xn =

1 1 1

1 1 1

1 1 1

ª º« »« »« »« »¬ ¼

# # #.

THEOREM 3.15:  Let 

 M =

-ª º°« »°« »®« »°« »°¬ ¼¯

# # #

11 1n

21 2n

m1 mn

a ... a

a ... a

a ... a

aij ∈ Q; 1 ≤  i ≤  m; 1 ≤ 

be a ring M is a S-ring.

 COROLLARY 2:   Every matrix ring under natu

Page 74: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 74/344

y g

S-ring.

If Q is replaced by Z in the theorem and comatrix ring is not a S-ring.

 Example 3.25: Let

S =

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ Z; 1 ≤ i ≤

be a ring, S is a S-ring.

 Example 3.26: Let

M =

1 2

3 4

5 6

7 8

a a

a aa a

a a

-ª º°

« »°« »®« »°« »°¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 8

be a ring. M is a S-ring. For M has 8 subfields g

F1 =

1a 00 0

0 0

-ª º°« »°« »®« »°

a1 ∈ Q} ⊆ M is

0 0

a 0

-ª º°« »°

Page 75: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 75/344

F3 =1a 0

0 0

0 0

°« »®« »°« »°¬ ¼¯

a1 ∈ Q} ⊆ M is a fie

F4 = 1

0 0

0 a0 0

0 0

-ª º°« »°« »®« »°« »°¬ ¼¯

a1 ∈ Q} ⊆ M is a fie

F5 =1

0 0

0 0

a 0

0 0

-ª º

°« »°« »®« »°« »°¬ ¼¯

a1 ∈ Q} ⊆ M is a fie

F6 =1

0 00 0

0 a

0 0

-ª º°« »°« »®« »°« »°¬ ¼¯

a1 ∈ Q} ⊆ M is a fie

F7 =

0 0

0 0

0 0

-ª º°« »°« »®« »°

a1 ∈ Q} ⊆ M is a field

 

1a 0-ª º

Page 76: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 76/344

N =

1

20 a0 0

0 0

ª º

°« »°« »®« »°« »°¬ ¼¯

a1, a2 ∈ Q} ⊆

N is a subring and an ideal and not a field. Thufields. M is a S-ring. N also is a S-subring

subrings of M are not S-subrings.

For consider

S =

1 2

3 4

5 6

7 8

a a

a aa a

a a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ Z; 1 ≤ i ≤ 8}

S is only a subring and clearly S is not a S-sub

has infinite number of subrings which are not S-su

 Example 3.27: Let

W =1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

-ª º

°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤

b i d l l i li i f i

Further we can get compatability of natural producolumn and rectangular matrices. Hence we see the

Page 77: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 77/344

under natural product can serve better purpose for behave like the real numbers or complex number or integers on which they are built. Now we give mostructure on them. Consider the set of all row ma{(x1, …, xn) | xi ∈ R+ ∪ {0} (or Q+ ∪ {0} or Z+ ∪ {n}, M under + is a commutative semigroup with (0,

its additive identity.

M under ×n is also semigroup. Thus (M, +semiring. We see this semiring is a commutative sezero divisors.

Suppose

S = {(x1, …, xn) | xi ∈ R+ ∪ {0} (or Z+ or Q+); 1

Now {S ∪ {(0, 0, …, 0)} = T, +, ×n} is a semifield.

It is easily verified T has no zero divisors and strict semiring for a = (x1, x2, …, xn) and b = (y1, ysuch that x+y = 0 implies a = (0) = b = (0, 0, …, 0will give examples of them before we proceed ontodescribe more properties.

 Example 3.28: Let

M = {(a1, a2, a3) where ai ∈ Z+ ∪ {0}; 1 ≤ i ≤ 3}; (

 Example 3.29: Let

Page 78: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 78/344

T =

1

2

3

4

5

6

a

a

a

a

aa

-ª º°« »°« »°« »°

« »®« »°

« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}; 1 ≤ i ≤

be a semiring under + and ×n.

We see if x =

03

1

0

2

5

ª º« »« »« »« »« »« »

« »« »¬ ¼

and y =

10

0

2

0

0

ª º« »« »« »« »« »« »

« »« »¬ ¼

are in T

x ×n y =

0

3

1

0

2

ª º« »

« »« »« »« »« »

 ×n 

1

0

0

2

0

ª º« »

« »« »« »« »« »

=

0

0

0

0

0

ª º« »

« »« »« »« »« »

.

 Example 3.30: Let

Page 79: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 79/344

M =

1 2 3

4 5 6

13 14 15

a a aa a a

a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

# # #ai ∈ R+ ∪ {0}; 1 ≤ i ≤

be a semiring under + and ×n. Clearly M is commuta strict semiring. However M does contain zero divi

=

1 2 3

4 5 6

a a a

0 0 0

0 0 0

0 0 0

a a a

ª º« »« »« »

« »« »« »¬ ¼

and N =1 2 3

4 5 6

7 8 9

0 0 0

a a a

a a a

a a a

0 0 0

ª º« »« »« »

« »« »« »¬ ¼

with ai ∈ R

in M then

T ×n N =

1 2 3

4 5 6

a a a

0 0 0

0 0 0

0 0 0

a a a

ª º

« »« »« »« »« »« »¬ ¼

 ×n 1 2 3

4 5 6

7 8 9

0 0 0

a a a

a a a

a a a

0 0 0

ª º

« »« »« »« »« »« »¬ ¼

=

0

0

0

0

0

ª

« « « « « « ¬

Thus M is not a semifield.

 Example 3.31: Let

For take a =1

2 3

0 0 a

0 a a

ª º« »« » and b =

1 2

3

b b

b 0

ª « «

Page 80: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 80/344

4 5 6a a a« »« »¬ ¼ 0 0

« « ¬

we see a.b =1

2 3

4 5 6

0 0 a

0 a a

a a a

ª º« »« »« »¬ ¼

1 2

3

b b 0

b 0 0

0 0 0

ª º« »« »« »¬ ¼

=

Thus J is only a strict commutative semirinsemifield, we show how we can build semifields.

First we will illustrate this situation by some  Example 3.32: Let

M = {(0,0,0,0), (x1, x2, x3, x4) | xi ∈ Q+; 1 ≤ i ≤

be a semifield. For we see (M, +) is a commutwith additive identity (0,0,0,0).

Further (M, ×n) is a commutative semigrouas its multiplicative identity.

Also M is a strict semiring for (a,b,c,d) + (x,y

= (a + x, b + y, c + z, t + d)

 Example 3.33: Let

Page 81: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 81/344

M =

1

2

9

10

aa

a

a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

# where ai ∈ R+, 1 ≤ i ≤ 10} an

P = M ∪ 

0

0

00

- ½ª º° °« »° °« »° °« »® ¾

« »° °

« »° °« »° °¬ ¼¯ ¿

# ; (P, +, ×n) is a semifield.

 Example 3.34: Let

S =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a

a a a a

a a a a

a a a a

a a a a

-ª º°« »°« »°« »®

« »°« »°« »

°¬ ¼¯

where ai ∈ R+, 1 ≤ i

0 0 0 0- ½ª º° °« »

 Example 3.35: Let

Page 82: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 82/344

T = 1 2

3 4

a aa a

-ª º°®« »¬ ¼°̄

ai ∈ Z+, 1 ≤ i ≤ 4} a

P = T ∪ 0 0

0 0

- ½ª º° °® ¾« »° °¬ ¼¯ ¿

; (P, +, ×n) is a sem

We see by defining natural product on minfinite number of semifields apart from R+  ∪

and Z+ ∪ {0}. We proceed onto give examples semirings. Recall a semiring S is a Smarandach

contains a proper subset T such that T under theis a semifield.

 Example 3.36: LetM = {(a1, a2, …, a10) | ai ∈ Q+ ∪ {0}, 1 ≤

be a semiring under + and ×n. Take

T = {(0,a,0,…,0) | a ∈ Q+ ∪ {0}} ⊆T is a subsemiring of M. T is strict and T has nso T is a semifield under + and ×n. Hence M issemiring.

 Example 3.37: Let1

2

a

a

-ª º°« »°« »

 

Page 83: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 83/344

Consider

P =

0

0

0

a

-ª º°« »°« »°« »®« »°

« »°« »°¬ ¼¯

# a ∈ Z+ ∪ {0}} ⊆ T.

P is a subsemiring of T which is strict and has no zeThus T is a Smarandache semiring.

 Example 3.38: Let

V =1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

-ª º°« »®« »°« »¬ ¼¯

where ai ∈ Z+ ∪ {0}, 1

be a semiring under + and ×n.

V is a Smarandache semiring as

a 0 0 0-ª º°« »

 Example 3.39: Let

Page 84: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 84/344

M =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a aa a a a a

a a a a a

a a a a a

a a a a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

where ai ∈ R+ ∪ {0}, 1 ≤ i ≤ 25}

be a semiring under + and ×n.

Consider

S =1

0 0 0 0 0

0 0 a 0 0

0 0 0 0 0

0 0 0 0 00 0 0 0 0

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

a ∈ Z+ ∪ {0}

is a semiring as well as a semifield under + and ×a Smarandache semiring.

We can now define subsemirings andsubsemirings. These definitions are a matter hence left as an exercise to the reader. We h

 

Page 85: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 85/344

Consider

X =1 2 3 4a a a a

0 0 0 0

0 0 0 0

-ª º°« »®« »°« »

¬ ¼¯

a ∈ 3Z+ ∪ {0}; 1 ≤ i ≤

x under + and ×n is a subsemiring of P. HoweverSmarandache subsemiring.

But we see P is a Smarandache semiring for

V =

d 0 0 0

0 0 0 0

0 0 0 0

-ª º°« »®« »°« »¬ ¼¯

d ∈ Z+ ∪ {0}} ⊆ P

is a semiring as well as a semifield under + and ×n.

 Example 3.41: Let

P =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a aa a a a

a a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

where ai ∈ Q+ ∪ {0}, 1

P is a Smarandache semiring for take

Page 86: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 86/344

W =

a 0 0 00 0 0 0

0 0 0 0

0 0 0 0

-ª º°« »°« »®« »°« »°¬ ¼¯

a ∈ Z+ ∪ {0}}

is a semifield under + and ×n. Hence P is

semiring. However P has infinitely many subsare not Smarandache subsemirings.

Consider

Pn =

1 2 3a a a 0

0 0 0 0

0 0 0 0

0 0 0 0

-ª º°« »°« »®« »°« »°¬ ¼¯

a ∈ nZ; 1 ≤ i ≤ 3; n

Pn is a subsemiring of P but is not a Smarandacof P. Thus we see in general all subsemirings ofsemiring need not be a Smarandache subsemiringsemiring which has a Smarandache subsemiring Smarandache semiring.

Inview of this we have the following theorem.

THEOREM 3.16:   Let S, be a semiring of n × m

entries from R+∪ {0} (or Q

+∪ {0} or Z

+∪ {

and X ⊆ P so X ⊆ P ⊆ S that is X is a proper subsetis a semifield, so S is a Smarandache semiring.

Page 87: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 87/344

To show every subsemiring of a Smarandachneed not be a Smarandache subsemiring, we give an e

Consider

P = 1 2 3 4

5 6 7 8

a a a aa a a a

-ª º°®« »°¬ ¼¯

where ai ∈ Z+ ∪ {0}, 1

be a semiring under + and ×n.

If is easily verified P is a Smarandache semiring a

X =a 0 0 0

0 0 0 0

-§ ·°®¨ ¸

© ¹°̄a ∈ Z+ ∪ {0}} ⊆ P

is a semifield under + and ×n; so P is a Smarandache s

Consider a subsemiring

T = 1 2 3 4

5 6 7 8

a a a a

a a a a

-ª º°

®« »°¬ ¼¯where ai ∈ 5Z+ ∪ {0}, 1 ≤

clearly T is a subsemiring of P; however T is not a S

 Example 3.42: Let

1 2 3-ª º°« »

Page 88: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 88/344

P =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a aa a a

a a a

a a a

a a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

where ai ∈ Z+ ∪ {0},

be a semiring and + and ×n.

To show M has zero divisors.

Consider x =1 2 3

4 5 6

0 0 0

a a a

0 0 0

a a a

0 0 0

ª º« »« »« »« »« »« »¬ ¼

and y =

1 2

4 5

7 8

a a

0 0

a a

0 0

a a

ª « « « « « « ¬

We see x ×n y =

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ª º« »« »« »« »« »« »¬ ¼

.

Thus M has zero divisors. Infact M has

b

1 2

0 0 0

b b 0

0 0 0

ª º« »« »« » h b b 3Z i M

Page 89: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 89/344

b = 0 0 00 0 0

0 0 0

« »« »« »« »¬ ¼

where b1, b2 ∈ 3Z+ in M

we see a.b =

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ª º« »« »« »« »« »« »¬ ¼

.

Thus we can get any number of zero divisors in M

M has no idempotents other than elements of the f

x =

1 1 1

0 0 01 1 1

0 0 0

0 0 0

ª º

« »« »« »« »« »« »¬ ¼

 ∈ M, we see x2 = x or

0 0 0

1 0 0

ª º« »« »« » i h h 2 d

The proof is direct hence left as an exercise to

We call all these idempotents only as trit d id t t t f thi th

Page 90: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 90/344

generated idempotents; apart from this these mwith natural product do not contain any other idem

 Example 3.43: Let M = {(a, b) | a, b ∈ Z+ ∪ {0under + and ×n. The only trivial idempotents of M

1), (1, 0) and (1, 1).

 Example 3.44: Let P =a b

c d

-ª º°®« »

¬ ¼°̄a, b, c, d ∈

semiring under + and ×n.

The trivial idempotents of P are

0 0 1 0 0 1 0 0 0 0, , , , ,

0 0 0 0 0 0 1 0 0 1

-ª º ª º ª º ª º ª º ª°®« » « » « » « » « » «°¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬¯

0 0 0 1 1 1 1 0, , , ,

1 1 0 1 1 1 1 1

ª º ª º ª º ª º« » « » « » « »¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼  

0 1 1 1 1 1 1 0 0 1, , , ,

1 1 1 0 0 1 0 1 1 0

½ª º ª º ª º ª º ª º°¾« » « » « » « » « »°¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼¿

we see I under natural product ×n is a semigroupl d d

The proof involves only simple numbertechniques, hence left as an exercise to the reader.

Example 3 45: L t

Page 91: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 91/344

 Example 3.45: Let

M = 1 2 3 4

5 6 7 8

a a a a

a a a a

-ª º°®« »°¬ ¼¯

where ai ∈ Z+ ∪ {0}, 1

be a semiring under + and ×n.

I =0 0 0 0 1 0 0 0 0 1 0 0

, ,0 0 0 0 0 0 0 0 0 0 0 0

-ª º ª º ª °®« » « » « °¬ ¼ ¬ ¼ ¬ ¯

0 0 1 0 0 0 0 1,

0 0 0 0 0 0 0 0

ª º ª º« » « »¬ ¼ ¬ ¼

,

0 0 0 0 0 0 0 0 0 0 0 0 0 0, , ,

1 0 0 0 0 1 0 0 0 0 1 0 0 0

ª º ª º ª º ª « » « » « » «

¬ ¼ ¬ ¼ ¬ ¼ ¬

1 1 0 0 0 1 1 0 0 0 1 1 1 0, , ,

0 0 0 0 0 0 0 0 0 0 0 0 1 0

ª º ª º ª º ª « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬

1 1 1 1 1 1 1 1,1 1 1 0 1 1 1 1 ½ª º ª º°¾« » « »

°¬ ¼ ¬ ¼¿ ⊆ M;

x =1 1 0 0

0 0 0 0

ª º« »¬ ¼

and y =0 0 1 1

1 1 1 1

ª º« ¬ ¼

Page 92: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 92/344

x ×n y =0 0 0 0

0 0 0 0

ª º« »¬ ¼

.

Each element in I \ 

1 1 1 1

1 1 1 1

- ½ª º° °

® ¾« »° °¬ ¼¯ ¿ can genthe semigroup.

For consider x =1 1 1 1

0 0 0 0

ª º« »¬ ¼

 ∈

¢x² =

0 0 0 0 1 1 1 1 0 1 0 1, , ,

0 0 0 0 0 0 0 0 0 0 0 0

-ª º ª º ª º ª°®« » « » « » «°¬ ¼ ¬ ¼ ¬ ¼ ¬¯

1 0 0 0 0 0 1 0 0 0 1 1, , ,

0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª« » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬

1 1 0 0 0 1 1 0 1 0 1 0

, , ,0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª

« » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬

1 1 1 0 0 1 1 1 1 1 0 1 1ª º ª º ª º ª

0 0 0 0 1 0 0 0 0 0 0 0 0, , ,

0 0 0 0 0 0 0 0 1 0 0 0 0

-ª º ª º ª º ª°= ®« » « » « » «

°¬ ¼ ¬ ¼ ¬ ¼ ¬¯

Page 93: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 93/344

0 0 0 0 0 1 0 0 0 0 0 0 1 1, , ,

0 0 1 0 0 0 0 0 0 1 0 0 0 0

ª º ª º ª º ª « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 1 1 0 1 0 1 0 0 0 0 0 0 0

, , ,0 0 0 0 0 0 0 0 1 1 0 0 0 1

ª º ª º ª º ª

« » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 0 0 0 1 0 0 0 0 1 0 0 0 0, , ,

1 0 1 0 1 0 0 0 0 1 0 0 0 0

ª º ª º ª º ª « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 0 1 0 1 0 0 0 0 1 0 0 0 1, , ,

0 0 1 0 0 1 0 0 1 0 0 0 0 0

ª º ª º ª º ª « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬

1 0 0 0 0 0 1 0 0 0 1 0, ,

0 0 1 0 1 0 0 0 0 1 0 0

ª º ª º ª º« » « » «

¬ ¼ ¬ ¼ ¬ ¼and so on}.

We see order J is 26. Thus every singleton othand identity generate an ideal in the trivial

semigroup.Infact {0} generates {0} the trivial zero

1 1 1 1ª º

Page 94: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 94/344

&KDSWHU)RXU

1$785$/352'8&7210$75,&

In this chapter we construct semivectosemifields and vector spaces over fields using of matrices under natural product.

DEFINITION 4.1:   Let V be the collection of all

with entries from Q (or R) or C. (V, +) is an ab

is a vector space over Q (or R) according as V

  from Q (or R). If V takes its entries from Q; V

space over R however if V takes its entries from

space over Q as well as vector spaces over R. W

spaces V (m ≠ n) are also linear algebras for us

product we get the linear algebra.

  Example 4.2: Let

1 2a a-ª º°« »

Page 95: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 95/344

M =3 4

5 6

7 8

9 10

a aa a

a a

a a

a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 10}

be a vector space over Q. Clearly M is of infinite dim

 Example 4.3: Let

P = 1 2

3 4a aa a

-ª º°®« »¬ ¼°̄

ai ∈ R; 1 ≤ i ≤ 4}

be a vector space over R. Clearly dimension of P ove

 Example 4.4: Let

M =

1

2

20

aa

a

-ª º°« »°« »®« »°« »°¬ ¼¯

#ai ∈ Q; 1 ≤ i ≤ 20}

be a vector space over R. Clearly M is not a vector

R. Clearly dimension of M over Q is 20.

 Example 4.5: Let

The concept of subspace is a matter of routileft as an exercise to the reader.

However we give examples of them.

Page 96: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 96/344

However we give examples of them.

 Example 4.6: Let

M =

1 2

3 4

5 6

a a

a aa a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 6

be a vector space over Q.

Consider

T =1

2

3

a 0

0 a

a 0

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 3} ⊆

it is easily verified T is a subspace of M over Q.

Consider

P =1

2

3

a 0

a 0

a 0

-ª º°« »®« »

°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 3} ⊆

P is also a subspace of M over Q. Now we con

 Example 4.7: Let

P1 2 3a a a

-ª º°« »

® Q 1 ≤ i ≤ 9}

Page 97: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 97/344

P = 4 5 6

7 8 9

a a aa a a

a a a

ª º°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 9}

be a vector space Q.

Consider

M1 =1 2

3

a a 0

0 0 0

0 0 a

-ª º°« »®« »°« »

¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 3} ⊆

M1 is a subspace of P over Q.

Consider

M2 =

1

2

0 0 a

0 a 00 0 0

-ª º°« »

®« »°« »¬ ¼¯a1, a2 ∈ Q} ⊆ P

is also a subspace of P over Q.

However we see M1 ∩ M2 =

0 0 0

0 0 0

0 0 0

ª º« »« »« »¬ ¼

.

 

Take

0 0 0-ª º°

Page 98: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 98/344

M4 =

1

0 0 0

0 0 0

a 0 0

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q} ⊆ P

is also a subspace of P over Q.

We see P = M1 + M2 + M3 + M4 and Mi ∩ M

if i ≠ j. Thus we can write P as a direct sum of su

 Example 4.8: Let

P =

1

2

12

a

a

a

-ª º°« »°« »®« »°« »°¬ ¼¯

#ai ∈ Q; 1 ≤ i ≤ 12}

be a vector space over Q.

Consider

X1 =

1

2

aa

0

-ª º°« »°« »°« »®

« »a1, a2 ∈ Q} ⊆ P,

1

2

0

a

a

-ª º°« »°« »°« »°« »°

Page 99: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 99/344

X2 = 3a

0

0

°« »°®« »°« »°« »°« »°« »

¬ ¼°̄

#

ai ∈ Q; 1 ≤ i ≤ 3} ⊆ P

is again a subspace of P over Q.

Take

X3 =

1

2

3

4

00

a

a

a

a

0

0

0

00

-ª º°« »°« »°« »°« »°« »°« »

°« »°®« »°« »°« »°« »°« »°« »

°« »°« »¬ ¼°̄

ai ∈ Q; 1 ≤ i ≤ 4} ⊆ P

Consider

0

00

-ª º°« »°« »°« »

Page 100: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 100/344

X4 =1

2

3

4

5

0

0

0

a

a

a

a

a

°« »°« »°« »°« »°« »®

« »°« »°« »°« »°« »°« »°« »°¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 5} ⊆ P

is a subspace of P over Q.

We see Xi ∩ X j ≠ 

0

0

0

00

ª º« »« »« »« »« »

« »« »« »¬ ¼

#if i ≠ j.

Thus P is not a direct sum. However we see

P ⊆ X1 + X2 + X3 + X4, thus we say P is

direct sum of subspaces of P over Q.

Thus we have seen examples of direct sudirect sum of subspaces Interested reader can su

matrix product ×n. This is the vital difference and imdefining natural product ×n of matrices of same order

Now we define special strong Smarandache vecto

Page 101: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 101/344

DEFINITION 4.2:  Let 

 M =

-ª º°

« »®« »°« »¬ ¼¯

#

1

n

a

a

ai∈ Q; 1 ≤  i ≤  n}.

We define M as a natural Smarandache speci

characteristic zero under usual addition of matric

natural product × n. Thus {M, +, × n  } is natural Smspecial field.

We give an example or two.

 Example 4.9: Let

V =

1

2

7

aa

a

-ª º°« »°« »®« »°« »°¬ ¼¯

#ai ∈ Q; 1 ≤ i ≤ 7}

is a natural Smarandache special field of characteristi

Consider

Th

1

1

11

ª º« »« »

« »« »« » t th lti li ti id tit

Page 102: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 102/344

Thus 1

1

1

1

« »« »« »« »« »« »¬ ¼

acts as the multiplicative identity.

  Example 4.10: Consider the collection of matrices V with entries from Q.

We see

a

0

0

-ª º

°« »°« »®« »°« »°¬ ¼¯

#a ∈ Q} = P is a proper subset

field hence natural S-special field.

 Example 4.11: Let

M =

1

2

3

4

5

a

a

a

a

a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 5}

  Example 4.12: Let V = {(x1, x2, x3, x4, x5) | xi ∈ Rbe the special real natural Smarandache special fieldmatrices of characteristic zero.

Page 103: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 103/344

 Example 4.13: Let V = {(x1, x2) | xi ∈ R, 1 ≤ i ≤ 2row matrix natural Smarandache special field of chzero.

All these fields are non prime natural Smarandafields for they have several natural S-special subfields

Now we can define the natural Smarandache spem × n matrices (m ≠ n).

Let

V =

11 12 1n

21 22 2n

m1 m2 mn

a a ... a

a a ... a

a a ... a

-ª º°« »°« »®« »°« »°¬ ¼¯

# # #aij ∈ R, 1 ≤ i ≤ m, 1

V is the special m × n matrix of natural Smspecial field of characteristic zero.

 Example 4.14: Let

a a a a-ª º

  Example 4.15: Let

1 2a a-ª º°« »

Page 104: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 104/344

M = 3 4

21 22

a a

a a

°« »°« »®« »°« »°¬ ¼¯

# #ai ∈ R, 1 ≤ i ≤ 2

be the 11 × 2 matrix of natural Smarandache characteristic zero.

 Example 4.16: Let

M = 1 2 16

17 18 32

a a ... aa a ... a

-ª º°®« »

¬ ¼°̄ai ∈ R, 1 ≤

be the 2 × 16 matrix of natural Smarandache spec

Now having seen natural S-special fields of (m ≠ n). We now proceed onto define the nospecial Smarandache field of square matrices.

Let

P =

11 12 1n

21 22 2n

a a ... a

a a ... a

-ª º°« »°« »® aij ∈ R 1 ≤ i

 Example 4.17: Let

M =1 2 3

4 5 6

a a a

a a a

-ª º°« »®« »°

ai ∈ R, 1 ≤ i ≤ 9}

Page 105: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 105/344

7 8 9a a a« »

°« »¬ ¼¯

be the 3 × 3 square matrix of natural special Smarand

 Example 4.18: Let

M =

1 2 3 4 5

6 7 8 9 10

21 22 23 24 25

a a a a a

a a a a a

a a a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

# # # # #ai ∈ R, 1 ≤ i

be the 5 × 5 square matrix of natural special Smaranof characteristic zero.

Now having seen and defined the concept of maspecial Smarandache field we are in a position to deSmarandache special strong matrix vector spaces.

DEFINITION 4.3:  Let 

V = {(x1 , x2 , …, xn) | xi ∈ Q (or R), 1 ≤  i ≤ 

be an additive abelian group.

row vector space over the natural row matrix

special field F  R.

First we proceed onto give a few examples of

Page 106: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 106/344

 Example 4.19: Let M = {(x1, x2, x3, x4) | xi ∈ QSmarandache special strong row vector space oSmarandache special row matrix field

FR = {(x1, x2, x3, x4) | xi ∈ Q; 1 ≤ i ≤

 Example 4.20: Let P = {(x1, x2, x3, …, x10) | xi ∈be a Smarandache special strong row vector natural special row matrix Smarandache field

FR = {(x1, x2, …, x10) | xi ∈ Q; 1 ≤ i ≤

 Example 4.21: Let T = {(x1, x2, x3, …, x7) | xi ∈be a Smarandache special strong row vector natural special row matrix Smarandache field

FR = {(x1, x2, …, x7) | xi ∈ Q; 1 ≤ i ≤

Now we proceed onto define natural Scolumn matrix vector space over the special natural S-special field FC.

DEFINITION 4.4:  Let 

-ª º

F C =

1

2

a

a

a

-ª º°« »°« »

®« »°« »°¬ ¼¯

#

ai ∈ Q (or R), 1 ≤  i ≤  n}

Page 107: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 107/344

na°¬ ¼¯

be the special column matrix natural S-field. Clear

vector space over the natural Smarandache special f

define V as a S-special strong column matrix vectorthe special column matrix natural S-field F C .

We will illustrate this situation by some examples

 Example 4.22: Let

V =

1

2

10

x

x

x

-ª º°« »°« »®« »°« »°¬ ¼¯

#xi ∈ Q, 1 ≤ i ≤ 10}

is a S-special strong column matrix vector spacspecial column matrix natural S-field

FC =

1

2

x

x

-ª º

°« »°« »®« »°« »°¬ ¼

#xi ∈ Q (or R), 1 ≤ i ≤ 10}.

 Example 4.23: Let

1

2

a

a

-ª º°« »°« »°« »

Page 108: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 108/344

V = 3

4

5

a

a

a

°« »®« »°« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 5}

be a S-special strong column matrix vector special column matrix natural S-field

FC =

1

2

3

4

5

x

xx

x

x

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

xi ∈ R; 1 ≤ i ≤ 5}.

 Example 4.24: Let

V = 1

2

x

x

-ª º°®« »

¬ ¼°̄xi ∈ R; 1 ≤ i ≤ 2}

be a S-special strong column matrix vector special column matrix natural S-field

Let

M =

11 12 1n

21 22 2n

a a ... a

a a ... a

-ª º°« »°« »®« »°« »

# # #aij ∈ Q (or R

Page 109: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 109/344

m1 m2 mna a ... a°« »°¬ ¼¯

1 ≤ i ≤ m, 1 ≤ j ≤ n; m ≠ n}

be a group under matrix addition. Define

Fm×n (m≠n) =

11 12 1n

21 22 2n

m1 m2 mn

a a ... a

a a ... a

a a ... a

-ª º°« »°« »®

« »°« »°¬ ¼¯# # #

 

aij ∈ Q (or R), 1 ≤ i ≤ m, 1 ≤ j ≤ n}

to be special m × n matrix natural S-special field. N

M is a vector space over Fm×n called the S-special stmatrix vector space over the special m × n matrixspecial field Fm×n.

We will illustrate this situation by an example or

 Example 4.25: Let

1 2 3a a a-ª º°

 

F6×3 =

1 2 3

4 5 6

a a a

a a a

-ª º°« »°« »®« »°« »

# # #ai ∈ Q; 1 ≤ i

Page 110: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 110/344

16 17 18a a a°« »°¬ ¼¯

 Example 4.26: Let

V =1 2 3 4 5 6 7

9 10 11 12 13 14 15

17 18 19 20 21 22 23

a a a a a a a a

a a a a a a a a

a a a a a a a a

-ª °« ®« °« ¬ ¯

1 ≤ i ≤ 24}

be a S-special strong 3 × 8 matrix vector space 3 × 8 natural special matrix S-field

F3×8 =1 2 8

9 10 16

17 18 24

a a ... aa a ... a

a a ... a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤

 Example 4.27: Let

1 2a a

a a

-ª º°« »°« »

F4×2 =

1 2

3 4

5 6

7 8

a a

a a

a aa a

-ª º°« »°« »

®« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 8}.

Page 111: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 111/344

7 8¬ ¼¯Now finally we define the S-special strong sq

vector space over the special square matrix naturafield Fn×n.

Fn×n =

11 1n

21 2n

n1 nn

a ... a

a ... a

a ... a

-ª º°« »°« »®« »°« »°¬ ¼¯

# #aij ∈ R (or Q); 1 ≤ i, j ≤

We just define this structure.

Let M =

11 12 1n

21 22 2n

n1 n2 nn

a a ... a

a a ... a

a a ... a

-ª º°« »°

« »®« »°« »°¬ ¼¯

# # # aij ∈ Q (or R), 1

be the group under addition of square matrices.

Let

11 12 1na a ... a-ª º°« »

 We will illustrate this situation by some simp

 Example 4.28: Let

-

Page 112: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 112/344

M =1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤

be a special strong square 3 × 3 matrix S-vectorspecial 3 × 3 square matrix natural special S-field

F3×3 =

1 2 3

4 5 6

7 8 9

a a a

a a aa a a

-ª º

°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤

 Example 4.29: Let

V =

1 2 3 4 5

6 7 8 9 10

21 22 23 24 25

a a a a aa a a a a

a a a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

# # # # #ai ∈ R, 1

be a S-special strong 5 × 5 square matrix vectorspecial 5 × 5 natural special Smarandache field.

 Example 4.30: Let

A =1 2

3 4

a a

a a

-ª º°®« »¬ ¼°̄ ai ∈ R; 1 ≤ i ≤ 4}

Page 113: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 113/344

be a S-special strong 2×2 square matrix vector spaspecial 2×2 square matrix natural special S-field

F2×2 = 1 2

3 4

a a

a a

-ª º°®« »

¬ ¼°̄ai ∈ Q; 1 ≤ i ≤ 4}.

Now seen various types of S-special vector spacproceed onto define S-subspaces over natural special

DEFINITION 4.5:   Let V be a S-strong special row

column matrix or m ×  n matrix (m≠ n) or square ma

space over the special row matrix natural S-field F

F n× n (n ≠ m) or F n× n).

Consider W  ⊆ V (W a proper subset of V); if W

strong special row matrix (or column matrix or m × 

≠  n) or square matrix) S-vector space over F  R (or F

F n× n) then we define W to be a S-special strong

(column matrix or m ×  n matrix or square matrix) v

of V over F  R (or F C or F m× n or F n× n).

We will illustrate this situation by some simple ex

  Example 4.32: Let

1

2

a

a-ª º°« »°« »

Page 114: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 114/344

V = 2

6

a

a

°« »®« »°« »°¬ ¼¯

#ai ∈ R; 1 ≤ i ≤ 6}

be a S-special strong vector space over the S-field

FC =

1

2

6

a

a

a

-ª º°« »°« »®« »°« »°¬ ¼¯

#ai ∈ Q; 1 ≤ i ≤ 6}.

Consider

M =

1

2

3

a

0

a0

a

0

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 3} ⊆ V

M is a Smarandache special strong vector substhe S-field FC.

T k

P is a Smarandache special strong vector subspace ofS-field FC.

 Example 4.33: Let

-ª º

Page 115: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 115/344

M =1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 1

be a S-special strong vector space over the S-field

F3×4 =1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 12

P is a S-special strong vector subspace of M overF3×4.

 Example 4.34: Let V = {(a1, a2, …, a9) | ai ∈ R; 1 ≤

Smarandache special strong vector space over the S-fFR = {(a1, a2, …, a9) | ai ∈ Q; 1 ≤ i ≤ 9}.

Consider M1 = {(a1, 0, a2, 0, …, 0) | a1, a2 ∈ R} ⊆S-special strong vector subspace of V over the S-field

Consider

M2 = {(0, a1, 0, a2, 0, …, 0) | ai ∈ R; 1 ≤ i ≤ 2}

It is easily verified Mi ∩ M j = (0, 0, 0, …, 0 j ≤ 4 and V = M1 + M2 + M3 + M4. Thus V is tS-strong vector subspaces.

 Example 4.35: Let

Page 116: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 116/344

M =

1

2

11

12

a

a

a

a

-ª º°« »°« »

°« »®« »°« »°« »°¬ ¼¯

# ai ∈ Q; 1 ≤ i ≤ 12}

be a S-special strong vector space over the S-field

FC =

1

2

11

12

a

a

a

a

-ª º°« »°« »°« »®

« »°

« »°« »°¬ ¼¯

# ai ∈ Q; 1 ≤ i ≤ 12}.

Clearly dimension of M is also 12. Consider tspecial strong vector subspaces.

1a

0

-ª º°« »°« »°

P2 =

1

0

a

0

-ª º°« »°« »

°« »°« »°®« »°« »

# ai ∈ Q; 1 ≤ i ≤ 2} ⊆ M,

Page 117: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 117/344

2

0

a

0

°« »°« »°« »°« »

¬ ¼°̄

a S-strong vector subspace of M over FC.

P3 =

1

2

3

4

0

0

a

a

a

a

0

0

-ª º°« »°

« »°« »°« »°« »°« »®

« »°« »°« »

°« »°« »°« »°¬ ¼¯

#

ai ∈ Q; 1 ≤ i ≤ 4} ⊆ M,

is a S-strong special vector subspace of V over FC.

0

0

00

0

-ª º°« »°« »

°« »°« »°« »°« »

Page 118: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 118/344

P4 =1

2

0

0

a

a

0

0

0

0

°« »°« »°« »®« »°

« »°« »°« »°« »°« »°« »°« »°« »

¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 2}

is again a S-strong special vector subspace of V o

P5 =

1

0

0

00

0

0

0

0

a

-ª º°« »°« »

°« »°« »°« »°« »°« »°« »®« »°

« »°« »°« »°« »°

ai ∈ Q; 1 ≤ i ≤ 2} ⊆ M

We see Pi ∩ P j =

0

0

0

0

ª º« »« »

« »« »« »« »¬ ¼

# if i ≠ j; 1 ≤ i, j ≤ 5 and

Page 119: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 119/344

0« »¬ ¼V = P1 + P2 + P3 + P4 + P5.

Thus V is a direct sum of S-special strong vector  Example 4.36: Let

M =

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

-ª º°« »°

« »®« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 12}

be a S-strong special vector space over the S-field,

F4×3 =

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 12

1 2a a 0

0 0 0

-ª º°« »°

B2 =

1 2

3 4

a 0 a

0 a a

0 0 00 0 0

-ª º°« »°« »®

« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 4

b S i l b f M F

Page 120: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 120/344

be a S-strong special vector subspace of M over F

B3 =

1

2

3

a 0 0

a 0 0a 0 0

0 0 0

-ª º

°« »°« »®« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 3}

is a S-strong special vector subspace of M over F

Finally

B4 =

1

2 3

4

a 0 0

0 0 0

0 a a

a 0 0

-ª º°« »°« »®« »°« »°

¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 4}

is again a S-strong special vector subspace of V o

We see Bi ∩ B j ≠ 

0 0 0

0 0 0

0 0 00 0 0

ª º« »« »

« »« »¬ ¼

; even if i ≠ j, 1

they may find applications in all places where the rereal number (or a rational number) but an array of nu

We can define orthogonal vectors of S-special stvector spaces also.

Page 121: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 121/344

First we see how orthogonal vector matrices when they are defined over R or Q or C.

Let VR = {(a1, …, an) | ai ∈ Q; 1 ≤ i ≤ n} be avector space defined over the field Q.

We define for any x = (a1, …, an) and y = (b1, …x is perpendicular to y if x ×n y = (0).

Thus if VR = {(x1, x2, x3, x4, x5) | xi ∈ R; 1 ≤ i ≤matrix vector space defined over Q and if x = (0, 4, -y = (1, 0, 0, 8, 0) are in VR. We see x ×n y = orthogonal with y.

VC =1

n

a

a

-ª º°« »®« »

°« »¬ ¼¯

# ai ∈ Q, (or R); 1 ≤ i ≤ n} be the v

of column matrices over Q (or R) respectively.

1

2

x

x

ª º« »« »

1

2

y

y

ª º« «

For instance if x =

2

1

00

0

ª º« »−« »

« »« »« »« »« »

and y =

0

0

12

3

ª º« »« »

« »« »« »« »« »

then

Page 122: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 122/344

0

7« »« »¬ ¼

3

0« »« »¬ ¼

x ×n y =

21

0

0

0

7

ª º« »−« »« »« »« »« »

« »« »¬ ¼

 ×n 

00

1

2

3

0

ª º« »« »« »« »« »« »

« »« »¬ ¼

=

00

0

0

0

0

ª º« »« »« »« »« »« »

« »« »¬ ¼

.

Now we can define, unlike in other matrix case of these vector spaces Vm×n (m ≠ n)orthogonality under natural product. This is a

enjoyed only by vector spaces on which naturaldefined.

We just illustrate this situation by some exam

 Example 4.37: Let

1 2 3a a a

a a a

-ª º°« »°

Now let

x =

3 2 0

0 1 5

1 1 0

ª º

« »« »« »« »

and y =

0 0 7

9 0 0

0 0 9

ª º

« »« »« »« »

be in V

Page 123: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 123/344

2 0 7

0 1 8

« »« »« »¬ ¼

0 8 0

4 0 0

« »« »« »¬ ¼

we see x ×n y =

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ª º« »« »« »« »« »

« »¬ ¼

thus we say x is orth

under natural product in V5×3.

It is pertinent to mention here that we can havein V5×3 such that for a given x in V5×3. x ×n y = (0).

Now we see all elements in V5×3 are orthog

natural product to the zero 5 × 3 matrix

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

ª º« »« »« »« »

« »« »¬ ¼

.

Example 4.38: Let

Take x = 1 3 5

2 4 6

a a a 0 0 0

a a a 0 0 0

ª º« »¬ ¼

and

y = 1 3

2 4

0 0 0 a 0 a

0 0 0 a 0 a

ª º« »¬ ¼

in V2×6. ai ∈

Page 124: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 124/344

¬ ¼

We see x ×n y =0 0 0 0 0 0

0 0 0 0 0 0

ª « ¬

Thus x is orthogonal with y. Infact we hay’s which are orthogonal with x.

 Example 4.39: Let

V = 1 2

3 4

a a

a a

-ª º°®« »

¬ ¼°̄ai ∈ R; 1 ≤ i ≤ 4}

be a 2 × 2 matrix vector space over the field R. ×product on V.

We define two matrices in V to be orthogonal

x ×n y =0 0

0 0

ª º« »¬ ¼

for y, x ∈ V. We see x =

then y = 10 b

0 0

ª º« »¬ ¼

is orthogonal with x.

Further 1

2

0 b

b 0

ª º« »¬ ¼

= b, is orthogonal with x un

product as x ×n b = 0 00 0

ª º« »¬ ¼

.

Page 125: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 125/344

Now x⊥ = 1 1

2 1

0 b 0 00 0 0 b, , ,

b 0 b 00 0 0 0

- § · § ·§ · § ·° ® ¨ ¸ ¨ ¨ ¸ ¨ ¸° © ¹ © ¹© ¹ © ¹¯

x⊥ is additively closed and also ×n product also is clx⊥ is a proper subspace of V defined as perpendicular with x.

Consider x =0 a

b 0

ª º« »¬ ¼

in V; now the elements pe

with x are0 0 t 0 0 0 t 0

, , ,0 0 0 0 0 u 0 u

- ½§ · § · § · § ·° °® ¾¨ ¸ ̈ ¸ ̈ ¸ ̈ ¸° °© ¹ © ¹ © ¹ © ¹¯ ¿

.

We see this is also a subspace of V.

Infact if 

B =0 0 t 0 0 0 x 0

, , ,0 0 0 0 0 u 0 y

- ½ª º ª º ª º ª º° °® ¾« » « » « » « »° °¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼¯ ¿

 ⊆

and

 Example 4.40: Let

M =1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

-ª º

°« »®« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤

Page 126: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 126/344

be a 3 × 3 vector space over the field Q. Conside

x =

a b c

0 0 0

0 0 d

ª º« »« »« »¬ ¼

in M.

The elements perpendicular to x be denoted byx⊥ = B =

1 2

0 0 0 0 0 0 0 0 0

0 0 0 , 0 0 a , a 0 0

0 0 0 0 0 0 0 0 0

-ª º ª º ª º°« » « » « »®« » « » « »°« » « » « »¬ ¼ ¬ ¼ ¬ ¼¯

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 , 0 0 0 , a b 0 , a 0 b

d 0 0 0 e 0 0 0 0 0 0 0

ª º ª º ª º ª º« » « » « » « « » « » « » « « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

0 0 0 0 0 0 0 0 0 0 0 00 0 a , 0 0 a , a 0 0 , a 0 0

b 0 0 0 b 0 b 0 0 0 b 0

ª º ª º ª º ª º« » « » « » « « » « » « » « « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

0 0 0 0 0 0 0 0 0 0 0 0 0

0 a b , 0 a b , a 0 b , a 0 b , a

c 0 0 0 c 0 c 0 0 0 c 0 b

ª º ª º ª º ª º ª« » « » « » « » «« » « » « » « » «« » « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 0 0 0 0 0 0 0 0 0 0 0 0ª º ª º ª º ª º ª« » « » « » « » «

Page 127: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 127/344

0 a 0 , 0 0 a , a b c , a b c , a

b c 0 b c 0 d b 0 d 0 0 0

« » « » « » « » «« » « » « » « » «« » « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 0 0 0 0 0 0 0 0

0 a b , a 0 b , a b 0

c d 0 d c 0 d c 0

½ª º ª º ª º°« » « » « »¾« » « » « »°« » « » « »¬ ¼ ¬ ¼ ¬ ¼¿

 

is again a subspace orthogonal with x.

Inview of this we have the following theorem.

THEOREM 4.1:   Let V be a matrix vector space ove

  Let 0 ≠  x ∈ V. The elements orthogonal to x un

 product × n is a subspace of V over F.

 Proof: Let 0 ≠ x ∈ V. Suppose x⊥ = B = {y ∈ V | yto show B is a subspace of V.

Clearly B ⊆ V, by the very definition of orthogoof x. Further (0) ∈ V is such that x ×n (0) = (0orthogonal with x. Now let z, y ∈ B be orthogonal w

 so y + z ∈ B. Also if y ∈ B is such that x ×n y = = 0 so if y ∈ B then –y ∈ B. Finally let a ∈

show ay ∈ B. Consider x ×n ay = a (x ×n y) = a.0

Thus B ⊆ V is a vector subspace of V.

Page 128: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 128/344

Now we can define orthogonality of two elevector spaces under natural product, we now

properties associated with orthogonal natural prod

 Example 4.41: Let

W =

a b c

d e f g h i

-ª º°« »

®« »°« »¬ ¼¯a, b, c, d, e, f, g, h, i

be a vector space over Q.

Consider x⊥ = B =

0 0 0 0 0 0 0 0 0 0

0 0 0 , 0 0 0 , 0 0 0 , 0

0 0 0 a 0 0 0 b 0 0

-ª º ª º ª º ª °« » « » « » « ®« » « » « » « °« » « » « » «

¬ ¼ ¬ ¼ ¬ ¼ ¬ ¯

0 0 0 0 0 0 0 0 0 0 0ª º ª º ª º ª

B⊥=

0 0 0 a 0 0 0 b 0 0 0

0 0 0 , 0 0 0 , 0 0 0 , 0 0

0 0 0 0 0 0 0 0 0 0 0

-ª º ª º ª º ª °« » « » « » « ®« » « » « » « °

« » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¯

0 0 0 0 0 0 0 0 0 0 0 0 aª º ª º ª º ª º ª« » « » « » « » «

Page 129: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 129/344

0 0 0 , d 0 0 , 0 e 0 , 0 0 f , 0

0 0 0 0 0 0 0 0 0 0 0 0 0

« » « » « » « » «« » « » « » « » «« » « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 a b a 0 b a 0 0 0 0 0 0

0 0 0 , 0 0 0 , b 0 0 , a b 0 , a

0 0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª º ª« » « » « » « » «« » « » « » « » «« » « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 0 0 a 0 0 a 0 0 0 a 0 00 a b , 0 b 0 , 0 0 b , b 0 0 , 0

0 0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª º ª« » « » « » « » «« » « » « » « » «« » « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 a 0 0 0 a 0 0 a 0 0 a a

0 0 b , b 0 0 , 0 b 0 , 0 0 b , 0

0 0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª º ª« » « » « » « » «« » « » « » « » «« » « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 0 0 a 0 0 a 0 0 a 0 b a

a b c , 0 b c , b c 0 , 0 c 0 , b0 0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª º ª« » « » « » « » «

« » « » « » « » «« » « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

 0 0 a 0 a b 0 a b 0 a b

0 b c , c 0 0 , 0 c 0 , 0 0 c

0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª º« » « » « » «

« » « » « » « « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

a b c a b c 0 a b 0 a bª º ª º ª º ª º

Page 130: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 130/344

a b c a b c 0 a b 0 a b

0 d 0 , 0 0 d , d 0 c , d c 0

0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª º« » « » « » « « » « » « » « « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

a 0 0 0 a 0 0 0 a a b 0

b c d , b c d , b c d , c d 0

0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª º« » « » « » « « » « » « » « « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

a 0 b a 0 b a b 0 a b c

0 c d , c d 0 , c 0 d , 0 d e

0 0 0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª º« » « » « » « « » « » « » « « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

0 a b a b 0 a 0 b ac d e , c d e , d e c , d

0 0 0 0 0 0 0 0 0 0

ª º ª º ª º ª « » « » « » « « » « » « » « « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬

We see B⊥ ⊕ B = W.

Thus we have the following theorem.

COROLLARY 4.1:  Let V be a matrix vector space ov

F. {0} ∈ V; the space perpendicular to V under natu

× n is V, that is {0}⊥ 

= V.

COROLLARY 4.2:  Let V be a matrix vector space ov

F. The space perpendicular to V under natural pro

that is {V}⊥ 

= {0}

Page 131: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 131/344

that is {V} {0}.

 Example 4.42: Let

V = 1 2 3

4 5 6

a a a

a a a

-ª º°®« »

¬ ¼°̄ai ∈ Q; 1 ≤ i ≤ 6}

be a vector space over Q.

Now consider x = 1 2

3 4

0 a a

0 a a

ª º« »¬ ¼

be the element

vectors perpendicular or orthogonal to x are given by

a 0 0 0 0 0 a 0 0 0 0 0, , ,0 0 0 a 0 0 b 0 0 0 0 0

- ª º ª º ª º ª º° ® « » « » « » « »° ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼¯

Now take y =a 0 0

b 0 0

ª º« »¬ ¼

 ∈ B, the vectors perp

y are y⊥ =

-

0 a 0 0 0 c 0 a b 0 a b 0, , , ,

0 0 b 0 d 0 0 c 0 0 0 b 0

ª º ª º ª º ª º ª« » « » « » « » «¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

 We see x ∈ y⊥ under natural product. Nowx ×n y = (0)} and ¢y⊥² = {x ∈ V | x ×n y = {0subspaces of V but are such that ¢x⊥² ∪ ¢y⊥² = V

Page 132: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 132/344

p ¢ ² ¢y ²= {(0)}.

Further x = 0 a b0 c d

ª º« »¬ ¼

is in ¢y

Suppose z⊥ =a 0 0

0 0 0

ª º« »¬ ¼

 ∈ B is tak

z⊥ = {m ∈ V | m ×n z = (0)}.

=0 0 0 0 a 0 0 0 b 0 0 0

, , ,0 0 0 0 0 0 0 0 0 x 0 0

-ª º ª º ª º ª °®« » « » « » « °¬ ¼ ¬ ¼ ¬ ¼ ¬ ¯

0 0 0 0 a b 0 b 0 0 a 0, , ,

0 0 t 0 0 0 a 0 0 0 b 0

ª º ª º ª º ª º« » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

0 0 a 0 0 a 0 0 a 0 0 0

, , ,b 0 0 0 b 0 0 0 b a b 0

ª º ª º ª º ª º

« » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

0 0 0 0 a b 0 a b 0 a b 0 0, , , ,

a b c 0 c d c 0 d c d 0 b c

ª º ª º ª º ª º ª « » « » « » « » « ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

0 a 0 0 a b,

b c d d c x

½ª º ª º°¾« » « »°¬ ¼ ¬ ¼¿

= T.

Page 133: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 133/344

We see though z ∈ B still ¢z⊥² ≠ ¢y⊥².

Further every element in T is not perpendicularthe natural product ×n.

For consider m =0 a 0

b c d

ª º« »¬ ¼

in T and

x ×n m =0 a b

0 c d

ª º« »¬ ¼

 ×n 0 a 0

b c d

ª º« »¬ ¼

 

=

1

1 1

0 x 0

0 y z

ª º

« »¬ ¼  ≠ 

0 0 0

0 0 0

ª º

« »¬ ¼ .

Thus we can say for any x ∈ V we have one andin V such that x is the complement of y with respecproduct ×n.

We say complement, if x⊥ generates the spacegenerates another space say C.

THEOREM 4.3:  Let V be a matrix vector space

(or R). Let × n be the natural product defined on

 y is the main complement of V and vice versa, th

V and ¢   x⊥ 

 ²  ∩  ¢   y⊥ 

 ² = (0).

(1) However for no other element t in ¢ 

main complement of x.

Page 134: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 134/344

p f

(2)   Also no element in ¢   x⊥  ²  will

complement of y only x will complement of y.

The proof is left as an exercise. However wsituation by some example.

 Example 4.43: Let

M =a b

c d

-ª º°®« »

¬ ¼°̄a, b, c, d ∈ Q}

be the vector space of 4 × 4 matrices over the fiel

Take p =x 0

y 0

ª º« »¬ ¼

  ∈ M, now the complem

natural product in M are

0 0 0 a 0 a

, ,0 0 0 b 0 0

-ª º ª º ª °

®« » « » « °¬ ¼ ¬ ¼ ¬ ¯

0 0ª º

Now the complements of q under natural pro

M are0 0 a 0 a 0 0 0

, , ,0 0 b 0 0 0 a 0

-ª º ª º ª º ª º°®« » « » « » « »

¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼°̄

a, b ∈ Q}.

We see V + T = M and V ∩ T =0 0

0 0

ª º« »¬ ¼

.

Page 135: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 135/344

0 0¬ ¼

Now x = 0 a0 0ª º« »

¬ ¼is in T. We find the elements

to x in M under the natural product ×n.

¢x⊥² =0 a

0 0

ª º« »¬ ¼

=

0 0 a 0 0 0 0 0, , , ,

0 0 0 0 b 0 0 c

-ª º ª º ª º ª º°®« » « » « » « »°¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼¯  

a 0 a 0 0 0 a 0, , ,b 0 0 c b c b c

½ª º ª º ª º ª º°¾« » « » « » « »°¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼¿ .

The main complement of x in M isa 0

b c

ª º« »¬ ¼

oth

complements.Consider

 Example 4.44: Let

V =

1

2

8

a

a

a

-ª º

°« »°« »®« »°« »°¬ ¼¯

#ai ∈ Q; 1 ≤ i ≤ 8}

Page 136: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 136/344

¬ ¼¯

be a vector space of column matrices over the fiel

Consider the element a =

1

2

3

a

a

0

00

0

0

a

ª º« »« »« »« »

« »« »« »« »« »« »« »¬ ¼

in V.

To find complements or elements orthogonal

¢a²⊥ =

1

2

0 0 0 00

0 0 0 0 00

0 0 0 0 0 a00 a 0 0 0 a

, , , , , ,a

ª º ª º ª º ªª º « » « » « » «ª º « » « » « » « » «« »« » « » « » « » «ª º « » « » « » « » « » «« » « » « » « » « » « » «« » « » « » « » « » « » «« »#

1

0

0

a0

,

- º ª ° » « ° » «

° » « ° » « ° » « ® » «

1 1

1 1 1

1 2

2 2 2

0 0 0 0 0 0

0 0 0 0 0 0

a a 0 0 0 0

0 0 0 a a a, , , , ,

0 0 a a 0 0

a 0 a 0 a 0

ª º ª º ª º ª º ª º ª« » « » « » « » « » «« » « » « » « » « » «« » « » « » « » « » «« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »

1

1

0 0

0 0

0 0

0 0, ,

a 0

0 a

º ª º ª » « » « » « » « » « » «

« » « » « « » « » « « » « » « « » « » « « » « » «

Page 137: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 137/344

2 2 2

2 2

a 0 a 0 a 0

0 a 0 0 0 a

0 0 0 0 0 0

« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »

« » « » « » « » « »¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬

1

2 2

0 a

a a

0 0

« » « » « « » « » « « » « » «

« » « » « ¼ ¬ ¼ ¬

1 1 1 1 1 1

2 2 2

3 2 2

3 3 2

3 3 3

0 0 0 0 0 0

0 0 0 0 0 0

a a a a a a

a a a 0 0 0, , , , ,a 0 0 a 0 a

0 a 0 a a 0

0 0 a 0 a a

0 0 0 0 0

ª º ª º ª º ª º ª º« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »

« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

1 1

2

3 2

3

0 0

0 0

0 0

a a, ,a 0

a a

0 a

0 0 0

ª º ª º ª « » « » « « » « » « « » « » «

« » « » « « » « » « « » « » « « » « » « « » « » « « » « » « « » « » « « » « » « ¬ ¼ ¬ ¼ ¬

1 1 1

1 2 2 1

2 1 3 3 2 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 a a a 0

a 0 a a 0 a, , , , ,a a a a a a

ª º ª º ª º ª º ª º« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »« » « » « » « » « »

1

2

3

0

0

a

a,a

½ª º ª º°« » « »°« » « »°« » « »°« » « »°« » « »¾« » « »°« » « »°

.

The main complement of 

1

2

a

a

0

0

0

0

ª º« »« »« »« »« »« »« »« »

is

1

2

3

4

0

0

a

a

a

a

ª º« »« »« »« »« »« »« »« »

.

Page 138: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 138/344

3

0

a

« »« »« »

« »¬ ¼

4

5

a

a

0

« »« »« »

« »¬ ¼

Certainly this type of study will be a bocoding theory as in case of algebraic coding thuse only matrices which are m × n (m ≠ n) matrix and generator matrix.

Now we define other related properties ofwith natural product on them. Suppose S is a suvector space defined on R or Q we can define

S⊥ = {x ∈ V | x ×n s = (0) for every

We will illustrate this situation by some simp

 Example 4.45: Let

V =

1 2

3 4

a aa a

-ª º°« »°« »®« »

ai ∈ Q; 1 ≤ i ≤ 8

Consider

S =

a b 0 0

0 0 0 0,0 0 0 0

0 0 c d

-ª º ª º

°« » « »°« » « »®« » « »°« » « »°¬ ¼ ¬ ¼¯

a, b, c, d ∈ Q} ⊆ V

Page 139: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 139/344

To find S⊥ . S⊥ =

0 0 0 0 0 0 0 0

0 0 a b a 0 0 a, , ,

0 0 d e 0 0 0 0

0 0 0 0 0 0 0 0

-ª º ª º ª º ª °« » « » « » « °« » « » « » « ®« » « » « » « °« » « » « » « °¬ ¼ ¬ ¼ ¬ ¼ ¬ ¯

0 0 0 0 0 0 0 00 0 0 0 0 0 a b

, , , ,b 0 0 d a b 0 0

0 0 0 0 0 0 0 0

ª º ª º ª º ª º« » « » « » « »« » « » « » « »« » « » « » « »« » « » « » « »¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

0 0 0 0 0 0 0 0a 0 a 0 0 a 0 b

, , , ,0 b b 0 0 b a 0

0 0 0 0 0 0 0 0

ª º ª º ª º ª º« » « » « » « »« » « » « » « »« » « » « » « »« » « » « » « »¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

0 0 0 0 0 0 0 0

a b a b 0 a a 0

½ª º ª º ª º ª º°« » « » « » « »°« » « » « » « »

We see S⊥ is a subspace of V. Fu

complement of x =

a b

0 0

0 0

0 0

ª º« »

« »« »« »¬ ¼

and

0 0

0 0

0 0

b c

ª º« »

« »« »« »¬ ¼

= y are

0 0ª º« »

Page 140: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 140/344

main complement of x isa b

c de f 

« »« »

« »« »¬ ¼

and that of y

the main complement of x is not orthogonal with

=

0 0

0 00 0

b c

ª º« »« »« »« »¬ ¼

 

0 0

a bc d

e f 

ª º« »« »« »« »¬ ¼

=

0 0

0 00 0

be cf  

ª º« »« »« »« »¬ ¼

 ≠ 

0

00

0

ª « « « « ¬

Similarly the main complement of 

0 00 0

0 0

a b

ª º« »« »« »« »¬ ¼

,

is not orthogonal with

a b

0 0

0 0

ª º

« »« »« »« »

under natural prod

 We can define as in case of usual vector spaces d

transformation for matrix vector spaces. However it

less to define linear transformation in case of S-spvector spaces defined over the S-field. However ionly linear operators can be defined. The definitionetc in case of the former vector space is a matter of we see no difference with usual spaces. However

Page 141: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 141/344

we see no difference with usual spaces. Howeverlatter S-special strong vector spaces over a S-field we

only linear operators.We just illustrate this situation by an example.

 Example 4.46: Let

V =

1 2

3 4

5 6

7 8

a aa a

a a

a a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ R; 1 ≤ i ≤ 8}

be a S-special super vector space over the S-field.

F4×2 =

a b

c d

e f 

g h

-ª º°« »°« »®« »

°« »°¬ ¼¯

a, b, c, d, e, f, g, h ∈ Q}

It is easily verified η is a linear operator on V.

We can find kernel η =

a b a

c d cVe f e

g h g

- ª º §

° ¨ « »° ¨ « » ∈ η ® ¨ « »° ¨ « »° ¬ ¼ ©¯

Page 142: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 142/344

=

0 a

b 00 c

d 0

-ª º°« »°« »®« »°« »°¬ ¼¯

a, b, c, d ∈

is a subspace of V. Now interested reader can woperators on S-special strong vector spaces over t

Thus all matrix vector spaces are linear algnatural product. Now as in case of usual vectofor the case of matrix vector spaces also definlinear functional. But in case of S-strong specispaces we can not define only Smarandache line

matter of routine as it needs more modifications a

Now we have discussed some of propertiespaces. We now define n - row matrix vector spF.

DEFINITION 4.6:  Let 

V = {(a a ) | a = (x x ); x

 Example 4.47: Let V = {(a1, a2, a3, a4) | a j = (x1, xwhere xi  ∈ Q, 1 ≤ i ≤ 5 and 1 ≤ j ≤ 4} be a 5-structured vector space over Q.

We will just show how addition and scalar multperformed on V.

Suppose x = ((3, 0, 2, 4, 5), (0, 0, 0, 1, 2), (1, 1,

Page 143: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 143/344

pp (( , , , , ), ( , , , , ), ( , ,0, 1, 0, 5)) ∈ V and a = 7 then 7x = ((21, 0, 14, 28, 3

7, 14), (7, 7, 7, 21, 0), (14, 0, 7, 0, 35)) ∈ V.

Let y = ((4, 0, 1, 1, 1), (0, 1, 0, 1, 2), (1, 0, 1, 1, 0, 1)) ∈ V then x + y = ((7, 0, 3, 5, 6), (0, 1, 0, 2, 4)1), (4, 0, 1, 0, 6)) ∈ V. We see V is a row matrixvector space over Q.

 Example 4.48: Let

P = {(a1, a2, a3) | ai = (x1, x2, …, x15) x j ∈ Q1 ≤ i ≤ 3; 1 ≤ j ≤ 15}

a row matrix structured vector space over Q. Werow matrix structured subvector space as in case of uspace. On P we can always define the natural prodis always a row matrix structured linear algebranatural product ×n.

 Example 4.49: Let

V {( ) | ( ) Q 1 ≤ j ≤ 3

is a row matrix structured vector subspace of Vreader can see the difference between the subspac

Let V = {(x1, …, xn) | xi  ∈ R+

  ∪ {0}, 1semigroup under addition. V is a semivector semifield R+ ∪ {0} or Q+ ∪ {0} or Z+ ∪ {0}.

x-ª º

Page 144: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 144/344

Likewise M =

1

2

m

x

x

x

-ª º°« »°

« »®« »°« »°¬ ¼¯

# xi  ∈ Q+  ∪ {0}, 1

semigroup under addition. M is a semivector semifield Z+ ∪ {0} or Q+ ∪ {0}. M is not a s

over R

+

 ∪ {0}.

P =

11 12 1n

21 22 2n

m1 m 2 mn

a a ... a

a a ... a

a a ... a

-ª º°« »°« »®« »°« »

°¬ ¼¯

# # #aij ∈ Z+ ∪

1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a semivector space over the semifield Z+ ∪ {0}

T =

11 12 1n

21 22 2n

a a ... aa a ... a

-ª º°« »°« »®« »# # #

aij ∈ Q+ ∪ {0},

 

 Example 4.50: Let

V = {(x1, x2, x3, x4, x5, x6) | xi ∈ 3Z

+

 ∪ {0}; 1 ≤

be the semivector space over the semifield S = Z+ ∪ {

V is also a semilinear algebra over the semifield S

Page 145: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 145/344

g

 Example 4.51: LetV1 = {(x1, x2, x3, x4, x5, x6) where xi ∈ R+ ∪ {0}; 1

be the semivector space over the semifield S = Z+ ∪ {

It is interesting to compare V and V1 for V

dimensional where as V2 is of infinite dimension.

 Example 4.52: Let

V =

1

2

3

4

5

6

7

8

x

xx

x

x

x

xx

-ª º°« »

°« »°« »°« »°« »®« »°« »°« »°

« »°« »°« »¬ ¼¯

xi ∈ Z+ ∪ {0}, 1 ≤ i ≤ 8}

 Example 4.53: Let

M =

1

2

3

4

x

xx

x

x

-ª º

°« »°« »°« »°« »°« »®« »°« »

xi ∈ Q+ ∪ {0}, 1 ≤ i ≤

Page 146: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 146/344

5

6

7

8

x

x

x

x

« »°« »°

« »°« »°« »°« »¬ ¼¯

be a semivector space over the semifield S = Z+ 

dimension of M over S is infinite. Example 4.54: Let

M =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a aa a a a

-ª º°« »°

« »°« »°« »°« »°« »°« »®

« »°« »°« »°« »°« »°

ai ∈ Z+ ∪ {0},

 Example 4.55: Let

M =

1 2 3

4 5 6

7 8 9

a a a

a a aa a a

-ª º

°« »®« »°« »¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤ i ≤

be a semivector space over the semifield S = Z+ ∪ {0

Page 147: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 147/344

p {

Take

P =1 2 3

4 5

6

a a a

a 0 a

a 0 0

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤ i ≤

P is a semivector subspace of V over S = Z+ ∪ {0}.

 Example 4.56 : Let

M =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a

a a aa a a

a a a

a a a

a a a

-ª º°

« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼

¯

ai ∈ Q+ ∪ {0}, 1 ≤ i ≤

be a semivector space over the semifield S = Q+ ∪ {0

M2 =

1 2 3

4 5 6

0 0 0

a a a

a a a

0 0 0

0 0 0

0 0 0

-ª º°« »°« »°« »°« »®

« »°« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤ i

Page 148: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 148/344

is a semivector subspace of M over S = Q+ ∪ {0}

M3 =1 2 3

4 5 6

0 0 0

0 0 0

0 0 0

a a a

a a a0 0 0

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤ i

is a semivector subspace of M over S = Q+ ∪ {0}

M4 =

1 2 3

4 5 6

0 0 0

0 0 0

0 0 0

0 0 0

a a a

a a a

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤ i

is the semivector subspace of M over S.

Thus M is the direct sum of semivector subspover S.

 Example 4.57:Let

V =1 2 3 4 5

6 7 8 9 10

a a a a a

a a a a a

a a a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Z+ ∪ {0}, 1

Page 149: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 149/344

11 12 13 14 15a a a a a« »¬ ¼¯

be a semivector space over the semifield S = Z+

 ∪ {0

Consider

P1 =

1

2

3

a 0 0 0 0

a 0 0 0 0a 0 0 0 0

-ª º°« »

®« »°« »¬ ¼¯ai ∈ Z

+

 ∪ {0}, 1 ≤ i ≤

be a semivector subspace of V over S.

Let

P2 =4 1 2

3

a a a 0 0

0 0 a 0 0

0 0 0 0 0

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Z+ ∪ {0}, 1 ≤ i ≤

be a semivector subspace of V over S.

Consider

Further

P4 =

1 2

3 4

a 0 a 0 0

0 0 0 0 0a 0 a 0 0

-ª º°

« »®« »°« »¬ ¼¯

ai ∈ Z+ ∪ {0}, 1 ≤

is a semivector subspace of V over S.

-

Page 150: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 150/344

P5 =1 3 4

2

5

a 0 0 a a

0 0 0 a 0

0 a 0 0 0

-ª º

°« »®« »°« »¬ ¼¯

ai ∈ Z+ ∪ {0}, 1

is a semivector subspace of V over S.

P6 =1

5

2 3 4

a 0 0 0 0

0 0 0 0 a

0 0 a a a

-ª º°« »®« »

°« »¬ ¼¯

ai ∈ Z+ ∪ {0}, 1

is a semivector subspace of V over S.

We see Pi ∩ P j ≠ 0 0 0 0 00 0 0 0 0

0 0 0 0 0

ª º« »« »« »¬ ¼

if i ≠ j,

We see V ⊆ P1 + P2 + P3 + P4 + P5 + P6; thudirect sum of semivector subspaces.

Now we have seen examples of direct sudirect sum of semivector subspaces over the sem

 Example 4.58: Let

V = ii

i 0

a x∞

=

-®¯¦

ai = (x1, x2, x3, x4) | x j ∈ Z+ ∪ {0}; 1

be a semivector space of infinite dimension over S = Z

Clearly V is also a semilinear algebra over Snatural product ×

Page 151: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 151/344

natural product ×n.

 Example 4.59: Let

M = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

3

10

x

x

x

x

ª º« »« »« »

« »« »« »¬ ¼

#

where x j ∈ Z+ ∪ {0}; 1

be a semivector space of infinite dimension over S = Z

 Example 4.60: Let

P = ii

i 0

d x∞

=

-®¯¦ di =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

ª º« »« »« »« »¬ ¼

 

where ai ∈ Q+ ∪ {0}; 1 ≤ i ≤ 16}

Page 152: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 152/344

  Example 4.64: Let

V =

1

2

3

4

aa

a

a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

with ai ∈ Z+ ∪ {0}, 1 ≤ i ≤ 5}

Page 153: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 153/344

5a« »°¬ ¼¯

be a semivector space over the semifield S = Z+ ∪ {0

Consider

M1 = 1

2

00

a

a

0

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

with ai ∈ Z+ ∪ {0}, 1 ≤ i ≤ 2} ⊆

be a semivector subspace of V over S.

M2 =

1

2

3

a

a

0

0a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai ∈ Z+ ∪ {0}, 1 ≤ i ≤ 3} ⊆ V,

Consider P1 = {(0, 0, 0, a1, 0, 0, 0, 0, 0, a7) 1 ≤ i ≤ 7} ⊆ V be a semivector subspace of V ove

P2 = {(a1, a2, 0,0, …, 0) | a1, a2 ∈ Z

+

 ∪ {0}be a semivector subspace of V over S.

P3 = {(0, 0, a1, 0, a2, a3, 0,0,0,0) | ai ∈ Z+ ∪ {0},be a semivector subspace of V over S.

Page 154: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 154/344

P4 = {(0, 0, 0, 0, 0, 0, a1, a2, a3, 0) | ai ∈ Z+

∪ {0}is again a semivector subspace of V over S.

We see every vector in Pi is orthogonal wvector in P if i ≠ j; 1 ≤ i, j ≤ 4.

Further V = P1 + P2 + P3 + P4 and Pi ∩ P j = (

 Example 4.66: Let

M =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a aa a a

a a a

a a a

-ª º°« »

°« »°« »®« »°« »°« »°¬ ¼¯

ai ∈ Z+ ∪ {0}, 1 ≤

be a semivector space over the semifield S = Z+ ∪

Take

P2 =

1 2 3

4 5 6

7 8 9

a a a

0 0 0

a a a

0 0 0

a a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai ∈ Z+ ∪ {0}, 1 ≤ i ≤ 9}

is a semivector subspace of M over S = Z+ ∪ {0}.

Page 155: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 155/344

We see for every x ∈ P1 we have x ×n y = (0) foP2.

Thus M = M1 + M2 and P1 ∩ P2 = (0). We say tis orthogonal with the space P2 of M.

However if 

P3 =

1 2 3

0 0 0

0 0 0

0 0 0

0 0 0a a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai ∈ Z+ ∪ {0}, 1 ≤ i ≤ 3}

we see P1 and P3 are such that for every x ∈ P1 we ha(0) for every y ∈ P3; however we do not ccomplementary space of P1 as M ≠ P1 + P3.

 Example 4.67: Let

Consider

M1 =

1 2

3 4

a a 0 0

a a 0 00 0 0 0

0 0 0 0

-ª º°

« »°« »®« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤

M1 is a semivector subspace of P over S.

Page 156: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 156/344

M2 =

1 2

3 4

0 0 a a0 0 a a

0 0 0 0

0 0 0 0

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤

M2 is a semivector subspace of P over S.Consider

M3 =1 2

3 4

0 0 0 0

0 0 0 0

a a 0 0

a a 0 0

-ª º°« »°

« »®« »°« »°¬ ¼¯

ai ∈ Q+

 ∪ {0}, 1 ≤

M3 is a semivector subspace of P over S.

Now

0 0 0 0

0 0 0 0

-ª º°« »°

  Example 4.68: Let

V =

1 2 3

4 5 6

7 8 9

10 11 12

a a aa a a

a a a

a a a

a a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤ i ≤

Page 157: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 157/344

13 14 15a a a« »°¬ ¼¯be a semivector space over the semifield S = {0} ∪ Z

So we can define as in case of other spaces comcase of semivector space of polynomials wcoefficients also. We will only illustrate this situatiexamples.

 Example 4.69: Let

V = ii

i 0

a x∞

=

-®¯¦ ai = (x1, x2, x3, x4, x5, x6) |

x j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 6}

be a semivector space over the semifield S = Z+ ∪ {0

Consider

M = iia x

∞-®¯¦ ai = (0, 0, 0, x1, x2, x3)

Take

N = ii

i 0

a x∞

=

-®¯¦ ai = (x1, x2, x3, 0,0,0,

with x j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 3} ⊆ V

N is a semivector subspace of V over S. We seei f t M i th th l l t f N

Page 158: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 158/344

infact M is the orthogonal complement of N That is M⊥ = N and N⊥ = M and M ∩ N = (0).

 Example 4.70: Let

V = ii

i 0

a x∞

=

-®¯¦ ai =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

d d d

d d dd d d

d d d

d d d

ª º« »« »« »« »« »« »¬ ¼

; d j ∈ Z+ ∪ {

be a semivector space define over the semifield S

Now

W1 =i

ii 0 a x

=

-

®̄¦ xi =

1 2 3

4 5 6

x x x

0 0 0

x x x0 0 0

ª « «

« « « «

1W⊥ = ii

i 0

a x∞

=

¯¦ ai =

1 2 3

4 5 6

0 0 0

y y y

0 0 0

y y y

0 0 0

ª º« »« »« »

« »« »« »¬ ¼

 

where y j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 6} ⊆ V.

We see W⊥ + W V and W ∩ W⊥ (0)

Page 159: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 159/344

We see 1W + W1 = V and W1 ∩  1W = (0).

Suppose

M1 = ii

i 0

a x∞

=

-®¯¦ xi =

1 2 3

0 0 0

0 0 0

0 0 0

x x x

0 0 0

ª º« »« »« »

« »« »« »¬ ¼

with x j ∈ Z+ 

1 ≤ j ≤ 3} ⊆ V

be another semivector subspace of V; we see M1

orthogonal complement of W1 but however W1 ∩ M1

W1 + M1  ⊆ V. Hence we can have orthogonalsubspaces but they do not serve as the orthogonal cof W1.

 Example 4.71: Let

Consider

P1 =i

ii 0 a x

=

-

®̄¦ ai =

1 2

3

d d 0

d 0 00 0 0

ª º« »« »« »¬ ¼

with d j ∈

1 ≤ j ≤ 3} ⊆ V

i t b f V S W th

Page 160: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 160/344

a semivector subspace of V over S. We see the c

P1 is P2 = ii

i 0

a x∞

=

-®¯¦ ai =

1

2 3

4 5 6

0 0 d

0 d d

d d d

ª º« »« »« »¬ ¼

with d j

1 ≤ j ≤ 6} ⊆ V.

We see P1 + P2 = V and P1  ∩ P2 = {0}. orthogonal complement of P1 and vice versa.

However if 

N = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

3

0 0 d

0 0 d

0 0 d

ª º« »« »« »¬ ¼

 

with d j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 3} ⊆ V

For

T =i

ii 0 a x

=

-

®̄¦ ai = 1

2 3

0 0 0

0 d 0d d 0

ª º« »« »« »¬ ¼

 

with d j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 3} ⊆ V

is such that T is a semivector subspace of V and

Page 161: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 161/344

is such that T is a semivector subspace of V andorthogonal with P1 but is not the orthogonal compleas T + P1 ⊂ V. Thus we see there is a differencesemivector subspace orthogonal with a semivector suan orthogonal complement of a semivector subspace.

Now having seen examples of complement subspace and orthogonal complement of a semivectwe now proceed onto give one or two examples of pssum of semivector subspaces.

 Example 4.72: Let

V = ii

i 0

a x∞

=

-®¯¦ ai = (x1, x2, …, x8)

where x j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 8}

be a semivector space over the semifield S = Z+ ∪ {0

 Consider

W2 = iii 0

a x∞

=-®¯¦ ai = (x1, x2, x3, 0,0,0

with x j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 3} ⊆ V

another semivector subspace of V

Page 162: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 162/344

another semivector subspace of V.

Take

W3 = ii

i 0

a x∞

=

-®¯¦ ai = (0, 0, d1, 0, 0, d2,

with d j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 2} ⊆ V

another semivector subspace of V over S.

Finally let

W4 = ii

i 0

a x∞

=

-®¯¦ ai = (x1, 0, 0, x2, 0,0, x

with x j ∈ Z+ ∪ {0}; 1 ≤ j ≤ 4} ⊆ V

a semivector subspace of V over S. We see V ⊆

 Example 4.73: Let

V = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

3

4

5

6

x

x

xx

x

x

x

ª º« »« »

« »« »« »« »« »« »« »

where x j ∈ Q+ ∪ {0}; 1

Page 163: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 163/344

7

8

x

x« »« »¬ ¼be a semivector space over the semifield S = Q+ ∪ {0

Take

W1 = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

3

xx

x

0

0

ª º« »« »« »« »« »« »

« »« »¬ ¼

#

where x j ∈ Q+ ∪ {0}; 1 ≤

be a semivector subspace of V over S.

Consider0

0x

ª º

« »« »« »

W3 = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

3

0

0

0

0x

x

x

ª º« »« »« »

« »« »« »« »« »« »« »

where x j ∈ Q+ ∪ {0}

Page 164: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 164/344

0« »¬ ¼be a semivector subspace of V over S and

W4 = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

3

0

0

00

0

x

x

x

ª º« »« »« »« »« »« »« »« »« »« »« »¬ ¼

where x j ∈ Q+ ∪ {0};

be a semivector subspace of V over S, the semifie

We see Wi ∩ W j = (0); i ≠ j. But V ⊆ W1 +

1 ≤ i, j ≤ 4. Thus V is the pseudo direct sumsubspaces of V over S.

 be a semivector space over the semifield S = Z+ ∪ {0

Take

M1 = ii

i 0

a x∞

=

-®¯¦ ai =

1 2 3d d d 0

0 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« »« »¬ ¼

 

Page 165: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 165/344

where d1, d2, d3 ∈ Z+ ∪ {0}}⊆ V,

M2 = ii

i 0

a x∞

=

¯

¦ ai =

1 2

3

0 0 d d

d 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« »« »¬ ¼

 

where d1, d2, d3 ∈ Z+ ∪ {0}} ⊆ V,

M3 = ii

i 0

a x∞

=

-®¯¦ ai = 1 2 3

0 0 0 0

d d d 0

0 0 0 0

0 0 0 0

ª º

« »« »« »« »¬ ¼

 

where d1, d2, d3 ∈ Z+ ∪ {0}}⊆ V,

M5 = ii

i 0

a x∞

=

-®¯¦ ai =

1 2 3

0 0 0

0 0 0

d d d

0 0 0

ª « « «

« ¬

where d1, d2, d3 ∈ Z+ ∪ {0}}⊆ V

Page 166: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 166/344

M6 = ii

i 0

a x∞

=

-®¯¦ ai =

1 2

0 0 0 0

0 0 0 0

0 d d d

0 0 0 0

ª « « « « ¬

where d1, d2, d3 ∈ Z+ ∪ {0}} ⊆ V

M7 = ii

i 0

a x∞

=

¯¦ ai =

2 3

0 0 0 0

0 0 0 0

0 0 0 dd d 0 0

ª « «

« « ¬

where d1, d2, d3 ∈ Z+ ∪ {0}} ⊆ V

and

-

0 0 0 0

0 0 0 0

ª «

  Example 4.75: Let

V = ii

i 0

a x∞

=

-®¯¦ ai =

1 2 3 4 5

7 8 9 10 11

13 14 15 16 17

19 20 21 22 23

d d d d d

d d d d d

d d d d d

d d d d d

ª « « « « ¬

+

Page 167: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 167/344

where d j ∈ Z  ∪ {0}; 1 ≤ j ≤ 24}be a semivector space over the semifield S = Z+ ∪ {0

Consider

P1 =i

ii 0 a x

=

-

®̄¦ ai =

1 2 3 4d d d d 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ª «

« « « ¬

where d1 , d2, d3, d4 ∈ Z+ ∪ {0}} ⊆ V,

P2 = ii

i 0

a x∞

=

-®¯¦ ai =

1 2

4

0 0 0 d d dd 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ª « « « « ¬

with d1 , d2, d3, d4 ∈ Z+ ∪ {0}} ⊆ V,

P4 = ii

i 0

a x∞

=

-®¯¦ ai = 1 2

4

0 0 0 0 0

0 0 0 d d

d 0 0 0 0

0 0 0 0 0

ª « « «

« ¬

with d1 , d2, d3, d4 ∈ Z+ ∪ {0}} ⊆ V

Page 168: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 168/344

P5 = ii

i 0

a x∞

=

-®¯¦ ai =

1 2 3 4

0 0 0 00 0 0 0

d d d d

0 0 0 0

ª « « « « ¬

with d1 , d2, d3, d4 ∈ Z+

 ∪ {0}} ⊆ V

P6 = ii

i 0

a x∞

=

-®¯¦ ai =

1 2

4

0 0 0 0 0

0 0 0 0 0

0 0 0 d d

d 0 0 0 0

ª « « « « ¬

d1 , d2, d3, d4 ∈ Z+ ∪ {0}} ⊆ V,

P7 = ii

i 0

a x∞

=

-®¯¦ ai =

0 0 0 0

0 0 0 00 0 0 0

ª « « « «

P8 = ii

i 0

a x∞

=

-®¯¦ ai =

1 2 3 4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 d d d d d

ª « « «

« ¬

with d1 , d2, d3, d4, d5 ∈ Z+ ∪ {0}} ⊆ V

be semivector subspaces of V over S = Z+ ∪ {0}. W

Page 169: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 169/344

P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8; and Pi ∩ P j ≠ {≤ i, j ≤ 8. Thus V is only a pseudo direct sum ofsubspaces.

&KDSWHU)LYH

Page 170: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 170/344

1$785$/352'8&721683(50

In this chapter we define the new notion of in supermatrices. Products in supermatrices arfrom usual product on matrices and product on su

Throughout this chapter

SRF = {(a1 a2 a3 | a4 a5 | … | an-1 an) | ai ∈ Q o

collection of 1 × n super row matrices withpartition in it.

1a-ª º°« »

denotes the collection of all m × 1 super column msame type of partition on it.

Sm nF × (m≠n) =

11 12 1n

21 22 2n

m1 m2 mn

a a ... aa a ... a

a a ... a

-ª º°« »

°« »®« »°« »°« »¬ ¼¯

# # # #aij ∈ Q or

Page 171: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 171/344

1 ≤ i ≤ m; 1 ≤ j ≤ n}

denotes the collection of all m × n super matricestype of partition on it.

Sn nF × =

11 12 1n

21 22 2n

n1 n2 nn

a a ... aa a ... a

a a ... a

-ª º°« »

°« »®« »°« »°« »¬ ¼¯

# # # #aij ∈ Q or Z o

1 ≤ i, j ≤ n}

denotes the collection of n × n super matrices with spartition on it.

We will first illustrate this situation before we p

give any form of algebraic structure on them.

 Example 5.2: Let

SRF = {(x1 | x2 x3 | x4 x5 x6 | x7 x8 x9 x10 | x11 x

1 ≤ i ≤ 10}be again a collection of 1 × 10 super row mattype of partition on it.

 Example 5.3: Let

Page 172: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 172/344

P = {(x1 x2 | x3 x4 x5) where xi ∈ Q or R or Z

be again a collection of 1 × 5 super row super mtype.

Now we will see examples of column supsame type.

 Example 5.4: Let

SCF =

1

2

3

4

5

6

7

x

x

x

x

x

xx

-ª º

°« »°« »°« »°« »°®« »°« »°« »

°« »°« »¬ ¼°̄

xi ∈ R; 1 ≤ i ≤ 7}

 Example 5.5: Let

SCF =

1

2

3

4

5

6

7

x

x

xx

x

x

x

-ª º°« »°« »

°« »°« »°« »°« »®

« »°« »°« »°« »°« »

xi ∈ R; 1 ≤ i ≤ 9}

Page 173: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 173/344

8

9

x

x

« »°« »°« »°¬ ¼¯

be the 9 × 1 column super matrix of same type.

 Example 5.6: Let

SCF =

1

2

3

4

5

6

7

8

a

a

a

aa

a

a

a

-ª º°« »°« »°« »°« »

°« »®« »°« »°« »°« »°« »°« »¬ ¼¯

ai ∈ Q; 1 ≤ i ≤ 8}

be the 8 × 1 column super matrix of same type

 Example 5.7: Let

S3 5F × =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a

a a a a aa a a a a

-ª º°« »°®« »°« »

¬ ¼°̄

ai ∈ Q;

be the 3 × 5 super matrix of same type.

 Example 5.8: Let

Page 174: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 174/344

S7 4F × =

1 2 3 4

5 6 7 8

25 26 27 28

a a a a

a a a a

a a a a

-ª º°« »°« »®« »°« »°« »

¬ ¼¯

# # # #ai ∈ Z; 1

be a 7 × 4 super matrix of same type.

 Example 5.9: Let

S6 7F × =

1 2 3 4 5 6

7 8 9 10 11 12

31 32 33 34 35 36

a a a a a a

a a a a a a

a a a a a aa a a a a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

# # # # # # ai ∈

 Example 5.10: Let

S4 4F × = M =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a aa a a a

a a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ Q; 1 ≤

be a square super matrix of same type.

Page 175: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 175/344

 Example 5.11: Let

S4 4F × =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a aa a a a

-ª º°« »°« »®

« »°« »°¬ ¼¯

ai ∈ Q; 1 ≤ i ≤

be a square super matrix of same type.

 Example 5.12:Let

S4 4F × =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

-ª º°« »°« »®« »°« »

°¬ ¼¯

ai ∈ Q; 1 ≤ i ≤

 

Now we can define S S SC R m nF ,F ,F × (m ≠ n) and

matrix addition and natural product ×n.

Under usual matrix addition S S SC R m nF ,F ,F × (m

are abelian (commutative) groups.

How under natural product S S SC R m nF ,F ,F × (m ≠

semigroups with unit

Page 176: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 176/344

semigroups with unit.

Suppose

x = (x1 x2 x3 | x4 x5 | x6 x7) and y = (y1 y2 y3 |be two super row matrices of same type

x + y = (x1 + y1, x2 + y2, x3 + y3 | x4 + y4, x5 ++ y6 x7 + y7). Thus S

RF is closed und

Likewise if x =

1

2

3

4

5

6

7

x

xx

x

x

x

x

ª º

« »« »« »« »« »« »« »« »« »« »« »

and y =

1

2

3

4

5

6

7

y

yy

y

y

y

y

ª º

« »« »« »« »« »« »« »« »« »« »« »

are two

matrices of same type then x + y =

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

x y

x y

x y

x yx y

x y

x y

x y

+ª º« »+« »« »+

« »+« »« »+« »

+« »« »+« »

+« »¬ ¼

.

Page 177: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 177/344

¬ ¼

We see SCF is closed under ‘+’ and infact a group

Consider x =

1 2 3 4 5 6

8 9 10 11 12 13 1

15 16 17 18 19 20 2

22 23 24 25 26 27 2

29 30 31 32 33 34 3

a a a a a a aa a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

ª « « « « « «

¬

y =

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

ª º« « «

« « «

 Now x + y =

1 1 2 9 3 3 4 4 5 5

8 8 9 9 10 10 11 11 12 12

15 15 16 16 17 17 18 18 19 19

22 22 23 23 24 24 25 25 26 26

29 29 30 30 31 31

a b a b a b a b a b

a b a b a b a b a b

a b a b a b a b a b

a b a b a b a b a b

a b a b a b a

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + 32 32 33 33b a b

ª

« « « « « « + + ¬

Page 178: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 178/344

 is in S

5 7F × .

Thus addition can be performed on Sm nF × (m

Sm nF × is a group under addition.

Now we give examples of addition of squareSn nF × .

Let x =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a

a a a a aa a a a a

a a a a a

a a a a a

ª º« « « « « « ¬ ¼

1 2 3 4 5b b b b b

b b b b bª «

x+y =

1 1 2 2 3 3 4 4

6 6 7 7 8 8 9 9

11 11 12 12 13 13 14 14

16 16 17 17 18 18 19 19

21 21 22 22 23 23 24 24

a b a b a b a b

a b a b a b a b

a b a b a b a b

a b a b a b a ba b a b a b a b

+ + + + ª « + + + + « « + + + +

« + + + + « « + + + + ¬

∈  S5 5F × .

Infact S

5 5F

×is a group under addition.

Page 179: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 179/344

Now we proceed onto define natural prodS S SC R n mF ,F ,F × (n ≠ m) and S

n nF × .

Consider x = (a1 a2 a3 | a4 a5 | a6 a7 a8 a9) and y =

b5 | b6 b7 b8 b9) ∈  SRF .

x ×n y = (a1b1 a2b2 a3b3 | a4b4 a5b5 | a6b6 a7b7 a8b8

SRF under product is a semigroup infact S

RF has z

under natural product ×n.

Suppose x = (0 0 0 | 2 1 0 | 92 | 3) and y = (3 9 0 | 0) be in S

RF . x ×n y = (0 0 0| 0 0 0 | 0 0 | 0). Thushas zero divisors.

2

03

ª º« »« »« »

0

10

ª º« »« »« »

 

we see under the natural product x ×n y

Page 180: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 180/344

Take S3 5F × , S

3 5F × under natural product, t

divisors. Infact S3 5F × under natural product ×n is a

Consider x =

9 0 2 0 1

0 1 0 5 01 0 0 2 0

ª º« »

« »« »¬ ¼an

y =

0 7 0 8 0

9 0 2 0 7

0 7 9 0 2

ª º« »« »

« »¬ ¼

in S3 5F × ;

Consider x =

7 8 0 9 4 2

0 1 2 5 7 8

1 2 3 0 1 0

5 7 0 9 2 01 2 3 0 2 3

0 8 7 0 5 4

ª º« »« »« »

« »« »« »« »« »¬ ¼

and

0 0 9 0 0 0

7 0 0 0 0 0

ª º

« »« »

Page 181: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 181/344

y =

7 0 0 0 0 0

0 0 0 6 0 8

0 0 6 0 0 2

0 0 0 6 0 0

5 0 0 7 0 0

« »« »« »« »« »« »« »

« »¬ ¼

 ∈  S6 6F × .

x ×n y =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 0

ª º« »« »« »« »« »« »« »« »¬ ¼

 ∈  S6 6F × .

Thus Sn nF × is a semigroup under ×n and has zero

ideals. We will now give the following theorems thwhich are simple.

THEOREM 5.2: 

S

C F =

-ª º°« »

°« »°« »°« »°®« »°« »°« »°« »

°« »°¬ ¼¯

#

#

1

2

3

m 1

m

 x

 x x

 x

 x

| xi ∈ Q or R or C or Z; 1

Page 182: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 182/344

°« »°¬ ¼¯is the group under ‘+’.

THEOREM 5.3 : 

×

S

3 3F  (m ≠ n) =

-ª º°« »°« »®« »°« »°« »¬ ¼¯

# # #

11 12 1n

21 22 2n

m1 m2 mn

a a ... aa a ... a

a a ... a

| aij ∈ Q o

1 ≤  i ≤  m; 1 ≤  j ≤  n}

is a group under ‘+’.

THEOREM 5.4:  ( ×

S

n nF   , +) is a group.

THEOREM 5.5:  ( S

RF , × n) is a semigroup and ha

THEOREM 5.8: ( ×

S

n nF , × n) is a commutative semigro

 zero divisors units and ideals.

We will now give examples of zero divisors unitof  S

m nF × (m ≠ n),  S S SC R n mF ,F ,F × (n ≠ m) and S

n nF × .

 Example 5.14: Let

SRF = {(x1 | x2 x3 | x4) where xi ∈ Z; 1 ≤ i ≤ 4

b t ti i d t l d t

Page 183: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 183/344

be a commutative semigroup under natural product. is the unit of  S

RF under ×n.

P = {(x1 | x2 x3 | x4) | xi ∈ 3Z; 1 ≤ i ≤ 4} ⊆  SRF is

SRF .

Infact SRF has infinite number of ideals under

product ×n. Further SRF has zero divisors.

Consider x = (x1 | 0 0 | x2) ∈ SRF , y = (0 | y1 y2 |

such that x ×n y = (0 | 0 0 | 0). Also P = (x1 | 0 0 | x2

≤ i ≤ 2} ⊆  SRF is also an ideal.

 Example 5.15: LetS

RF = {(x1 | x2 x3 | x4 x5 x6) where xi ∈ Q; 1 ≤ ibe a semigroup under ×n.

T = {(a1 | a2 a3 | 0 0 0) | ai ∈ Z, 1 ≤ i ≤ 3}

only a subsemigroup of  SRF and is not an ideal o

has subsemigroups which are not ideals.

Take M = {(a | b c | 0 0 0) | a, b, c ∈ Q} ⊆ 

N = {(0 | 0 0 | a b c) | a, b, c ∈ Q} ⊆

M ×n N = (0 | 0 0 | 0 0 0) or M ∩ N = (0 | 0 0

SRF = M + N.

Page 184: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 184/344

R

Suppose M1 = {(a | b 0 | 0 0 0) | a, b ∈ Q} ⊆ 

N1 = {(0 | 0 0 | a b 0) | a, b ∈ Q} ⊆  SRF

M1 ×n N1 = {(0 | 0 0 | 0 0 0)|. Also M1 ∩ N1

0)} but N1 + M1 ≠⊂   S

RF ; and N1 + M1 ≠  SRF . W

special properties are enjoyed by M and N thatcase M1 and N1.

Now we give an example in case of ( SCF , ×n).

 Example 5.16: Let

1

2

aa

-ª º°« »°« »

 Consider

P =

1

2

3

4

a

aa

a

0

0

0

-ª º°« »

°« »°« »°« »°®« »°« »°« »°« »

°« »¬ ¼°̄

ai ∈ Q, 1 ≤ i ≤ 4} ⊆ SCF

Page 185: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 185/344

is a subsemigroup of  SCF and is not an ideal of  S

CF .

Take

M =

1

2

3

00

0

0

aa

a

-ª º°« »°« »°« »°« »°®« »°« »°« »°« »°« »

¬ ¼°̄

ai ∈ Z, 1 ≤ i ≤ 3} ⊆  SCF ,

M is a subsemigroup of  SCF .

Clearly if x ∈ P and y ∈ M then

Now take

S =

1

2

3

4

5

6

7

a

a

aa

a

a

a

-ª º°« »°« »

°« »°« »°®« »°« »°« »°« »°« »

¬ ¼°¯

ai ∈ Z, 1 ≤ i ≤ 7} ⊆  CF

Page 186: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 186/344

S is a subsemigroup of  SCF but is not an ideal of  F

Suppose

J =

1

2

3

4

a0

0

0

aa

a

-ª º°« »°« »°« »°« »°®« »°« »°« »°« »°« »

¬ ¼°̄

ai ∈ Q, 1 ≤ i ≤ 4} ⊆  F

J is a subsemigroup as well as an ideal of  SCF .

Now we give yet another example.

 Example 5.17: Let

SCF =

1

2

3

4

5

6

7

a

aa

a

a

a

a

-ª º°« »

°« »°« »°« »®« »°« »°« »°« »

°« »¬ ¼¯

ai ∈ Q, 1 ≤ i ≤ 7}

Page 187: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 187/344

be a semigroup under natural product ×n.

Take

P =

1

2

3

0

a0

a

0

a

0

-ª º

°« »°« »°« »°« »®« »°« »°« »°« »°« »¬ ¼¯

ai ∈ Q, 1 ≤ i ≤ 3} ⊆  SCF

is a subsemigroup as well as an ideal of  SCF .

Take

10a-ª º°« »

°« »

 Now take

T =

1

2

3

4

a

0a

0

a

0

a

-ª º°« »

°« »°« »°« »®« »°« »°« »°« »

°« »¬ ¼¯

ai ∈ Q, 1 ≤ i ≤ 4} ⊆ 

S

Page 188: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 188/344

T is a subsemigroup of  SCF also an ideal of 

every x ∈ P and for every y ∈ T, x ×n y = (0).

Now we give examples of zero divisors and

(n ≠ m).

 Example 5.18: Let

S5 3F × =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a

a a a a aa a a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q,

be a semigroup of 5 × 3 super matrices multiplication.

1 2 3 4 5ª º« »

0 1ª «

then x ×n y =

0 2 6 12 25

81 0 7 18 20

0 2 6 7 2

ª º« »« »« »¬ ¼

.

Now consider P =

a b c d e

0 0 0 0 0

0 0 0 0 0

-ª º°« »®« »°« »¬ ¼¯

a, b, c, d

S

5 3

; P is an ideal of  S

5 3

.

ª º

Page 189: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 189/344

We see for a =

0 0 0 0 0

x y a b z

0 0 c d m

ª º« »« »« »¬ ¼

 ∈ S5 3F × is suc

a ×n x =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ª º« »« »« »¬ ¼

for every x ∈ P

Take

M =

0 0 e f 0

a b 0 0 g

c d 0 0 h

-ª º°« »®« »°« »¬ ¼¯

a, b, c, d, e, f, g, h ∈ Z

clearly M is only a subring of S5 3F ; and is not an idea

  Example 5.19: Let

S7 3F × =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a aa a a

a a a

a a a

a a a

a a a

-ª º°« »°« »°« »°« »°®« »°« »

°« »°« »°« »

ai ∈ Q, 1 ≤

Page 190: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 190/344

19 20 21a a a°« »¬ ¼°̄

be a 7 × 3 super matrix semigroup under natural

Consider

P =1 2 3

4 5 6

0 0 0

0 0 0a a a

0 0 0

0 0 0

0 0 0

a a a

-ª º

°« »°« »°« »°« »°®« »°« »°« »

°« »°« »¬ ¼°̄

ai ∈ Z, 1 ≤ i ≤ 6} ⊆

Now take

x =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

0 0 0

a a a

a a a

a a a

0 0 0

ª º« »

« »« »« »« »« »« »« »« »¬ ¼

 ∈  S7 3F × .

Page 191: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 191/344

Clearly x ×n p = (0) for every p ∈ P.

Thus we have a collection of zero divisors in theunder natural product.

Now consider the set

T =

1 2 3

4 5 6

7 8 9

10 11 12

a a a

0 0 0a a a

a a a

0 0 0

0 0 0

a a a

-ª º°« »°« »°« »°« »°®« »°« »°« »°« »°« »¬ ¼°̄

ai ∈ Q, 1 ≤ i ≤ 12} ⊆ 

Further

m =

1 2 3

4 5 6

7 8 9

0 0 0

a a a

0 0 00 0 0

a a a

a a a

0 0 0

ª º« »« »

« »« »« »« »« »« »« »¬ ¼

 ∈  S7 3F ×  

is such that m ×n t = (0) for every t ∈ T. Thuszero divisors and has ideals

Page 192: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 192/344

zero divisors and has ideals.

 Example 5.20: Let

S3 7F × =

1 2 3 4 5 6

8 9 10 11 12 13

15 16 17 18 19 20

a a a a a aa a a a a a

a a a a a a

-ª °« ®« °« ¬ ¯

ai ∈ Q, 1 ≤ i ≤ 21}

be 3 × 7 matrix semigroup under natural product.

Take

P =

1 4 7

2 5 8

3 6 9

0 a 0 a 0 a 0

0 a 0 a 0 a 00 a 0 a 0 a 0

-ª º°« »

®« »°« »¬ ¼¯ai ∈ Q, 1 ≤

 Thus S

3 7F × has several zero divisors.

Take

Y =1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

a a a a a a a

a a a a a a a

a a a a a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q,

S

3 7F × , Y is only a subsemigroup and not an ideal of 

E l 5 21 L t

Page 193: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 193/344

 Example 5.21: Let

M =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

-ª º°« »

°« »®« »°« »°« »¬ ¼¯

ai ∈ Q, 1 ≤ i ≤

be a semigroup under natural product ×n.

Consider

P =

1 2

3 5

4 6

7 8

0 a a 0

a 0 0 a

a 0 0 a0 a a 0

-ª º°« »°« »®« »°« »°« »¬ ¼¯

ai ∈ Z, 1 ≤ i ≤ 8} ⊆  S4F

Let

X =

1 2

5 6

7 8

3 4

a 0 0 a

0 a a 0

0 a a 0

a 0 0 a

-ª º°« »

°« »®« »°« »°« »¬ ¼¯

ai ∈ Q, 1 ≤ i ≤ 8

X is an ideal of  S4 4F × . Further every x ∈ P and m

(0). Thus S4 4F × has zero divisors and subsemigrnot ideals.

Page 194: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 194/344

Now consider another example.

 Example 5.22: Let

S3 3F × =

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

-ª º°« »°®« »°« »

¬ ¼°̄

ai ∈ Z, 1 ≤ i

be a 3 × 3 super matrix semigroup under naturaimportant to observe S

3 3F × is not compatible wiproduct. Also no type of product on square supbe defined on elements in S

3 3F × .

Take

Take

M =

1 2 3

4 5 6

a a a

0 0 0a a a

-ª º°« »°

®« »°« »¬ ¼°̄

ai ∈ Z, 1 ≤ i ≤ 6} ⊆  F

M is a subsemigroup as well as an ideal of  S3 3F × .

every x ∈ X and m ∈ M, x ×n m = (0).

Now we describe the unit element of  S S SC R mF ,F ,F

Page 195: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 195/344

and Sn nF × .

In SCF ,

1

1

1

1

1

1

ª º« »« »« »« »« »

« »« »« »« »¬ ¼

#

acts as the supercolumn unit under

product ×n.

For SRF ; (1 1 | 1 1 1 | 1 … | 1 1) acts as the sup

l d h l d

ForS7 3F × ;

1 1 1

1 1 1

1 1 1

1 1 11 1 1

1 1 1

1 1 1

ª º« »« »« »« »« »« »« »« »« »¬ ¼

acts as the super 7 × 3

natural product ×n.

1 1 1 1ª º

Page 196: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 196/344

For S4 4F × ,

1 1 1 1

1 1 1 1

1 1 1 1

ª º« »« »« »« »

« »¬ ¼

acts as the 4 × 3 s

product.

Take x = (1 | 1 1 | 1 1 1 | 1 1) (7 | 3 2 | 5 7 -1= (7 | 3 2 | 5 7 -1 | 2 0).

Likewise for x =

3

2

1

0

31

ª º« »« »« »−« »« »

« »« »« »

,

1

1

1

1

11

ª º« »« »« »« »« »

« »« »« »

act as the multip

8 × 1 identity for,

3

2

1

03

1

7

0

2

ª º« »« »« »−« »

« »« »« »« »« »« »« »

« »¬ ¼

 ×n 

1

1

1

11

1

1

1

1

ª º« »« »« »« »

« »« »« »« »« »« »« »

« »¬ ¼

=

3

2

1

03

1

7

0

2

ª º« »« »« »−« »

« »« »« »« »« »« »« »

« »¬ ¼

.

Page 197: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 197/344

For x =

3 7 2 5 1 0 1 7 0 8

0 1 2 3 4 5 6 7 8 9

0 3 4 0 1 0 7 0 1

4 0 2 1 0 2 0 4 0 0

−ª « « « « « ¬

I =

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

ª º« »

« »« »« »« »¬ ¼

 

acts as the super identity under ×n. For x ×n I = I ×n x

Consider

 Now having seen how the units look like w

onto see how inverse of an element look under ×n.

Let

x =

7 3 1

1 2 9

8 5 1

4 7 2

−ª º« »« »« »« »¬ ¼

,

if t k it t i ith f Q f R d

Page 198: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 198/344

if x takes its entries either from Q or from R andis zero then alone inverse exists otherwise inversexist.

Take y =

1/ 7 1/ 3 11 1/ 2 1/ 9

1/8 1/5 1

1/ 4 1/ 7 1/ 2

−ª º« »« »« »« »¬ ¼

then we

x ×n y =

1 1 1

1 1 1

1 1 1

1 1 1

ª º« »« »« »« »¬ ¼

.

Let

x ×n y =

1 1 1

1 1 1

1 1 1

1 1 1

ª º« »« »« »« »

¬ ¼

.

Consider x = (1/8 | 7 5 | 3 2 4 –1) then the inver= (8 | 1/7 1/5 | 1/3 1/2 1/4 –1) we x ×n y = (1 | 1 1 | 1

Consider

8 1ª º« »

1/8 1ª º« »

Page 199: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 199/344

x =

3 5

1 1/ 7

8 4

1 1

3 2

« »« »« »−« »−« »

« »−« »

−« »¬ ¼

then y =

1/ 3 1/ 5

1 7

1/8 1/ 4

1 1

1/ 3 1/ 2

« »« »« »−« »−« »

« »−« »

−« »¬ ¼

 

is such that

x ×n y =

1 1

1 1

1 1

1 1

1 1

1 1

ª º

« »« »« »« »« »« »« »

« »¬ ¼

.

 

THEOREM 5.10:   Let S

C F (or  S

 RF or  ×

S

m nF (m ≠the super matrix semigroup under natural produ

 from Q or R. Every super matrix M in which n

takes 0 has inverse.

The proof of this theorem is also left as an

reader.

C id (1 1 | 1 1 1 | 1 1) SF {

Page 200: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 200/344

Consider x = (1 –1 | 1 1 –1 | –1 –1) ∈  SRF = {

a6 a7) | ai ∈ Z, 1 ≤ i ≤ 7}; clearly x = (1 –1 | 1 1 as its inverse that is x ×n x = (1 1 | 1 1 1 | 1 1).

Consider

y =

1

1

1

1

1

1

1

11

−ª º« »« »« »−

« »« »« »−« »« »« »−« »

« »« »¬ ¼

 ∈  SCF =

1

2

3

4

5

6

7

8

a

a

a

a

a

a

a

aa

-ª º°« »°« »°« »°« »°« »°« »®

« »°« »°« »°« »°« »°« »°¬ ¼¯

where ai ∈ Z; 1

Now

y2 =

1

1

11

1

1

1

11

ª º« »« »« »« »« »« »« »« »« »« »

« »« »¬ ¼

;

Page 201: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 201/344

all y whose entries are from Z \ {1, -1} does not hunder natural product.

Take

y =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

− −ª º« »− −« »« »− − −« »

−« »

« »− − −¬ ¼

 

we see y2 =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

ª º« »« »« »

« »« »« »

.

Consider y =

1

0

2

35

7

0

2

14

−ª º« »« »« »« »

« »« »−« »« »« »« »« »

« »« »« »¬ ¼

;

Page 202: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 202/344

¬ ¼

clearly y-1 does not exist.

Consider

x =7 1 0 2 3 4 0 3

0 2 1 0 7 0 1 0

− ª « ¬

Clearly x-1 does not exist.

Now we have seen inverse of a super matriproduct and the condition under which the inverse

Now we proceed onto discuss the operation ‘

or Sm nF × (m ≠ n) or S

n nF × , which is stated atheorems.

 THEOREM 5.14: ( ×

S

n nF , +) is an additive abelian gro

square matrices.

We can define subgroups. All subgroups arethese groups are abelian. We will just give some exam

 Example 5.23: LetSRF = {(a1 a2 a3 a4 | a5 a6 | a7 a8 | a9) | ai ∈ Q; 1

be an abelian group of super row matrices under addit

 Example 5.24: Let

Page 203: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 203/344

S2 3F × =

1 2 3

4 5 6

a a a

a a a

-ª º°« »®« »°¬ ¼¯

where ai ∈ Q; 1 ≤ i ≤

be an additive abelian group of 2 × 3 super matrices.

 Example 5.25: Let

S

CF =

1

2

3

4

5

6

7

a

aa

a

a

a

a

-ª º

°« »°« »°« »°« »°« »°« »°« »°

« »®« »°

« »°

ai ∈ Q, 1 ≤ i ≤ 11}

 Example 5.26: Let

S4 4F × =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

-ª º°« »°

« »®« »°« »°¬ ¼¯

ai ∈ R, 1 ≤

be an additive abelian group of 4 × 4 super matric

Now we can define {

S

RF , +, ×n} as the rinmatrices, ( S

CF , +, ×n) as the ring of super co

{ SF (m ≠ n) × +} is the ring of super m ×

Page 204: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 204/344

{ m nF × (m ≠ n), ×n, +} is the ring of super m ×

{ Sn nF × , ×n, +} be the ring of super n × n matrices.

We describe properties associated with them.

 Example 5.27: Let

SCF =

1

2

3

4

5

6

7

8

a

a

aa

a

a

a

a

-ª º°« »°« »°

« »°« »°« »®« »°« »°« »°« »°« »°« »¬ ¼¯

ai ∈ Q, 1 ≤ i ≤ 8}

 Example 5.29: Let

S3 4F × =

1 4 7 10

2 5 8 11

3 6 9 12

a a a a

a a a a

a a a a

-ª º°« »®

« »°« »¬ ¼¯

ai ∈ Q, 1 ≤ i ≤ 12,

be the ring of 3 × 4 supermatrices.

 Example 5.30: Let

1 2 3 4a a a a-ª º°« »°

Page 205: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 205/344

S3 4F × = 5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

°« »°« »®« »°« »°

¬ ¼¯

ai ∈ Z, 1 ≤ i ≤

be the ring of square supermatrices.

 Example 5.31: Let

S

9 3

=

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a aa a a

a a a

a a a

a a a

a a a

-ª º°« »°« »°« »°« »°« »°« »

®« »°« »°

ai ∈ Q, 1 ≤ i ≤ 27, +

 Example 5.32: Let

S3 10F × =

1 2 3 4 5 6 7

11 12 13 14 15 16 17

21 22 23 24 25 26 27

a a a a a a a a

a a a a a a a a

a a a a a a a a

-ª °« ®

« °« ¬ ¯

ai ∈ Q, 1 ≤ i ≤ 30, +, ×n}

be a ring of super row vectors.

All these rings are commutative have zero dunit. However we will give examples of ring of

Page 206: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 206/344

g p gwhich have no unit.

 Example 5.33: Let

SRF = {(x1 | x2 x3 x4 | x5 x6 | x7 x8 x9 x10) | x

1 ≤ i ≤ 10, +, ×n}

be the ring of super row matrices. Clearly SRF d

the unit (1 | 1 1 1 | 1 1 | 1 1 1 1).

 Example 5.34: Let

1

2

3

a

a

a

-ª º°« »

°« »°« »°« »

 be the ring of super column matrices. Clearly this super identity.

 Example 5.35: Let

S3 4F × =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ 10Z; 1 ≤ i ≤ 1

be a ring of 4 × 4 super matrices

Page 207: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 207/344

be a ring of 4 × 4 super matrices.

Clearly the super unit

1 1 1 1

1 1 1 11 1 1 1

1 1 1 1

ª º« »« »« »« »¬ ¼

 ∉ M.

 Example 5.36: Let S3 4F × =

1 2 3 4 5 6 7 8 9

13 14 15 16 17 18 19 20 21

25 26 27 28 29 30 31 32 33

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

-ª °« ®« °« ¬ ¯

xi ∈ 5Z; 1 ≤ i ≤ 36, +, ×}

 Example 5.37: Let

V =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a aa a a a

-ª º°« »°

« »°« »°« »°« »®« »°« »°« »°« »°« »°« »¬ ¼¯

a j ∈ 15Z; 1 ≤

Page 208: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 208/344

be a ring of super column vectors which has no un

Now we proceed onto study super matrix str∪ {0} or Q+ ∪ {0} or Z+ ∪ {0}.

Let RS+ = {(x1 x2 x3 | x4 … | xn-1 xn) | xi ∈ R+

{0} or Z+  ∪ {0}} denotes the collection ofmatrices of same type from R+ ∪ {0} or Q+ ∪ {

This notation will be used throughout this book.

CS+ =

1

2

3

a

a

a

-ª º°« »°« »°« »®

« »°« »°#

a j ∈ Z+ ∪ {0} or R+ ∪

 

m nS+ × (m ≠ n) =

11 12 1n

21 22 2n

m1 m2 mn

a a ... a

a a ... a

a a ... a

-ª º°« »°

« »®« »°« »°« »¬ ¼¯

# # # aij ∈ Q

or Z+ ∪ {0} or R+ ∪ {0}; 1 ≤ i ≤ m, 1 ≤ j

denotes the collection of all m × n super matrices owith entries from Q+ ∪ {0} or Z+ ∪ {0} or R+ ∪ {0}

Page 209: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 209/344

n nS+× =

11 12 1n

21 22 2n

n1 n2 nn

a a ... a

a a ... a

a a ... a

-ª º°« »°

« »®« »°« »°« »¬ ¼¯

# # # aij ∈ Z+ ∪ {0

or Q+ ∪ {0} or R+ ∪ {0}; 1 ≤ i, j ≤ n}

denotes the collection of all n × n super matrices owith entries from R+ ∪ {0} or Q+ ∪ {0} or Z+ ∪ {0}

We will first illustrate these situations by some ex

 Example 5.38: Let

 Example 5.39: Let RS+ =

1 2 3 4 5 6 7 8

10 11 12 13 14 15 16 1

19 20 21 22 23 25 25 2

a a a a a a a a

a a a a a a a aa a a a a a a a

-ª °«

®« °« ¬ ¯

ai ∈ Z+ ∪ {0}; 1 ≤ i ≤ 27}

be the set of all super row vectors of same tyfrom Z+ ∪ {0}.

Page 210: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 210/344

 Example 5.40: Let

CS+ =

1

2

3

4

5

6

7

8

9

10

11

aa

a

a

a

aa

a

a

a

a

-ª º°« »°« »°« »°« »°« »°« »°

« »°« »®« »°« »°« »°« »°« »°« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}; 1 ≤ i ≤

 Example 5.41: Let

CS+ =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

a a a

a a a

a a a

a a a

a a a

a a a

a a aa a a

a a a

-ª º°« »°

« »°« »°« »°« »°« »°« »°« »°®« »°« »°« »°« »°« »

ai ∈ R+ ∪ {0}; 1 ≤ i ≤

Page 211: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 211/344

28 29 30

31 32 33

34 35 36

a a a

a a a

a a a

°« »°« »°« »°« »

°« »¬ ¼°̄

denote the collection of all super column vectors owith entries from R+ ∪ {0}.

 Example 5.42: Let

3 4S+

× =1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

-ª º°« »°®« »

°« »¬ ¼°̄

ai ∈ R+ ∪ {0}; 1 ≤

 

 Example 5.43: Let

5 5S+

× =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a aa a a a a

a a a a a

a a a a a

a a a a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼

¯

ai ∈ R+ ∪ {

be the collection of 5 × 5 super matrices of entries from R+ ∪ {0}

Page 212: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 212/344

entries from R  ∪ {0}.

Now we proceed onto give all possible alge

on CF+ , RF+ or m nF+× (m ≠ n) and n nF+× .

Consider CF+ the collection of all super colu

same type with entries from Q+ ∪ {0} or R+ ∪ {

CS+ is a semigroup under ‘+’ usual addition. I

additive identity and ( CS+ , +) is a commutatLikewise RF+ or m nF+

× (m ≠ n) and n nF+

×

semigroups with respect to addition. Infact monoids.

We will illustrate this by some examples.

 Example 5.44: Let

CS+ =

1

2

3

4

5

6

7

8

a

a

a

a

a

a

aa

-ª º°« »°

« »°« »°« »°« »®« »°« »°« »°« »°« »°« »¬ ¼¯

ai ∈ Z+ ∪ {0}; 1 ≤ i ≤ 8}

be a commutative semigroup of super column m

Page 213: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 213/344

g p pentries from Z+ ∪ {0}.

 Example 5.45: Let

m nS+

× =

1 8 15 22

2 9 16 23

3 10 17 24

4 11 18 25

5 12 19 26

6 13 20 27

7 14 21 28

a a a a

a a a a

a a a aa a a a

a a a a

a a a a

a a a a

-ª º°« »°« »°

« »°« »°®« »°« »°« »°« »°« »

¬ ¼°̄

ai ∈ Q+ ∪ {0}; 1 ≤

 Example 5.46: Let

4 4S+

× =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

-ª º°« »°

« »®« »°« »°« »¬ ¼¯

ai ∈ R+

 ∪ {0}

be the semigroup of super 4 × 4 super matric

from R

+

 ∪ {0}. Example 5.47: Let

Page 214: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 214/344

3 9S+

× =1 4 7 10 13 16 19

2 5 8 11 14 17 20

3 6 9 12 15 18 21

a a a a a a a

a a a a a a a

a a a a a a a

-ª °« ®« °« ¬ ¯

ai ∈ Q+ ∪ {0}; 1 ≤ i ≤ 27}

be the semigroup of super row vector under

elements from Q+ ∪ {0}.

 Example 5.48: Let

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

-ª º°« »°« »

°« »°« »°

be the semigroup of super column vector under additio

Now we proceed onto define natural produ

RS+ , n nS+

× and m nS+

× (m ≠ n). Clearly CS+ , RS+ , n mS+

×

m mS+× are semigroups under the natural product ×n.

Depending on the set from which they take their will be semigroups with multiplicative identity or othe

We will illustrate this situation by some examples

 Example 5.49: Let RS+ = {(a1 | a2 a3 | a4 a5 a6 | a7 a8

a12) | ai ∈ Z+ ∪ {0}, 1 ≤ i ≤ 12} be a semigroup o

Page 215: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 215/344

a12) | ai ∈ Z  ∪ {0}, 1 ≤ i ≤ 12} be a semigroup omatrices under the natural product ×n.

 Example 5.50: Let

CS+ =

1

2

3

4

5

6

7

8

9

x

x

x

xx

x

x

x

x

-ª º°« »°« »°« »°

« »°« »°« »°« »°

« »®« »°« »°« »

°« »°« »°

xi ∈ Z+ ∪ {0}, 1 ≤ i ≤ 11}

 Example 5.51: Let

CS+ = 1 2 3 4 5 6 7 8

11 12 13 14 15 16 17 1

a a a a a a a a

a a a a a a a a

-ª °®«

¬ °̄

ai ∈ R+ ∪ {0}, 1 ≤ i ≤ 20}

be the semigroup of super row vector under the ×n. 2 10S+

× has identity elements, units and zero div

 Example 5.52: Let

1 2 3a a a-ª º°« »

Page 216: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 216/344

8 3S+

× =

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

a a a

a a a

a a aa a a

a a a

a a a

a a a

°« »°« »°« »

°« »°« »®« »°« »°« »°« »°« »°« »

¬ ¼¯

ai ∈ Z+ ∪ {0}, 1

be a semigroup of super column vectors under ×n.

1 1 1

1 1 1

ª º« »« »

  Example 5.53: Let

2 2S

+

× =

1 2

3 4

a a

a a

-ª º°

« »®« »°¬ ¼¯ ai ∈ Z

+

 ∪ {0}, 1 ≤ i ≤ 2

be the semigroup of super square matrices under natu

×n. Clearly1 1

1 1

ª º« »« »¬ ¼

is the identity element of  2 2S+

× ,

units, that is no element in 2 2S+

× has inverse. Furth

zero divisors. For take x =1 2

0 0

a a

ª º« »« »¬ ¼

in 2 2S+

×

Page 217: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 217/344

1 2a a

0 0

ª º« »

« »¬ ¼

and y3 =10 a

0 0

ª º« »

« »¬ ¼

are all zero divisors in S

 Example 5.54: Let

8 4S+

× =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

-ª º°« »

°« »°« »°« »°« »®« »°« »°« »°

« »°« »°« »

ai ∈ Q+ ∪ {0}, 1

8 4S+× is a semigroup with unit I =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 11 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

ª º« »« »« »« »

« »« »« »« »« »« »« »¬ ¼

an

divisors and inverses. Now we can find ideals, zero divisors and units in semigroups under the × These will be only illustrated by some examp

Page 218: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 218/344

×n. These will be only illustrated by some examp

 Example 5.55: Let

CS+ =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

a a a

a a a

a a a

a a aa a a

a a a

a a a

a a a

a a a

-ª º°« »°« »°« »°« »

°« »°« »°« »®« »°« »°« »°« »°

« »°« »°« »

ai ∈ Z+ ∪ {0}, 1

Take P =

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

0 0 0

0 0 00 0 0

0 0 0

a a a

a a a

0 0 00 0 0

-ª º°« »°« »°« »°« »

°« »°« »°« »®« »°« »°« »°« »°

« »°« »°« »°¬ ¼¯

ai ∈ Z+ ∪ {0}, 1 ≤ i ≤

Page 219: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 219/344

is an ideal of  CS+ under natural product ×n.

Now

M =

1 2 3

4 5 6

7 8 9

0 0 0

a a a

a a a

0 0 0

0 0 0

0 0 0

a a a

0 0 00 0 0

-ª º°« »°« »°« »

°« »°« »°« »°

« »®« »°« »°« »°

« »°« »°

ai ∈ Z+ ∪ {0}, 1 ≤ i ≤

Take x =

1 2 3

4 5 6

7 8 9

0 0 0

0 0 0

0 0 0

a a aa a a

a a a

0 0 0

0 0 0

0 0 00 0 0

ª º« »« »« »« »

« »« »« »« »« »« »« »

« »« »« »¬ ¼

and y =

1 2

4 5

7 8

10 11

a a

a a

a a

0 00 0

0 0

a a

0 0

0 00 0

ª « « « «

« « « « « « «

« « « ¬

0 0 0ª º

Page 220: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 220/344

we see x ×n y =

0 0 0

0 0 0

0 0 00 0 0

0 0 0

0 0 0

0 0 00 0 0

0 0 0

0 0 0

ª º« »« »« »« »« »« »« »« »« »

« »« »« »« »« »¬ ¼

. No element in CS+ h

 Example 5.56: Let RS+

=

be the semigroup of super row vectors under the natuproduct ×n.

Take I =

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

ª º« »« »« »« »¬ ¼

be the unit i

Consider X =

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

a 0 0 a a a 0 0

a 0 0 a a a 0 0

a 0 0 a a a 0 0

a 0 0 a a a 0 0

-ª º

°« °« ®« °« °¬ ¼¯

Page 221: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 221/344

¬ ¼¯

ai ∈ 5Z

+

 ∪ {0}, 1 ≤ i ≤ 16} ⊆  RS+

;

× is only a subsemigroup under ×n. X has no identiX is not an ideal of  RS+ . However X has zero divisors

Take

Y =

1 2 9 10

3 4 11 12

5 6 13 14

7 8 15 16

0 a a 0 0 0 a a

0 a a 0 0 0 a a

0 a a 0 0 0 a a

0 a a 0 0 0 a a

-ª º°« »°« »®« »°« »°

¬ ¼¯

ai ∈ Q+

1 i 16} S+

 Example 5.57: Let

4 4S+× =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a

a a a a a

a a a a aa a a a a

a a a a a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪

be the semigroup of super square matrices unproduct ×n.

1 1 1 1 1

1 1 1 1 1

ª º« »

Page 222: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 222/344

I =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

« »« »« »

« »« »« »¬ ¼

 

acts as the identity with respect to the natural pro

Consider

P =

1 2 3

4 5

6 7

8 10 11

9 12 13

a 0 0 a a

0 a a 0 0

0 a a 0 0

a 0 0 a a

a 0 0 a a

-ª º°« »°« »°« »®

« »°« »°« »

°¬ ¼¯

ai ∈ Z+ 

 Consider

M =

1 2

3 5 6

4 7 8

9 10 10 11

11 12 12 13

0 a a 0 0

a 0 0 a aa 0 0 a a

0 a a a a

0 a a a a

-ª º°

« »°« »°« »®« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪

1 ≤ i ≤ 12} ⊆  4 4S

+

× ;

M is an ideal of  4 4S+

× . Every element p in P is such th

(0) for every m ∈ M.

Page 223: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 223/344

Inview of this we have the following theorem.

THEOREM 5.15:  Let  C S + (or   RS + or  m nS +

× (m ≠ n) o

semigroup under the natural product. Every ideal

RS+ or  n mS+

× (m ≠ n) or n nS +

× ) is a subsemigroup of  S

or n mS +

× (m ≠  n) or  n nS+

× ) but however every subse

C S + (or  RS + or 

n mS +

× (m ≠ n) or n nS +

× ) need not in ge

ideal of C 

S + (or  R

S + or n m

S +

× (m ≠ n) or n m

S +

× ).

The proof is simple and direct hence left as an the reader.

and is not a semifield as it has zero divisors un×n.

Likewise RP+ = { RS+ , +, ×n} is a semiring

matrices which is not a semifield, infact a strisemiring.

m nP+

× (m ≠ n) = { m nS+

× (m ≠ n), +, ×n} is a str

semiring of m × n super matrices. Finally n nP+

×

is a strict commutative semiring of super square m

Now throughout this book CP+ will denote

super column matrices, RP+ will denote the sem

Page 224: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 224/344

row matrices, m nP+

× (m ≠ n) will denote the sem

super matrices and n nP+

× will denote the semsuper matrices.

Now having seen the notation we procexamples of them.

 Example 5.58: Let

1

2

3

4

a

a

a

a

-ª º°« »°« »°« »°

« »°« »°« »

be the semiring of super column matrices; CP+ is notas it has zero divisors.

Further CP+ has subsemirings for take

M =

1

2

3

4

a

a

a

a

0

0

0

-ª º°« »°« »°« »°« »°

« »°« »°« »®« »°« »°« »°

ai ∈ Z+ ∪ {0}, 1 ≤ i ≤ 6, +, ×n} ⊆

Page 225: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 225/344

5

6

a

a0

« »°« »°« »

°« »°« »°¬ ¼¯

is a subsemiring of  CP+ and is not an ideal of  CP+ .

However CP+ has ideals for consider

0

0

0

0

-ª º°« »°« »°« »°« »

°« »°« »°

is an ideal of  CP+ .

We see for every x ∈ M is such that

x ×n y =

00

0

0

0

0

0

0

ª º« »« »« »« »« »« »

« »« »« »« »« »« »

for every y ∈ N.

Page 226: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 226/344

0

0

« »« »

« »¬ ¼

Thus CP+ has infinitely many zero divisors so is n

Finally

1

11

1

1

1

1

ª º« »« »« »« »« »« »« »« »« »« »

acts as the identity with respe

has zero divisors for take x = (4 | 0 3 | 2 0 1 | 0 3 9 (0 | 7 0 | 0 8 0 | 9 0 0 | 1 0) in RP+ . Clearly x ×n y = (

0 | 0 0 0 | 0). So RP+ is a semiring which is not a sehas no identity.

 Example 5.60: Let

3 4P+ =

1 12 23

2 13 24

3 14 25

4 15 26

5 16 27

6 17 28

a a a

a a a

a a aa a a

a a a

a a a

-ª º°« »°« »

°« »°« »°« »°« »°« »°®« » ai ∈ Q+ ∪ {0} 1 ≤ i ≤ 3

Page 227: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 227/344

3 4P × 6 17 28

7 18 29

8 19 30

9 20 31

10 21 32

11 22 33

a a a

a a a

a a a

a a a

a a a

a a a

®« »°« »

°« »°« »°« »°« »°« »°« »

¬ ¼°̄

ai ∈ Q  ∪ {0}, 1 ≤ i ≤ 3

be the semiring of super column vectors. 3 1P+

×

divisors, units, ideals and subsemirings which are However 3 11P+

× is not a semifield.

 Example 5.61: Let 12 2P+

× =

semifield. Has ideals. Thus 12 2P+

× is a supsemiring.

 Example 5.62: Let

4 4P+

× =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

-ª º°« »°« »®« »°« »°« »¬ ¼¯

ai ∈ R+ ∪ {0}, 1

be the semiring of square super matrices. 4 4P+

× hunits, subsemirings which are not ideals and ideal

Page 228: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 228/344

Clearly

1 1 1 1

1 1 1 11 1 1 1

1 1 1 1

ª º

« »« »« »« »« »¬ ¼

= I is the unit of  4 4P+

× .

S =

1

2

3

4 5 6 7

a 0 0 0a 0 0 0

a 0 0 0

a a a a

-ª º°« »°« »®« »°« »°« »¬ ¼¯

ai ∈ R+ ∪ {0}, 1 ≤

is a subsemiring which is also an ideal of 4 4

P+

×

.

 L is a subsemiring of  4 4P+

× which is not an ideal of  P

for every x ∈ S and y ∈ L we have x ×n y = 0 for eve

 Example 5.63: Let

6 4

P+

×

=

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

a a a a

a a a a

a a a a

a a a aa a a a

a a a a

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}, 1 ≤ i

Page 229: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 229/344

be a semiring of 6 × 4 super matrices.

I =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

ª º« »« »« »« »

« »« »« »« »¬ ¼

is the unit of  6 4P+

× under natural

Further

a 0 0 a-ª º

 Now

T =

9 10

11 12

1 6

2 7

3 8

4 5

0 a a 0

0 a a 0a 0 0 a

a 0 0 a

a 0 0 a

0 a a 0

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai ∈ Q+ ∪

1 ≤ i ≤ 12, +, ×n} ⊆  6 4P+

×  

is a subsemiring as well as an ideal of  6 4P+

× . N

S h T h h

Page 230: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 230/344

every x ∈ S we have every y ∈ T are such tha

Thus 6 4P+

× is only a semiring and not a semifield.

Now we proceed onto define semifields of sup

Let RJ+ = {(x1 x2 | x3 x4 x5 | … | xn) | xi ∈ R

1 ≤ i ≤ n} ∪ {(0 0 | 0 0 0 | … | 0)}, ×, +n} be super row matrices.

For RJ+ has no zero divisors with respect tostrict commutative semiring.

Now

CJ+ =

1

2

3

4

n 1

n

m

m

mm

m

m−

-ª º°« »°« »

°« »°« »°« »®« »°« »°« »°« »

°« »°« »¬ ¼¯

#

#

mi ∈ Z+ (or Q+ or R+), 1 ≤ i ≤ n} ∪ 

is the semifield of super column matrices.

Page 231: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 231/344

n mJ+× (m ≠ n) =

11 12 1m

21 22 2m

n1 n2 nm

a a ... a

a a ... a

a a ... a

-ª º°« »°« »®« »°« »°« »¬ ¼¯

# # #aij ∈ R+ 

(or Z+ or Q+), 1 ≤ i ≤ n; 1 ≤ j ≤ m} ∪ 

0 0 ... 00 0 ... 0

0 0 ... 0

ª « « « « « ¬

# # #

the semifield of n × m super matrices.

∪ 

0 0 0 ... 0

0 0 0 ... 0

0 0 0 ... 0

ª º« »« »« »« »

« »¬ ¼

# # # #, ×n, +}

is the semifield of square super matrices.

Now we just give some examples of them.

 Example 5.64: Let

1

2

a

a

-ª º°« »°« »°« »

0

0

ª º« »« »« »

Page 232: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 232/344

CJ+ =

3

4

5

6

7

8

9

a

aa

a

a

a

a

°« »°« »°« »°« »®

« »°« »°« »°« »°« »

°« »°¬ ¼¯

ai ∈ Z+; 1 ≤ i ≤ 9} ∪ 

0

00

0

0

0

0

« »

« »« »« »« »« »« »« »« »« »¬ ¼

be the semifield of super column matrices. Thisubsemifields.

 Example 5.65: Let RJ+ = {(a1 a2 | a3 a4 a5 a6 a7 | a

 Example 5.66: Let

5 5J+× =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

a a a a a

a a a a a

a a a a aa a a a a

a a a a a

--ª º°°« »°°« »°°« »®®

« »°°« »°°« »°°¬ ¼¯¯

ai ∈ R+; 1 ≤

∪ 

0 0 0 0 00 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ª º« »« »« »« »« »« »

, ×n, +}

Page 233: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 233/344

0 0 0 0 0« »¬ ¼

is the semifield of super square matrices. This sesubsemifields.

 Example 5.67: Let

8 4J+

×=

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a

a a a a

a a a a

a a a a

a a a a

--ª º°°« »°°« »°°« »°°« »°°« »

®®« »°°« »

ai ∈ Q+; 1 ≤ i

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« »« »

« »« »« »« »« »« »« »¬ ¼

, ×n, +}

is a semifield of super 8 × 4 matrices. Thisubsemifields.

 Example 5.68: 

Page 234: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 234/344

9 3J+× =

1 2 3 4 5 6 7

10 11 12 13 14 15 16

19 20 21 22 23 24 25

a a a a a a aa a a a a a a

a a a a a a a

--ª °°« ®®« °°« ¬ ¯¯

ai ∈ R+; 1 ≤ i ≤ 27}

∪ 

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ª º« »« »« »¬ ¼

, +

is the semifield of super row vectors. This has su

 Example 5.69: Let

J+ =

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

a a

a a

a aa a

a a

a a

a a

a a

a a

a a

--ª º°°« »°°« »

°°« »°°« »°°« »°°« »°°« »®®

« »°°« »°°« »°°« »°°« »°°« »°°« »°°¬ ¼¯¯

ai ∈ Z+; 1 ≤ i ≤ 20} ∪ 

0 0

0 0

0 00 0

0 0

0 0

0 0

0 0

0 0

0 0

ª º« « « « « « « « «

« « « « « ¬ ¼

Page 235: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 235/344

be the semifield of super column vectors. Thsubsemifields but has subsemirings.

Chapter Six

SUPERMATRIX LINEAR ALGEBRA

Page 236: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 236/344

In this chapter we introduce the notion o

vector space (linear algebra) and super matrix, posuper matrix coefficients. Several properties e

are defined, described and discussed.

Let V = {(x1 x2 | x3 … | xm-1 xn) | xi Q (or R

the collection of super row vectors of same type

V is a vector space over Q (or R). Now we

natural product on V so that V is a super linear a

row matrices or linear algebras of super row m

row matrices linear algebras.

For x = (x1 x2 x3 | x4 | x5 x6) and y = (y1 y2 y3 | y

have x un y = (x1y1 x2y2 x3y3 | x4y4 | x5y5 x6y6).

 Example 6.2: Let

V = {(x1 x2 | x3 | x4 x5 x6 | x7 x8 | x9) | xi Q; 1 d

 be a linear algebra of super row matrices over the fi

natural product un.

Consider P1

= {(x1

x2

| 0 | 0 0 0 | 0 0 | 0) | x1, x

2P2 = {(0 0 | a1 | 0 0 0 | a2 a3 | 0) | a1, a2, a3 Q} V a

0 | 0 | a1 a2 a3 | 0 0 | a4) | ai Q; 1 d i d 4} subalgebras of V over the field Q.

Clearly V = P1 + P2 + P3 and Pi Pj = (0 0 | 0 |

Page 237: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 237/344

Clearly V = P1 + P2 + P3 and Pi P j = (0 0 | 0 |

0) if i z j; 1 d i, j d 3, so V is a direct sum of P1, P2 an

 Example 6.3: Let

V = {(x1 | x2 x3 | x4 x5 | x6 x7 x8 x9 x10) | xi Q;

 be a super row matrix linear algebra over the field Q

M1 = {(a1 | 0 | 0 | 0 0 | 0 0 0 a2 a3) | a1, a2, a3 Q}{(0 | a1 | 0 | 0 0 | a2 0 0 0 a3) | a1, a2, a3 Q} V, M

a1 | a2 0 | 0 0 0 0 a3) | a1, a2, a3 Q} V, M4 = {(0 |

0 a2 0 0 a3) | a1, a2, a3 Q} V and M5 = {(0 | 0 | 0

a2 a3) | a1, a2, a3 Q} V be a super sublinear alg

over Q.

Consider X = (x1 x2 x3 | 0 | 0 | 0 0 x4) where

4} V and Y = {(0 0 0 | x1 | x2 | x3 x4 0) | xi Q

  be two linear subalgebras of super row matri

every x X and y Y, x un y = (0 0 0 | 0 | 0 | 0

see XA = Y and YA = X. Further V = X+Y and X

0 | 0 | 0 0 0).

We have seen examples of super linear al

row matrices.

 Example 6.5: Let

1

2

a

a

-ª º°« »°« »°« »

Page 238: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 238/344

V =

3

4

5

6

7

8

a

a

a

a

a

a

« »°« »°« »°« »®« »°« »°« »°« »°« »

°« »¬ ¼¯

ai Q; 1 d i d 8}

 be a super column linear algebra over the field Q

V over Q is eight. Consider 

0ª º« » xª º« »

in V is such that

x un y =

0

0

0

0

0

0

0

0

ª º« »« »« »

« »« »« »« »« »« »« »« »¬ ¼

.

 Now we can find sublinear algebras of V.

 Example 6.6: Let

Page 239: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 239/344

V =

1

2

3

4

5

6

7

8

9

10

a

a

a

a

a

a

a

a

a

a

-ª º°« »°« »°« »°« »°« »°« »

°« »°« »®« »°« »°« »°« »°« »°

« »°« »°

ai Q; 1 d i d 11}

Consider 

M1 =

1

2

a

a

0

0

0

0

0

00

0

0

-ª º°« »°« »°« »

°« »°« »°« »°« »°

« »®« »°« »°

« »°« »°« »°« »°« »°« »°¬ ¼¯

a1 , a2 Q} V,

Page 240: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 240/344

M2 =

1

2

3

0

0

a

a

a0

0

0

0

0

-ª º°« »°« »°« »°« »°« »°« »°« »°

« »®« »°« »°« »°« »°« »°« »°« »°

a1, a2, a3 Q} V

M3 = 1

2

0

0

0

0

0

a

a

0

00

0

-ª º°« »°« »°« »°« »°

« »°« »°« »°

« »®« »°« »°« »°« »°« »°« »°« »°« »°¬ ¼¯

a1 , a2 Q} V

and

Page 241: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 241/344

and

M4 =

1

2

3

0

0

0

0

00

0

a

a

a

-ª º°« »°« »°« »°« »°« »°« »°« »°

« »®« »°« »°« »°« »°« »°

« »°« »°

ai Q; 1 d i d 4} V

Clearly Mi M j =

0

0

0

0

0

0

0

0

00

0

ª º« »« »« »« »« »« »« »« »« »« »« »« »

« »« »« »« »¬ ¼

if i z j, 1 d i, j d 4.

Also V = M1 + M2 + M3 + M4; thus V is a dire

Page 242: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 242/344

1 2 3 4;

subalgebras of V over Q.

We see for every x M1 every y M2 is su

(0). Likewise for every x M1, every z M3 is

= (0) and for every x M1, every t M4 is su

(0).

Hence we can say for every x M j every ele

 j) (i=1 or 2 or 3 or 4) is orthogonal with x; how

Mi for i z j, i = 1 or 2 or 3 or 4.

Thus we see 1mA

= (M2 + M3 + M4); similar

 Example 6.7: Let

P =

1

2

3

4

5

6

7

x

x

x

x

x

x

x

-ª º°« »°« »

°« »°« »°®« »°« »°« »°« »°« »

¬ ¼°̄

xi Q; 1 d i d 7}

  be a super linear algebra of super column matrice

natural product un.

Consider 

0-ª º

Page 243: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 243/344

M1 =

1

2

3

0

x

x

0

0

0x

-ª º°« »°« »°« »°« »°®« »°« »°« »

°« »°« »¬ ¼°̄

xi Q; 1 d i d 7} P

and

1x

0

0

-ª º°« »

°« »°« »

We see M1 M2 =

0

0

0

0

0

0

0

ª º« »« »« »« »« »« »« »« »« »¬ ¼

and P = M1 +

Further the complementary subspace of M1 iversa. We see every element in M1 is orthogo

element in M2 under orthogonal product.

 Example 6.8: Let

Page 244: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 244/344

V =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a aa a a a

a a a a

a a a a

-ª º°« »°« »®« »°« »°« »¬ ¼¯

ai Q; 1 d

 be a super linear algebra of square super matrice

 product un.

We see for 

1 2 30 a a aª º« »1x 0ª«

x un y =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« »« »« »¬ ¼

in V

take y1 =

1 2 30 a a a

0 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« »« »

« »¬ ¼

in V

we see x un y1 =

0 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« » .

Page 245: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 245/344

0 0 0 0« »« »¬ ¼

Thus we call y1 as a partial complement, only y is

total complement of x.

We can have more than one partial complement only one total complement.

 Example 6.9: Let

1 2 3 4 5a a a a a

a a a a a

-ª º

°« »°« »

Consider 

P1 =

1 3 4

2 5 6

a 0 0 a a

a 0 0 a a0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai Q; 1 d i d

P2 =

4

5

1 6

2 7

0 0 0 a 0

0 0 0 a 0

a 0 0 0 a

a 0 0 0 a

-ª º°« »°« »°« »®

« »°« »°« »

ai Q; 1 d

Page 246: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 246/344

3 8a 0 0 0 a« »

°¬ ¼¯

P3 =

1 2 5

3 4 6

0 a a a 0

0 a a a 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai Q; 1 d

5

6

0 0 0 a 0

0 0 0 a 0

-ª º°« »

°« »°« »

P5 =

4

5

1

2

3

0 0 0 a 0

0 0 0 a 0

0 0 a 0 0

0 0 a 0 0

0 0 a 0 0

-ª º°« »°« »°« »®

« »°

« »°« »°¬ ¼¯

ai Q; 1 d i d 5}

are super linear subalgebras of super square matrices

We see V P1 + P2 + P3 + P4 + P5 and

Pi P j =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ª º« »« »« »« »« »

;

Page 247: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 247/344

0 0 0 0 0

« »« »¬ ¼

if i z j; 1 d i, j d 5.

Thus V is only a pseudo direct sum of linear

and is not a direct sum of linear subalgebras.

 Example 6.10: Let

V =

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

-ª º°« »°®« »

°« »¬ ¼°̄

ai Q; 1 d i d 9}

and

P2 =

1 2 3

4

5

a a a

0 0 a

0 0 a

-ª º°« »°®« »°« »

¬ ¼°̄

ai Q; 1 d i d 5}

  be super linear subalgebras of V over Q. C

orthogonal with P1 is P2 and vice versa. No ocan be orthogonal (complement) of P1 in V.

Further V = P1 + P2 and P1 P2 =

0 0 0

0 0 0

0 0 0

ª

« « « ¬

 Example 6.11: Let

a a a-

Page 248: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 248/344

M =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

a a a

a a a

a a a

a a a

a a a

a a a

a a a

-ª º°« »

°« »°« »°« »°®« »°« »°« »°« »°« »

¬ ¼°̄

ai Q; 1 d i d

 be a super linear algebra of super column vecto

 product un. Consider 

P2 =

1 2 3

4 5 6

0 0 0

a a a

a a a

0 0 0

0 0 0

0 0 0

0 0 0

-ª º°« »°« »°« »

°« »°®« »°« »°« »°« »°« »

¬ ¼°̄

ai Q; 1 d i d 6} M

P3 =

0 0 0

0 0 0

0 0 0

0 0 0

-ª º°« »°« »°« »°« »°®« » ai Q; 1 d i d 6} M

Page 249: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 249/344

1 2 3

4 5 6

0 0 0

a a a

a a a

°« »°« »°« »°« »

¬ ¼°̄and

P4 =1 2 3

4 5 6

0 0 0

0 0 0

0 0 0

a a a

a a a

0 0 0

-ª º°« »°« »°« »°« »°®« »°« »°« »°« »°

ai Q; 1 d i d 6}

We see P1 + P2 + P3 + P4 = V and Pi P j =

0 0

0 0

0 0

0 0

0 0

0 0

0 0

ª « « « « « « « « « ¬

1 d i, j d 4.

 Example 6.12: Let

1 2 3 4

5 6 7 8

a a a a

a a a a

-ª º°« »°« »

Page 250: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 250/344

M =

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

« »°« »°« »°« »°« »®« »°« »°« »°

« »°« »°« »°¬ ¼¯

ai Q; 1 d

 be a super linear algebra of super column vectors

P1 =

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

0 0 0 0

a a a a

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

a a a a

-ª º°« »°« »°« »°« »°« »°« »®« »°« »°

« »°« »°« »°« »

°¬ ¼¯

ai Q; 1 d i d 12}

1 2 3 4

0 0 0 0

a a a a

0 0 0 0

-ª º°« »°« »°« »

Page 251: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 251/344

P2 =

5 6 7 8

9 10 11 12

a a a a

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0a a a a

°« »°« »°« »®« »°« »°

« »°« »°

« »°« »°¬ ¼¯

ai Q; 1 d i d 12}

0 0 0 0

0 0 0 0

0 0 0 0

-ª º°« »°« »°« »°

P4 =

1 2 3 4

5 6 7 8

9 10 11 12

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

a a a a

a a a a

a a a a

-ª º°« »°« »°« »°« »°« »°« »®« »°« »°« »°« »°« »°« »°¬ ¼¯

ai Q; 1 d i d

 be super linear subalgebras M over the field Q.

0 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« »

Page 252: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 252/344

Clearly Pi P j z0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

« »« »« »« »« »« »« »« »« »¬ ¼

; if i z j; 1

Further V P1 + P2 + P3 + P4; thus V is

direct sum of super linear subalgebras of super

over Q.

 be the super linear algebra of super row vectors over

Consider 

P1 =

1 5

2 6

3 7

4 8

a a 0 0 0 0 0 0 0 0

a a 0 0 0 0 0 0 0 0

a a 0 0 0 0 0 0 0 0

a a 0 0 0 0 0 0 0 0

-ª °« °« ®« °« °¬ ¯

ai Q; 1 d i d 8} M,

P2 =

1 5

2 6

3 7

0 0 a a 0 0 0 0 0 0

0 0 a a 0 0 0 0 0 0

0 0 a a 0 0 0 0 0 0

-ª °« °« ®« °«

Page 253: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 253/344

4 80 0 a a 0 0 0 0 0 0°¬ ¯

ai Q; 1 d i d 8} M,

P3 =

1 5

2 6

3 7

4 8

0 0 0 0 a a 0 0 0 0

0 0 0 0 a a 0 0 0 0

0 0 0 0 a a 0 0 0 0

0 0 0 0 a a 0 0 0 0

°« °« ®« °« °¬ ¯

ai Q; 1 d i d 8} M,

and

P5 =

1 2

4 5

7 8

10 11

0 0 0 0 0 0 0 0 a a

0 0 0 0 0 0 0 0 a a

0 0 0 0 0 0 0 0 a a0 0 0 0 0 0 0 0 a a

-ª °« °« ®

« °« °¬ ¯

1 d i d 12} M,

 be super linear subalgebras of V of super row vec

Clearly Pi P j =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

ª « « « «

Page 254: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 254/344

0 0 0 0 0 0 0¬ i z j and 1 d i, j d 5.

M = P1 + P2 + P3 + P4 + P5 so M is the dire

linear subalgebras of super row vectors over the

 Example 6.14: Let V =

1 2 3 4 5 6 7 8 9

11 12 13 14 15 16 17 18 19

a a a a a a a a a

a a a a a a a a a

-ª °®«

¬ °̄

1 d i d 20}

H2 =2 3

1 4

0 a a 0 0 0 0 0 0

0 a a 0 0 0 0 0 0

- ½ª º° °® ¾« »° °¬ ¼¯ ¿

H3 =

1 3

2 4

0 a 0 a 0 0 0 0 0

0 a 0 a 0 0 0 0 0

- ½ª º° °

® ¾« »° °¬ ¼¯ ¿

H4 =1 3

2 4

0 a 0 0 a 0 0 0 0

0 a 0 0 a 0 0 0 0

- ½ª º° °® ¾« »° °¬ ¼¯ ¿

H5 =1 3

2 4

0 a 0 0 0 a 0 0 0

0 a 0 0 0 a 0 0 0

- ½ª º° °® ¾« »° °¬ ¼¯ ¿

H6 =1 3

2 4

0 a 0 0 0 0 a 0 0

0 a 0 0 0 0 a 0 0

- ½ª º° °® ¾« »° °¬ ¼¯ ¿

Page 255: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 255/344

H7 =1 3

2 4

0 a 0 0 0 0 0 a 0

0 a 0 0 0 0 0 a 0

- ½ª º° °® ¾« »° °¬ ¼¯ ¿

H8 = 1 3

2 4

0 a 0 0 0 0 0 0 a0 a 0 0 0 0 0 0 a

-ª º°®« »¬ ¼°̄

ai Q; 1 d

are super linear subalgebras of super row vect

field Q.

Clearly

 Example 6.15: Let

V =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

a a a a a

a a a a a

a a a a aa a a a a

a a a a a

a a a a a

-ª º°« »°« »

°« »°« »®« »°« »°« »°« »°¬ ¼¯

ai Q;

 be a super linear algebra of 6 u 5 super matrices

under the natural product un.

Consider 

1 0 0 0 0-ª º°

Page 256: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 256/344

M =

1

2

3 4

a 0 0 0 0a 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 a a 0 0

-ª º°« »°« »°« »°

« »®« »°« »°

« »°« »°¬ ¼¯

ai Q; 1 d i

1

0 0 0 0 0

0 0 0 0 0

a 0 0 0 0

-ª º°« »°« »

°« »°« »® Q i

M3 =

1 2

3 4

0 a a 0 0

0 a a 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai Q; 1 d i d 4}

M4 =1 2

3 4

5 6

0 0 0 0 0

0 0 0 0 00 a a 0 0

0 a a 0 0

0 a a 0 0

0 0 0 0 0

-ª º°

« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai Q; 1 d i d 4}

Page 257: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 257/344

¬ ¼¯

M5 =

1 2

3 4

0 0 0 a a

0 0 0 a a

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai Q; 1 d i d 4}

0 0 0 0 0

0 0 0 0 0

-ª º°« »°« »

M7 =1 2

3 4

5 6

0 0 0 0 0

0 0 0 0 0

0 0 0 a a

0 0 0 a a

0 0 0 a a

0 0 0 0 0

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai Q; 1 d i

 be super linear subalgebra of super matrices over

natural product un.

Clearly Mi M j =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ª º« »« »« »« »« »

« »« »

if i z j

Page 258: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 258/344

0 0 0 0 00 0 0 0 0

« »« »« »¬ ¼

We see V = M1 + M2 + M3 + M4 + M5 + M6

is the direct sum of sublinear algebras of V.

  Now we proceed onto give examtransformation and linear operators on super li

super matrices with natural product un.

 Example 6.16: Let

1 2 3a a a-ª º°« »

Let

P =

1

2

3

4

5

6

7

8

9

a

a

a

a

a

a

a

a

a

-ª º°« »°« »°« »°

« »°« »°« »®« »°« »°« »°« »°« »°« »°¬ ¼¯

ai Q; 1 d i d 9}

 be a super linear algebra of super column matrices ov

Q under the natural product un.

Define : M P by

Page 259: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 259/344

Define K : M o P by

K1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

§ ·ª º¨ ¸« »¨ ¸« »¨ ¸« »¬ ¼© ¹

=

1

2

3

4

5

6

7

8

9

a

a

a

a

a

a

a

a

a

ª º« »« »« »« »

« »« »« »« »« »« »« »« »¬ ¼

;

 Example 6.17: Let

M =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a

a a a

a a aa a a

a a a

a a a

-ª º°« »°« »

°« »°« »®« »°« »°« »°« »°¬ ¼¯

ai Q; 1 d i d

  be a super linear algebra of super matrices ounder the natural product un.

Let

P =1 3 5 6 7 11 13 15

2 4 8 9 10 12 14 16

a a a a a a a a

a a a a a a a a

-ª °®«

¬°̄

Page 260: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 260/344

a a a a a a a a¬ °̄1 d i d 18}

  be a super linear algebra of super matrices o

under natural product un.

Define K : M o P by

1 2 3

4 5 6

a a a

a a a

a a a

ª º« »« »« »

K is a linear transformation from M to P.

We now proceed onto define linear operator of

algebras of super matrices over the field F under natu

un.

 Example 6.18: Let

V =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a

a a a a

a a a aa a a a

a a a a

-ª º°« »°« »°

« »®« »°« »°« »°¬ ¼¯

ai Q; 1 d i d 2

  be a super linear algebra of super matrices under

product un

Page 261: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 261/344

 product un.

Consider K : V o V defined by

K (

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

a a a a

a a a aa a a a

a a a a

a a a a

ª º« »« »« »« »« »« »¬ ¼

) =

1 2

3 4

5 6

7 8

0 a a 0

0 a a 00 a a 0

0 a a 0

0 0 0 0

§ ª ¨ « ¨ « ¨ « ¨ « ¨ « ¨ «

¬ ©

i il ifi d t b li t V

P is also a linear operator on V.

 Example 6.19: Let

V =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

a a a

a a a

a a a

a a a

a a a

a a aa a a

-ª º°« »°« »°« »°« »°®« »°« »°« »

°« »°« »¬ ¼°̄

ai Q; 1 d i d

 be a super linear algebra of super column vecto

the field Q, under the natural product un.

fi

Page 262: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 262/344

Define K : V o V

 by K (

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

a a a

a a a

a a aa a a

a a a

a a a

a a a

ª º« »« »

« »« »« »« »« »« »« »¬ ¼

) =

1 2

4 5

7 8

10 11

a a

0 0

a a0 0

a a

0 0

a a

ª « «

« « « « « « « ¬

 Example 6.21: Let

M =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

-ª º°« »

°« »°« »°« »°®« »°« »°« »°« »°

« »¬ ¼°̄

ai Q; 1 d i d

  be a super linear algebra of super matrices over

under the natural product un.

Define f : M o Q by

Page 263: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 263/344

o Q y

f (

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

a a a a

a a a a

a a a a

a a a aa a a a

a a a a

a a a a

ª º« »« »« »« »

« »« »« »« »« »¬ ¼

) = a1 + 3a3 + 9a2

f is a linear f nctional on M

from Q or Z or R}. S

R F [x] is defined as the su

coefficient polynomials or polynomials in the

row super matrix coefficients.

We will illustrate this situation by an exampl

 Example 6.22: Let

S

R F [x] = i

ia x-®¯¦ ai (x1 | x2 x3 | x4 x5 x6

= {all super row matrices of the type (x1 | x2 xwith x j R, 1 d j d 7}} be the polynomials

matrix coefficients.

 Example 6.23: Let

S

R F [x] =i

ia x

-

®̄¦ ai (x1 | x2 | x3 | x4)

Page 264: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 264/344

[ ] ®̄¦ ( | | | )

{all super row matrices of the form (x1 | x2 | x3 |

1 d j d 4}} be the super row matrix coefficient po

We will illustrate how a polynomial looks and operations on them with super row matrix co

Let p(x) = (3 | 2 | –7 | 2 0) + (7 | –4 | 0 | 3 1

 –7 –9)x5

be a super row matrix coefficient polyndegree of p(x) is 5.

Now we can add two polynomial with super row

and only if all the coefficients are from the same ty

row matrices.

Clearly we cannot add p(x) with q(x). However

can be added and q(x) + 0(x) = q(x).

We will illustrate addition of two super matrix po

Let m(x) = (1 1 | 0 2 3| 7 5 0 1) + (0 1 | 2 0 1 | 0 0

x | 1 0 0 | 8 0 0 5)x2

+ (0 0 | 0 0 1 | 20 1 2)x3

and n(x)

2 | 3 1 2 0) + (6 2 | 0 0 0 | 2 1 0 0)x + (0 1 | 1 0 1| 0 24 | 4 2 –1 | 0 7 2 1)x3 + (1 2 | 0 1 4 | 3 0 1 4)x4 be tw

matrix coefficient polynomials in the variable x.

m(x) + (n(x)) = (1 2 | 2 4 5 | 1 0 6 2 1) + (6 3 | 2

1)x + (0 9 | 2 0 1 | 8 2 0 6)x2 + (0 4 | 4 2 0 | 2 7 3 3)x3

4 | 3 0 1 4)x4

. Thus we see addition of two super coefficient polynomials is again a polynomial with

Page 265: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 265/344

| ) pcoefficient polynomials is again a polynomial with

matrices coefficients. Infact the set of super

coefficient polynomials under addition is a group. Fu

commutative group under addition.

We will give examples of such groups.

 Example 6.24: Let S

R F = i

i

i 0

a xf

-®¯¦ ai = (x1 | x2 | x3 x

{to the collection of all super row matrices of sam

t i f R} +} b b li f i fi it

  Now we proceed onto give examples o

matrix coefficient polynomials.

 p(x) =

3

2

0

1

1

4

5

ª º

« »« »« »« »« »« »« »

« »« »¬ ¼

+

0

1

2

0

1

4

0

ª º

« »« »« »« »« »« »« »

« »« »¬ ¼

x +

7

0

8

5

0

1

8

ª º

« »« »« »« »« »« »« »

« »« »¬ ¼

x3 +

8

0

7

0

0

1

9

ª º

« »« »« »« »« »« »« »

« »« »¬ ¼

x4 +

is a super column matrix coefficient polynomial

3

1

ª º« »« »

0

2

ª º« »« »

9

2

ª º« »« »

1

2

ª « «

Page 266: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 266/344

Consider q(x) =

1

1

1

8

« »« »« »« »« »« »¬ ¼

+

2

3

4

0

« »« »« »« »« »« »¬ ¼

x +

2

3

1

8

« »« »« »« »« »« »¬ ¼

x2 +

2

3

4

0

«« « « « « ¬

is a column matrix coefficient polynomial of

variable x.

  Now we show how addition of column m

  polynomials are carried out in case of same

t i F if th l t i

Let p(x) =

3

2

1

0

1

5

ª º« »« »« »« »« »

« »« »« »¬ ¼

+

0

1

2

3

4

7

ª º« »« »« »« »« »

« »« »« »¬ ¼

x +

2

0

1

0

0

8

ª º« »« »« »« »« »

« »« »« »¬ ¼

x2 +

0

1

2

0

7

9

ª º« »« »« »« »« »

« »« »« »¬ ¼

x3 +

9

2

0

1

1

8

ª « « « « «

« « « ¬

q(x) =

9

0

1

2

5

0

ª º« »

« »« »« »« »« »« »« »¬ ¼

+

8

7

0

0

7

6

ª º« »

« »« »« »« »« »« »« »¬ ¼

x +

1

2

2

9

0

7

ª º« »

« »« »« »« »« »« »« »¬ ¼

x3 +

9

0

1

2

7

8

ª º« »

« »« »« »« »« »« »« »¬ ¼

x5.

ª º ª º § ª º ·ª º

Page 267: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 267/344

 p(x) + q(x) =

3

2

1

0

1

5

ª º« »« »« »« »« »« »« »« »¬ ¼

+

9

0

1

2

5

0

ª º« »« »« »« »« »« »« »« »¬ ¼

+

0

1

2

3

4

7

§ ª º¨ « »¨ « »¨ « »¨ « »¨ « »¨ « »¨ « »¨ « »¬ ¼© 

+

8

7

0

0

7

6

 ·ª º¸« »¸« »¸« »¸« »¸« »¸« » ¸« »¸« »¬ ¼

x

2

0

§ ·ª º¨ ¸« »¨ ¸« »

0

1

§ ª º¨ « »¨ « »

1

2

 ·ª º¸« »¸« »

9

2

§ ª º¨ « »¨ « »

9

0

 ·ª º« »« »

=

12

2

2

2

6

5

ª º« »« »« »« »« »« »« »« »¬ ¼

+

8

8

2

3

12

13

ª º« »« »« »« »« »« »« »« »¬ ¼

x +

2

0

1

0

0

8

ª º« »« »« »« »« »« »« »« »¬ ¼

x2 +

1

3

4

9

7

16

ª º« »« »« »« »« »« »« »« »¬ ¼

x3 +

This is the way addition of super column ma polynomials are added. Thus addition is perfor

collection of all super column matrix coefficie

with same type of super column matrix coefficiengroup under addition.

We shall illustrate this situation by some sim

Page 268: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 268/344

 Example 6.26: Let S

CF [x] =

1

2

3i

4

i 0

5

6

7

a

a

aa x

a

a

a

f

- ª º° « »° « »

° « »° « »® « »° « »° « »° « »° « »

¬ ¼¯

¦ with

a

a

aa

a

a

a

ª « «

« « « « « « « ¬

 Example 6.27: Let S

CF [x] = i

i

i 0

a xf

-®¯¦ ai =

1

2

3

4

5

6

x

x

x

x

x

x

ª º« »« »« »« »« »

« »« »« »¬ ¼

M

with x j Z, 1 d j d 6}, +} be an abelian group under

 Example 6.28: Let

S

3 5F u = i

i

i 0

a xf

-®¯¦ ai =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

d d d d d

d d d d d

d d d d d

ª º« »« »« »¬ ¼

Page 269: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 269/344

{all 3 u 5 matrices with entries from Z, d j Z; 1 dan abelian group under addition.

 Example 6.29: Let S

4 4F u = i

i

i 0

a xf

-®¯¦ ai =

1 2

5 6

9 10

13 14

x x

x xx x

x x

ª « « « « ¬

with x j Q; 1 d j d 16} be an abelian group und

Cl l SF h b

is a subgroup of G under addition.

  Now we proceed onto give the semigroup

the natural product un.

Let S

CF = i

i

i 0

a xf

-®¯¦ ai =

1

2

20

xx

x

ª º« »« »« »« »« »¬ ¼

with x j Z,

 be the collection of super column matrix coefficiS

CF is a semigroup under the natural product un.

commutative semigroup.

Suppose

1aª º 1 bª º 1cª º

Page 270: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 270/344

 p(x) =

1

2

20

a

a

ª º« »« »« »« »« »¬ ¼

+

1

2

20

 b

 b

ª º« »« »« »« »« »¬ ¼

x +

1

2

20

c

c

ª º« »« »« »« »« »¬ ¼

x3 a

q(x) =

1

2

20

d

d

d

ª º« »« »« »« »

« »¬ ¼

+

1

2

20

e

e

e

ª º« »« »« »« »

« »¬ ¼

x

2+

1

2

20

m

m

m

ª º« »« »« »« »

« »¬ ¼

x

 p(x) un q(x) =

1 1

2 2

20 20

a d

a d

a d

ª º« »« »« »« »« »¬ ¼

+

1 1

2 2

20 20

 b d

 b d

 b d

ª º« »« »« »« »« »¬ ¼

x +

1 1

2 2

20 20

a e

a e

a e

ª º« »« »« »« »« »¬ ¼

x2 +

+

1 1

2 2

20 20

c d

c d

c d

ª º« »« »« »« »

« »¬ ¼

x3 +

1 1

2 2

20 20

a m

a m

a m

ª º« »« »« »« »

« »¬ ¼

x4 +

1 1

2 2

20 20

c e

c e

c e

ª º« »« »« »« »

« »¬ ¼

x5 +

ª««««

«¬

+

1 1

2 2

20 20

 b m

 b m

 b m

ª º« »« »« »« »« »¬ ¼

x5

Page 271: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 271/344

=

1 1

2 2

20 20

a d

a d

a d

ª º« »« »« »

« »« »¬ ¼

+

1 1

2 2

20 20

 b d

 b d

 b d

ª º« »« »« »

« »« »¬ ¼

x +

1 1

2 2

20 20

a e

a e

a e

ª º« »« »« »

« »« »¬ ¼

x2 +

1 1

2 2

m m

 b e

 b e

 b e

ª « « «

« « ¬

+

1 1

2 2

a m

a m

ª º« »« »

« »« »

x4 +

1 1 1 1

2 2 2 2

c e b m

c e b m

ª º« »« »

« »« »

x5 +

1 1

2 2

c m

c m

ª º« »« »

« »« »

x7

 Example 6.30: Let

S

3 6F u = i

i

i 0

a xf

-®¯¦ ai =

1 2 3 4 5

7 8 9 10 11

13 14 15 16 17

x x x x x

x x x x x

x x x x x

ª « « « ¬ 1 d j d 18}

 be a super 3 u 6 matrix coefficient polynomial s

the natural product un.

 Example 6.31: Let

S

3 3F u = i

i

i 0

a xf

-®¯¦ ai =

1 2 3

4 5 6

7 8 9

x x x

x x x

x x x

ª º« »« »« »¬ ¼

where x j =

be a suepr square matrix coefficient semigrou

Page 272: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 272/344

  be a suepr square matrix coefficient semigrou

 product un.Let

 p(x) =

3 2 0

1 0 1

0 2 3

§ ·¨ ¸¨ ¸¨ ¸© ¹

+

7 5 1

0 1 2

0 0 3

§ ·¨ ¸¨ ¸¨ ¸© ¹

x +

1

0

0

§ ¨ ¨ ¨ ©

+

0 0 9

1 0 3

§ ·¨ ¸

¨ ¸¨ ¸x4

 be in S

3 3F u .

To find

 p(x) un q(x); p(x) un q(x) =

3 2 0

1 0 10 2 3

§ ·¨ ¸

¨ ¸¨ ¸© ¹

un

4

17

§ ¨

¨ ¨ ©

+

3 2 0

1 0 1

0 2 3

§ ·¨ ¸¨ ¸¨ ¸© ¹

un

1 2 3

4 5 6

7 8 9

§ ·¨ ¸¨ ¸¨ ¸© ¹

x2 +

3 2 0

1 0 1

0 2 3

§ ·¨ ¸¨ ¸¨ ¸© ¹

un

0

2

3

§ ¨ ¨ ¨ ©

+

7 5 1

0 1 2

0 0 3

§ ·¨ ¸¨ ¸

¨ ¸© ¹

un

4 0 2

1 5 6

7 0 2

§ ·¨ ¸¨ ¸

¨ ¸© ¹

x +

7 5 1

0 1 2

0 0 3

§ ·¨ ¸¨ ¸

¨ ¸© ¹

un

1

4

7

§ ¨ ¨

¨ ©

Page 273: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 273/344

+

7 5 1

0 1 2

0 0 3

§ ·¨ ¸¨ ¸¨ ¸

© ¹

un

0 3 1

2 1 0

3 4 5

§ ·¨ ¸¨ ¸¨ ¸

© ¹

x4 +

1 2 3

0 0 7

0 1 2

§ ·¨ ¸¨ ¸¨ ¸

© ¹

un

4

1

7

§ ¨ ¨ ¨

©

+

1 2 3

0 0 7

0 1 2

§ ·¨ ¸¨ ¸¨ ¸© ¹

un

1 2 3

4 5 6

7 8 9

§ ·¨ ¸¨ ¸¨ ¸© ¹

x4 +

1 2 3

0 0 7

0 1 2

§ ·¨ ¸¨ ¸¨ ¸© ¹

un

0

2

3

§ ¨ ¨ ¨ ©

=

12 0 0

1 0 6

0 0 6

§ ·¨ ¸¨ ¸¨ ¸© ¹

+

3 4 0

4 0 6

0 16 27

§ ·¨ ¸¨ ¸¨ ¸© ¹

x2 +

0 6

2 0

0 8

§ ¨ ¨ ¨ ©

+

28 0 2

0 5 12

0 0 6

§ ·¨ ¸¨ ¸¨ ¸© ¹

x +

7 10 3

0 5 12

0 0 27

§ ·¨ ¸¨ ¸¨ ¸© ¹

x3 +

0

0

0

§ ¨ ¨ ¨ ©

+

1 4 9

0 0 42

0 8 18

§ ·¨ ¸¨ ¸¨ ¸© ¹

x4 +

0 6 3

0 0 0

0 4 10

§ ·¨ ¸¨ ¸¨ ¸© ¹

x5 +

0

1

14

§ ¨ ¨ ¨ ©

+

0 0 27

4 0 18

§ ·¨ ¸¨ ¸

6 +

0 0 9

2 0 0

§ ·¨ ¸¨ ¸

7 +

4

0

§ ¨ ¨

Page 274: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 274/344

+ 4 0 18

14 56 18

¨ ¸¨ ¸© ¹

x6 + 2 0 0

6 28 10

¨ ¸¨ ¸© ¹

x7 + 0

0

¨ ¨ ©

=

12 0 0

1 0 6

0 0 6

§ ·¨ ¸¨ ¸¨ ¸© ¹

+

28 0 2

0 5 12

0 0 6

§ ·¨ ¸¨ ¸¨ ¸© ¹

x +

7 4

4 0

0 16

§ ¨ ¨ ¨ ©

7 16 3§ · 1 19 28§ · 0§

Thus we see S

3 3F u [x] under natural produc

semigroup. This semigroup has zero divisors and

can derive all related properties of this semigroup as

routine.

Now we can also give these super matrix

 polynomials a ring structure. We just recall if  S

CF [x

column matrix polynomials, we know S

CF [x] under

an abelian group and under the natural product un,

semigroup. Thus it is easily verified ( SCF [x], +

commutative ring known as the super column matrix

ring.

We will illustrate this situation by some simple e

 Example 6.32: Let

Page 275: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 275/344

S

CF [x] =i

i

i 0a x

f

-

®̄¦ ai =

1

2

3

4

5

6

x

x

x

x

x

x

ª º« »« »« »

« »« »« »« »« »¬ ¼

with x j Z, 1 d j

 be the super column matrix coefficient polynomial r

 Example 6.33: Let ( S

CF [x], +, un) =i

i

i 0

a xf

-®¯¦

d j Q; 1 d j d 8, +, un} be the super column m

 polynomial ring of infinite order. S

CF [x] has sub

not ideals, has zero divisors and idempotents

special form which are only constant polynomial

10

ª º« »« »

Page 276: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 276/344

For instance D =

0

1

1

1

0

1

« »« »« »« »« »

« »« »« »« »« »¬ ¼

S

CF [x] is such tha

0ª º« »

Further we see P = i

i

i 0

a xf

-®¯¦

ai =

1

2

3

4

5

6

7

8

x

x

x

x

xx

x

x

ª º« »« »« »« »« »

« »« »« »« »« »« »¬ ¼

with x j

1 d j d 8, +, un} SCF [x] is a subring of super col

coefficient polynomial ring. However P is not an

[x].

However  S

CF [x] has infinite number of zero divi

dª º

Page 277: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 277/344

 Example 6.34: Let S

CF [x] = i

i

i 0

a xf

-®¯¦ ai =

1

2

3

d

d

d

ª º« »« »« »¬ ¼

w

un, +, 1 d j d 3} be a super column matrix  polynomial ring.

Consider p(x) = 1

0

a

ª º« »« »« »

+ 1

0

 b

ª º« »« »« »

x + 1

0

c

ª º« »« »« »

x2

Clearly p(x) un q(x) =

0

0

0

ª º« »« »« »¬ ¼

.

Further if 

P = i

i

i 0

a xf

-®¯¦ ai =

1

2

x

0

x

ª º« »« »« »¬ ¼

with x1, x2 Z, +, u

is a subring.

Also T = i

i

i 0

a xf

-®¯¦ ai = 1

0

y

0

ª º« »« »« »¬ ¼

, y1 Z, +, un

is a subring.

Page 278: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 278/344

We see S

CF [x] =

P + T and P T =00

0

ª º« »« »« »¬ ¼

.

Further for every D P we have every E T

coefficient polynomial ring which is commutati

infinite order.

We will give examples of it.

 Example 6.35: Let R = { SR F [x] = i

i

i 0

a xf

¦ ; ai = (t1 t2

t j Z, 1 d j d 6, +, un} be a super row matrix

coefficient ring. R has zero divisors, units, ideals an

P =i

i

i 0a x

f

-®̄¦ ai = (0 0 0 | d1 | d2 d3) d1, d2, d3 Z, +

is a subring as well as an ideal of R.

T = i

i

i 0

a xf

¯

¦ ai = (y1 y2 y3 | 0 | 0 0) y1, y2, y3 Z,

is a subring as well as an ideal of R.

Page 279: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 279/344

We see every a P and every b T are such th

(0 0 0 | 0 | 0 0).

Also (1 –1 1 | –1 | –1 1) = p is such that p2

= (1 1only units of this form are in R.

 Example 6.36: Let S

R F [x] = i

i

i 0

a xf

-®¯¦ ai = (p1 p2 | p

T = i

i

i 0

a xf

-®¯¦ ai = (y1 y2 | y3 | y4 y5 | y6 | y7 y8 y9

d j d 9, +, un} S

R F [x]; T is a only a subring andS

R F [x].

It is easily verified S

R F [x] has zero divisors.

 Example 6.37: Let S

R F [x] = i

i

i 0

a xf

-®¯¦ ai = (m1

R, +, un} be a super row matrix coefficient p

Clearly S

R F [x] has units, zero divisors, idempot

are only constant polynomials. For D = (1 | –1)

(1 | 1) and E = (0 | 1) and b1 = (1 | 0) are all id

also see P =

i

ii 0 a x

f

-

®̄¦ ai = (t | s), t, s, Z, +, u

subring and not an ideal of SF [x]

Page 280: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 280/344

subring and not an ideal of  R F [x].

Take M = i

i

i 0

a xf

¯

¦ ai = (t | 0); t R, +, un

ideal of  S

R F [x]. N = i

i

i 0

a xf

-®¯¦ ai = (0 | s) s

S

R R  [x] is also an ideal of  S

R F [x]. Every D in M

M are such that DunE = (0 | 0).

We will illustrate this by some examples.

  Example 6.38: Let { S

2 4F u [x], +, un} =i 0

af

-®¯¦

1 2 3 4

5 6 7 8

d d d d

d d d d

ª º« »¬ ¼

d j z, 1 d j d 8, +, un} be the

vector coefficient polynomial ring. S

2 4F u has zero div

idempotents ideals and subrings.

D =1 1 1 1

1 1 1 1

ª º« » ¬ ¼

is such that D2 =1 1

1 1

ª « ¬

unit.

Consider E =1 0 1 1

0 1 0 0

ª º« »¬ ¼

inS

2 4F u [x]. We se

E i id t t i SF [ ] l if it i t t

Page 281: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 281/344

E is an idempotent in S

2 4F u [x] only if it is a constant

and the super row vector takes its entries only as 0 or

Similarly an element a S

2 4

Fu

[x] is a unit on

constant polynomial and all its entries are from the

Consider 

P = i

i

i 0

a xf

-®¯¦ ai =

1 2 3 4

5 6 7 8

t t t t

t t t t

ª º« »¬ ¼

; t j

 Example 6.39: Let

{ S

5 3F u [x], +, un} = i

i

i 0

a xf

-®¯¦ ai =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

y y y

y y y

y y y

y y yy y y

ª « « « «

« « ¬

1 d j d 15, un, +}

 be the super column vector coefficient polynomihas subrings which are not ideals, ideals, unit

and idempotents.

Consider M = i

i

i 0

a xf

-®¯¦ ai =

1 2

4 5

7 8

m m

m m

m m

m m m

ª «

« « « «

Page 282: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 282/344

10 11

13 14

m m m

m m m

« « ¬

z, 1 d j d 15, +, un} S

5 3F u [x]

is only a subring and not an ideal of  S5 3F u [x].

Take p =

1 0 1

1 1 1

0 0 1

ª º« »« »« » in S

5 3F u [x] is such that p

Consider t =

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

ª º« »« »« »« »

« »

« » ¬ ¼

in S

5 3F u [x].

We see t2 =

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

ª º« »« »« »« »

« »« »¬ ¼

the unit; that t is a un

Suppose y S

5 3F u [x] is to be a unit then we see

a constant polynomial and the 5 u 3 matrix must tak

from the set {1, –1}.

 Example 6.40: Let

Page 283: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 283/344

p

S

5 4F u [x] = i

i

i 0

a xf

-®¯¦ ai =

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

m m m m

m m m m

m m m m

m m m m

m m m m

ª «

« « « « « ¬

Take M = i

i

i 0

a xf

-®¯¦ ai =

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

m m m

m m m

m m m

m m m

m m m

ª « « « « «

« ¬

with m j 5Z, 1 d j d 20, +, un} S

5 4F u [x];

M is an ideal of  S

5 4F u [x].

Suppose

P = i

i

i 0

a xf

-®¯¦ ai =

1

3 4

5 6

7 8

2

m 0 0 m

0 m m

0 m m

0 m m

m 0 0 m

ª « « « « « «

¬

with m 3Z 1 d j d 10 + u } SF

Page 284: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 284/344

with m j 3Z, 1 d j d 10, +, un} 5F u

 be an ideal of  S

5 4F u [x].

Take T = i

i

i 0

a xf

-®¯¦ ai =

4 5

1 7

2 8

3 9

0 m m 0

m 0 0 m

m 0 0 m

m 0 0 m

ª « « « « «

T D un E =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« »« »« »

« »¬ ¼

.

However P T =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ª º« »« »« »

« »« »« »¬ ¼

but P T z S

3F

 Example 6.41: Let

S5 7F u [x] = i

i

i 0

a x

f

-®¯¦ ai =

m m m m m m mª º

Page 285: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 285/344

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

m m m m m m m

m m m m m m m

m m m m m m m

m m m m m m m

m m m m m m m

ª º« »« »« »

« »« »« »¬ ¼

with

1 d j d 35, +, un}

S

m =

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

ª º« » « »« » « »

« »

« » ¬ ¼

in S

5F u

is such that

m2 =

1 1 1 1 1 1 1

1 1 1 1 1 1 11 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

ª º« »

« »« »« »« »« »¬ ¼

S

5 7F u [

F h if

1 0 0 1 0 1 10 1 1 0 1 0 0

0 1 1 0 0 1 1

ª º« »« »« » SF

Page 286: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 286/344

Further if p = 0 1 1 0 0 1 1

1 0 1 0 1 0 1

1 1 1 1 0 1 0

« »« »« »« »¬ ¼

S

5F u

then p2

= p is an idempotent of S

5 7F u [x].

Take

P = i

i

i 0

a xf

-®¯¦ ai =

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

m 0 0 m 0 m

m 0 0 m 0 m

m 0 0 m 0 m

m 0 0 m 0 mm 0 0 m 0 m

ª « « « «

« « ¬

m j Z; 1 d j d 15, +, un}

to be a subring and not an ideal of  S

5 7F u [x].

Take

S = i

i

i 0

a xf

-®¯¦

ai =

1 2 11

3 4 12

5 6 13

7 8 14

9 10 15

0 m m 0 m 0

0 m m 0 m 0

0 m m 0 m 0

0 m m 0 m 0

0 m m 0 m 0

ª « « «

« « « ¬

Page 287: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 287/344

9 10 15¬

with m j Q; 1 d j d 20, +, un} is an ideal of  S

5F

We see every polynomial p(x) P is such that for ev

0 0 0 0 0

0 0 0 0 0

ª « «

Let S

m mF u [x] be the collection of a super

coefficient polynomial ring under + and un. W

this by some examples.

 Example 6.42: Let

S

4 4F u [x] = i

i

i 0

a xf

-®¯¦ ai =

1 2 3

5 6 7

9 10 11

13 14 15

m m m

m m m

m m m

m m m

ª « « « « ¬

m j Z, 1 d j d 16, +, un}

 be the super square matrix coefficient polynomia

has zero divisors units, idempotents, ideals and s

Take D =

1 1 1 11 1 1 0

1 0 1 0

ª º« »« »« »

S

4 4F u [x], we se

Page 288: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 288/344

1 0 1 0

0 1 1 1

« »« »¬ ¼

is not a unit.

Take E =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

ª º« » « »« »« »

¬ ¼

S

4 4F u [x];

Page 289: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 289/344

1. Every constant polynomial with entr

{1, –1} is a unit under u n.2. Every constant polynomial with entr

{0, 1} is an idempotent under u n.

THEOREM 6.2:

 Every super matrix coefficient phas ideals.

THEOREM 6.3:  Every super matrix coefficient pover Q or R has subrings which are not ideals.

THEOREM 6.4:

 Every super matrix coefficient phas infinite number of zero divisors.

 Now we can define super vector space of po

R or Q.

Suppose we take V =

S

CF [x] to be an abeliaddition. V is a vector space over the reals or rat

Page 290: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 290/344

We will give examples of them.

 Example 6.43: Let

V = { S

CF [x] = i

i

i 0

a xf

¦ with ai =

1

2

3

4

5

t

t

t

t

t

ª º« »« »« »« »« »« »

; t j Q

 Example 6.44: Let

V = { S

CF [x] = i

i

i 0

a xf

¦ with ai =

1

2

3

t

t

t

ª º« »« »« »¬ ¼

; t j Q, 1 d j

  be an abelian group under ‘+’. V is a super col

coefficient polynomial vector space over Q.

P1 =i

i

i 0a x

f

-

®̄¦ ai =

1t

00

ª º« »« »« »¬ ¼

; t1 Q, +} V

is a subspace of V over Q.

P2 =i

i

i 0a x

f

-

®̄¦ ai = 2

0

t0

ª º« »« »« »¬ ¼

; t2 Q, +} V

Page 291: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 291/344

is a subspace of V over Q.

P3 =i

i

i 0a x

f

-®̄¦ ai =

3

0

0t

ª º« »« »« »¬ ¼

; t3 Q, +} V

is a subspace of V over Q.

We see V = P1 + P2 + P3 and

 Example 6.45: Let

M = i

i

i 0

a xf

-®¯¦ ai =

1

2

3

4

5

6

7

m

m

m

m

m

m

m

ª º« »« »« »« »« »« »« »« »« »

¬ ¼

; m j Q; 1 d j

  be a super column matrix coefficient polynom

‘+’.

M is a super column matrix coefficient vecto

Take

1

2

m

m

0

ª º« »« »« »

Page 292: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 292/344

P1 = i

i

i 0

a xf

-®¯¦ ai =

3

0

0

0

0

m

« »« »« »« »

« »« »« »¬ ¼

, m1, m2, m3 Q, +

1mª º« »

P3 = i

i

i 0

a xf

-®¯¦ ai =

1

2

3

4

m

0

0

0

mm

m

ª º« »« »« »« »« »

« »« »« »« »¬ ¼

with m j Q, 1 d j d 4

Clearly M P1 + P2 + P3 but Pi P j z

0

0

0

0

0

00

ª º

« »« »« »« »« »« »« »

« »« »¬ ¼

if i z

1 d i, j d 3. P1, P2 and P3 are subspaces of M over Q

Page 293: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 293/344

, j 1, 2 3 p Q

is the pseudo direct sum of vector subspaces of M.

 Example 6.46: Let

V = i

i

i 0

a xf

-®¯¦ ai = (d1 | d2 | d3 d4 d5 d6 d7 | d8); d

1 d j d 8}

P2 = i

i

i 0

a xf

-®¯¦ ai = (d1 | d2 | 0, 0, 0, 0, 0 | 0), d1,

P3 = i

i

i 0

a xf

¯

¦ ai = (0 | 0 | 0 0 d1 d2 0 | 0); d1,

and

P4 = i

i

i 0

a xf

¯

¦ ai = (0 | 0 | 0 … 0 d1 | d2) with d

 be a super row matrix coefficient polynomials

of V over Q.

Clearly V = P1 + P2 + P3 + P4 and

Pi P j = ( 0 | 0 | 0 0 0 0 0 | 0) if i z j, 1 d

Cl l V i di t f b

Page 294: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 294/344

Clearly V is a direct sum of subspaces.

 Example 6.47: Let

V = i

i

i 0

a xf

-®¯¦ ai = (t1 t2 | t3 t4 | t5); t j Q,

  be the super row matrix coefficient polynomi

M2 = i

i

i 0

a xf

-®¯¦ ai = (t1, t2 | 0 0 | 0), t1, t2 Q

M3 = i

i

i 0

a xf

¯

¦ ai = (0 t1 | 0 t2 | 0), t1, t2 Q

and

M4 = i

i

i 0

a xf

-®¯¦ ai = (0 t1 | 0 0 | t2), t1, t2 Q}

 be super row matrix coefficient polynomial vector

V over Q. We see V M1 + M2 + M3 + M4, howeveMi M j z (0 0 | 0 0 | 0) if i z j; 1 d i, j d 4

Thus V is only a pseudo direct sum of vector

over Q.

 Example 6.48: Let

V = ia xf-

®¦ ai = (m | m m m | m m | m

Page 295: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 295/344

V = i

i 0

a x

®¯¦ ai = (m1 | m2 m3 m4 | m5 m6 | m

with m j R; 1 d j d 7}

 be a super row matrix coefficient polynomial vector

Q.

Consider 

to be super row matrix coefficient polynomial v

of V over Q.

We see V = M1 + M2 and M1 M2 = ( 0 | 0 0

Infact we see every q(x) M1 is orthogo

other p(x) M2.

Thus M1 is the orthogonal complement o

versa. Now we give examples of super m u n m

 polynomial vector spaces over Q or R.

 Example 6.49: Let

- 1 4 7 10 13 16d d d d d dª

Page 296: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 296/344

V = i

i

i 0

a xf

-®¯¦ ai =

1 4 7 10 13 16

2 5 8 11 14 17

3 6 9 12 15 18

d d d d d d

d d d d d d

d d d d d d

ª « « «

¬ 1 d j d 18}

  be the super 3 u 7 row vector coefficient polspace over Q.

 Example 6.50: Let

W = i

i

i 0

a xf

-®¯¦ ai =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m

m m m m

ª « «

« « « « « « «

« « « « « ¬

with m j R, 1 d j d 40}

  be a super column vector coefficient polynomial v

over Q.

Page 297: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 297/344

Q

 Example 6.51: Let

V = i

i

i 0

a xf

-®¯¦ ai =

1 2 3 4

6 7 8 9

11 12 13 14

16 17 18 19

21 22 23 24

m m m mm m m m m

m m m m m

m m m m m

m m m m m

ª « « « « « «

  Now we see for all these one can easisubspaces etc.

 Example 6.52: Let

V = ii

i 0

a x

f

-®¯¦ ai =

1 8 15 22 29 36 43

2 9 16 23 30 37 44

3 10 17 24 31 38 45

4 11 18 25 32 39 46

5 12 19 26 33 40 47

6 13 20 27 34 41 48

7 14 21 28 35 42 49

m m m m m m m

m m m m m m m

m m m m m m mm m m m m m m

m m m m m m m

m m m m m m m

m m m m m m m

ª « «

« « « « « « «

¬ m j Q, 1 d j d 56}

 be a super 7 u 8 matrix coefficient polynomial ve

Page 298: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 298/344

p p y

Q. Consider 

M1 = i

i

i 0

a xf

-®¯¦ ai =

1

2

3

4

5

m 0 0 0 0 0m 0 0 0 0 0

m 0 0 0 0 0

m 0 0 0 0 0

m 0 0 0 0 0

ª « « « « « «

M2 = i

i

i 0

a xf

-®¯¦ ai =

1 2

3 4

5 6

7 8

9 10

11 12

13 14

0 m m 0 0 0

0 m m 0 0 0

0 m m 0 0 0

0 m m 0 0 0

0 m m 0 0 00 m m 0 0 0

0 m m 0 0 0

ª « « « « « « « « « ¬

with m j Q, 1 d j d 14} V,

M3 = i

i

i 0

a xf

¯

¦ ai =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

0 0 0 m m m

0 0 0 m m m

0 0 0 m m m

0 0 0 m m m

0 0 0 m m m

0 0 0 m m m

0 0 0 m m m

ª « « « « «

« « « « ¬

Page 299: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 299/344

19 20 21¬

with m j Q, 1 d j d 21} V

and

if-

1

3

5

0 0 0 0 0 0 m

0 0 0 0 0 0 m

0 0 0 0 0 0 m

0 0 0 0 0 0 m

ª « « « «

Mi M j =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ª º« »« »« »« »

« »« »« »« »« »¬ ¼

,

Thus V is the direct sum of subspaces.

 Example 6.53: Let

P =i

i

i 0a x

f

-

®̄¦ ai =

1 2 3 4 5

8 9 10 11 1

15 16 17 18 1

22 23 24 25 2

m m m m m

m m m m m

m m m m m

m m m m m

ª «

« « « ¬

Page 300: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 300/344

with mi R, 1 d j d 28}

 be a 4 u 7 super row vector matrix coefficient pospace over Q.

Let B1 = i

i

i 0

a xf

-®¯¦ ai =

1 5

2 6

3 7

m m 0 0

m m 0 0

m m 0 0

ª « « «

B2 = i

i

i 0

a xf

-®¯¦ ai =

1 5

2 6

3 7

4 8

m 0 m 0 0

m 0 m 0 0

m 0 m 0 0

m 0 m 0 0

ª « « « « ¬

mi Q, 1 d i d 8} P,

B3 = i

i

i 0

a xf

¯

¦ ai =

1 5

2 6

3 7

4 8

m 0 0 m 0

m 0 0 m 0

m 0 0 m 0

m 0 0 m 0

ª « « « « ¬

mi Q, 1 d i d 8} P,

B4 = i

i

i 0

a xf

-®¯¦ ai =

1 5

2 6

3 7

m 0 0 0 m

m 0 0 0 m

m 0 0 0 m

m 0 0 0 m

ª « « « « ¬

Page 301: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 301/344

4 8m 0 0 0 m¬

mi Q, 1 d i d 8} P,

B5 = i

i

i 0

a xf

-®¯¦ ai =

1

2

3

m 0 0 0 0

m 0 0 0 0

m 0 0 0 0

ª « « « «

Page 302: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 302/344

Consider 

M1 = ii

i 0a x

f

-®̄¦ ai =

1

2

m

m

0

0

0

0

0

0

ª º« »« »« »« »

« »« »« »« »« »« »« »¬ ¼

with m1, m2 Q}

is a vector subspace of V over Q.

M2 = i

i

i 0

a xf

-®¯¦ ai =

1

2

3

0

0

mm

m

ª º« »« »

« »« »« »« »« »« »

with mi Q; 1 d i d

Page 303: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 303/344

4

5

6

m

m

m

« »« »« »« »¬ ¼

is a vector subspace of V over Q. Clearly 1MA = M

versa.

Consider 

M3 = ii

i 0a x

f

-®̄¦ ai =

1

2

3

0

0

m

m

m

0

0

0

ª º« »« »« »« »

« »« »« »« »« »« »« »¬ ¼

, m1, m2, m3

M3 is also a vector subspace of V over Q and fo

and for every y M3 we see x un y = (0) howeve

M1 + M3 z V however M1 + M2 = V and 1MA =

M1.

Thus we see we can have subspaces in V or

  but they need not be the orthogonal complem

over Q.

Page 304: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 304/344

  Now we proceed onto define semivector

matrix coefficient polynomials defined over the{0} or Q

+ {0} or R + {0}.

We just describe them in the following.

1dª º

W = i

i

i 0

a xf

-®¯¦ ai = (m1 | m2 | m3 m4) with m j

1 d j d 4} is a super column matrix coefficient

semivector space over the semifield S = Q+ {0{0}).

T =i

ia x-®¯¦ ai =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

d d d

d d d

d d d

d d d

d d d

d d d

d d d

d d d

d d d

ª º« »« »« »« »« »« »« »« »« »« »« »« »« »¬ ¼

with d j R +

1 d j d 27} is a super column vector coefficient

semivector space over the semifield S = Z+ {0} (o

or R+ {0}).

Page 305: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 305/344

or R  {0}).

M = i

i

i 0

a xf

-®¯¦ ai =

1 2 3 4 5 6

8 9 10 11 12 13

15 16 17 18 19 20

t t t t t t

t t t t t t

t t t t t t

ª « « « ¬

Q+ {0}, 1 d i d 21} is the super row vector

 polynomial semivector space over the semifield S =+

is a super 4 u 8 matrix coefficient polynomial sem

over the semifield Z+ {0}.

C = i

i

i 0

a xf

-®¯¦ ai =

1 2 3 4

7 8 9 10

13 14 15 16

19 20 21 22

25 26 27 28

31 32 33 34

m m m m

m m m mm m m m

m m m m

m m m m

m m m m

ª « « « « « « « « ¬

m j Z+ {0}, 1 d i d 36}

is a super square matrix coefficient polynom

space over the semifield Z+ {0}.

The authors by examples show how subse

direct sum etc looks like.

Page 306: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 306/344

 Example 6.55: Let

M = i

i

i 0

a xf

-®¯¦ ai =

1 2 3 4 5 6 7

9 10 11 12 13 14 15

m m m m m m m

m m m m m m m

ª « «

Consider 

 p(x) =

8 0 1 7 0 3 8 1

0 0 2 0 8 1 0 1

1 5 0 1 0 0 0 1

ª º« »« »« »¬ ¼

+

6 7 0 1 6 0 9 1

0 9 1 2 0 1 6 2

2 0 2 8 1 1 7 3

ª º« »« »« »¬ ¼

x +

1 0 1 8 1 2 0 7

1 2 4 0 3 2 0 0

2 0 3 1 1 0 0 2

ª º« »« »« »¬ ¼

x2

and

q(x) =

0 1 2 1 0 5 7 2

2 0 1 3 7 0 5 1

1 4 8 1 0 0 4 0

ª º« »« »« »¬ ¼

+

Page 307: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 307/344

 

2 8 1 3 4 3 3 1

1 0 5 0 1 2 2 2

0 1 4 6 0 0 1 3

ª º« »« »« »¬ ¼

x2 +

0 0 1 3 0 0 6 2ª º« » 3

and

P = i

i

i 0

a xf

-®¯¦ ai =

1 4 5

2 7 8

3 10 11

m 0 0 m m

m 0 0 m m

m 0 0 m m

ª « « « ¬

mi Q+ {0}, 1 d i d 12} M,

T and P are super row vector polynomial coeffic

subspace of M over the semifield Q+ {0};

we see M = T + P with T P =

0 0 0 0

0 0 0 0

0 0 0 0

ª « « « ¬

Further for every x T we have a y P;

with x un y =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

ª « « « ¬

Page 308: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 308/344

 Example 6.56: Let

f

1 2 3 4

5 6 7 8

9 10 11 12

d d d d

d d d d

d d d d

ª º« »« »« »« »

  be a super column vector polynomial coefficientspace (linear algebra) over the semifield S = Z+ {

Now we can define like wise semivector spac

matrices and study those structures.

Page 309: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 309/344

Page 310: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 310/344

One has to find the uses of these new structurvalue problems, mathematical models, coding theor

element analysis methods.

Further these natural product on matrices worusual product on the real line and the matrix prod

matrices. If the concept of matrices is a an array of n

certainty the natural product seems to be appropriat

course of time researchers will find nice applications

Page 311: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 311/344

&KDSWHU(LJKW

68**(67('352%/(06

 In this chapter we suggest over 100 problems.can be taken up as research problems. These prmakes the reader to understand these new notiothis book.

1. Find some interesting properties enjoyed by

Page 312: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 312/344

with matrix coefficients.

2. For the row matrix coefficient polynomial s

S[x] = ii

i 0

a x∞

=

-®¯¦ ai = (x1, x2, x3, x4) with x j 

(i) Find zero divisors in S[x].(ii) Can S[x] have ideals?

(iii) If the row matrix coefficients are from Z β be in Z × Z × Z × Z?

4. Give some nice properties enjoyed by the sesquare matrix coefficient polynomials.

5. Solve the equation1 11 1

ª º« »¬ ¼

x3 –2 7 81 6 4

ª º« »¬ ¼

= 0

6. Suppose p(x) =

9

2

1

3

7

ª º« »

« »« »« »« »« »¬ ¼

8

9

2

3

1

ª º« »

« »« »« »« »« »−¬ ¼

x +

3

7

0

8

1

ª º« »

« »« »« »« »« »¬ ¼

x2. Solve

7. Let p(x) = (1, 2, 3)x3 – (2, 4, 5)x2 + (1, 0, 2)x –Solve for x.Does q(x) = (1, 6, 9)x + (2, 1, 3) divide p(x)?

8. Find the properties enjoyed by the group of squ

Page 313: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 313/344

coefficient polynomials in the variable x.

9. Let p(x) =2 1 0

1 5 6

§ ·¨ ¸© ¹

+7 8 0

1 1 1

§ ·¨ ¸© ¹

x2 +3

0

§ ¨ ©

Is p(x) solvable as a quadratic equation?

11. Suppose p(x) =9 i

ii 0

a x=¦ where ai ∈ {V3×6 =

matrices with coefficients from Z}, 0 ≤ i ≤cannot be integrated and the resultant coeffbe in V3×6.

12. Prove VR = {(a1, a2, …, a12) | ai ∈ R} has zunder product.

13. Prove V3×3 =1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

-§ ·°¨ ¸®

¨ ¸°¨ ¸© ¹¯

ai ∈ Z, 1 ≤

semigroup under multiplication.(i) Is V3×3 a commutative semigroup?(ii) Find ideals in V3×3.(iii) Can V3×3 have subsemigroups which ar

14. Can VR [x] = ii

i 0

a x∞

=

-®¯¦ ai = (x1, x2, …, x8)

1 ≤ j ≤ 8} a semigroup under product have

Page 314: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 314/344

1 ≤ j ≤ 8}, a semigroup under product have(i) Find ideals of VR [x]?

(ii) Find subsemigroups which are not ide(iii) Can VR [x] be a S-semigroup?

15. Let V7×7 [x] = ii

i 0

a x∞

=

-®¯¦ ai’s are 7 × 7 matr

 17. Distinguish between Q [x] and

VR [x] = ii

i 0

a x∞

=

-®¯¦ ai = (x1, x2, x3, x4); x j ∈ Q;

18. What are the benefits of natural product in mat

19. Prove Vn×n [x] under natural product is a commsemigroup.

20. Prove V3×7 [x] is a commutative semigroup und

product ×n.

21. Prove natural product ×n and the usual product matrices on VR [x] are identical.

22. Show VC [x] under natural product is a semigro

zero divisors.

23. Obtain some nice properties enjoyed by

1a-ª º°« »

Page 315: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 315/344

VC = 2

m

a

a

°« »°« »

®« »°« »°¬ ¼¯

#

ai ∈ Q; 1 ≤ i ≤ m} under the natu

product, ×n.

24. Show V5×2 = {all 5 × 2 matrices with entri

(v) Can V5×2 have idempotents justify?

25. Show (V3×3, ×n) and (V3×3, ×) are distinct as

(i) Can they be isomorphic?

(ii) Find any other stricking difference betw

26. Can the set of 5 × 5 diagonal matrices withunder the natural product and the usual pro

27. Prove (V2×2, +, ×n) is a commutative ring.

28. Prove (V3×3, +, ×) is a non commutative rin

1 0 0

0 1 0

0 0 1

§ ·¨ ¸¨ ¸¨ ¸© ¹

as unit.

29. Find the differences between a ring of natural product and usual matrix product.

Page 316: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 316/344

30. Prove (V2×7, +, ×n) is a commutative ring w

31. Let S = (V5×2, +, ×n) be a ring.(i) Find subrings of S.

(ii) Is S a Smarandache ring?

(iii) Can S have S-subrings?

33. Distinguish between (VR, +, ×n) and (VR, +, ×).

34. Find the difference between the rings (V3×3,(V3×3, +, ×n).

35. Let M = ( RV+ , +, ×n) be a semiring where

RV+ = {(x1, x2, …, xn) | xi ∈ R+ ∪ {0}, 1 ≤ i ≤ n

(i) Is M a semifield?

(ii) Is M a S-semiring?

(iii) Find subsemiring in M.(iv) Show every subsemiring need not a be S-su

(v) Find zero divisors in M.

(vi) Can M have idempotents?

36. Let P = {VC =

1

2

3

a

a

a

-ª º°« »°« »°« »®

« »°ai  ∈ Q+  ∪ {0}; 1 ≤

Page 317: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 317/344

4

5

a

a

« »°« »

°« »°¬ ¼¯semiring under + and ×n.

(i) Find ideals of P.(ii) Is P a S-semiring?

38. Mention some of the special features semiring of 5 × 8 matrices with + and ×n

from R+ ∪ {0}.

39. Is P =

1

2

3

4

5

x

xx

x

x

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

xi ∈ R+; 1 ≤ i ≤ 5} ∪ 

0

00

0

0

- ½ª º° °« »° °« »° °« »® ¾

« »° °« »° °« »° °¬ ¼¯ ¿

under + and ×n?

40. Can M =1 1 1 1 1

a b c d e

a b c d e

-ª º°®« »

¬ ¼°̄a1, b1, c

d, e ∈ Q+} ∪ 0 0 0 0 0

0 0 0 0 0

- ½ª º° °® ¾« »° °¬ ¼¯ ¿

, +, ×n}

a a-ª º

Page 318: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 318/344

41. Find for S =

1 2

3 4

5 6

7 8

a a

a aa a

a a

-ª º°« »

°« »®« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}, 1

the semiring.

42. Let P =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a aa a a a

a a a a

a a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ Q+ ∪ {0}

1 ≤ i ≤ 16} be a semiring under + and natural p

(i) Is P a S-ring?

(ii) Can P have zero divisors?

(iii) Show P is commutative.

(iv) If ×n replaced by usual matrix product wi

semiring? Justify your claim.

(v) Find S-ideals in P.(vi) Find subsemirings which are not S-subse

43. Let V = {(x1, x2, …, xn) | xi ∈ R, 1 ≤ i ≤ n} F Fi d H (V V)

Page 319: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 319/344

space over F. Find Hom (V, V).

44. Let P =

1

2

10

x

x

x

-ª º°« »°« »®« »°« »°¬ ¼¯

#xi ∈ Q; 1 ≤ i ≤ 10} be a lin

46. What is the difference between a naturaspecial field and the field?

47. Obtain the special properties enjoyed by Scolumn matrix linear algebra.

48. Obtain the special and distinct features of 3 × 3 matrix linear algebra.

49. Find differences between Smarandache veSmarandache special strong vector spaces.

50. Let P = 1 2

3 4

a aa a

-ª º°®« »

¬ ¼°̄ai ∈ R, 1 ≤ i ≤ 4} be t

matrix of natural special Smarndache field.

(i) What are the special properties enjoyed

(ii) Can P have zero divisors?

51. Obtain some interesting properties about column matrix vector spaces constructed ov

Page 320: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 320/344

52. Find some applications of S-special strong

linear algebras constructed over Q.

53. Define some nice types of inner products ousing the natural product ×n.

54 Can linear functionals be defined on S sp

F3×12 =1 2 12

13 14 24

25 26 36

x x ... xx x ... x

x x ... x

-ª º°« »®« »°« »¬ ¼¯

xi ∈ Q, 1 ≤ i ≤

(i) Find a basis for V.

(ii) What is the dimension of V over F3×12?(iii) Write V as a direct sum of subspaces.(iv) Write V as a pseudo direct sum of subspa

56. Let V be a S-special strong vector space of n ×

over the S-field FC

of n × n matrices with elethe field Q.(i) Find a basis for V.(ii) Write V as a direct sum of subspaces.(iii) Write V as a pseudo direct sum of subspa(iv) Find a linear operator on V.

(v) Does every subspace W of V have W

?(vi) Write V as W + W⊥;

57. Obtain some interesting properties about subspaces.

Page 321: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 321/344

58. Find some interesting properties related witrow matrix linear algebras.

59. Study the special properties enjoyed by S-spm × n matrix linear algebras (m ≠ n).

  (i) Find basis for S.(ii) Write S as a direct sum of subsemivec(iii) Write S as a pseudo direct sum of subs

spaces.(iv) Can S be a semilinear algebra?

61. Obtain some interesting properties enjoyedspace of column matrices V over the semi{0}.

62. Enumerate the special properties en

semivector space of m × n matrices (msemifield F = Q+ ∪ {0}.

63. Bring out the differences between the semcolumn matrices over Q+  ∪ {0} and vcolumn matrices over Q.

64. Find some special properties enjoyed by sof m × n matrices over the semifield Z+ ∪ {

1 2 3 4 5a a a a a-ª º°

Page 322: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 322/344

65. Let V =

1 2 3 4 5

6 7 10

11 12 15

16 17 20

a a a a a

a a ... ... aa a ... ... a

a a ... ... a

-ª º°« »°« »®« »°« »°¬ ¼¯

ai ∈ Z

20} be a semivector space over the semi{0}.

(v) Write V = W ⊕ W⊥

, W⊥

the orthogonal comof W.

66. Let SCF =

1

2

3

4

5

6

a

a

a

a

a

a

-ª º°« »°« »°« »°

« »®« »°« »°« »°« »°¬ ¼¯

ai ∈ Q, 1 ≤ i ≤ 6, ×n} be a sem

(i) Find ideals in SCF .

(ii) Can SCF have subsemigroups which are not

(iii) Prove SCF has zero divisors.

(iv) Find units in SCF .

(v) Is SCF a S-semigroup?

67. Let SRF = {(a1 a2 | a3 a4 | a5) | ai ∈ Z, 1 ≤ i ≤

semigroup.

Page 323: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 323/344

(i) Find subsemigroups which are not ideals (ii) Find zero divisors in S

RF .

(iii) Can SRF have units?

(iv) Is x = (1, –1 | 1 –1 | –1) a unit in SRF .

 (i) Find units in S

5 3F × .

(ii) Is S5 3F × a S-semigroup?

(iii) Can S5 3F × have S-subsemigroups?

(iv) Can S5 3F × have S-ideals?

(v) Does S5 3F × have S-zero divisors/ 

(vi) Can S5 3F × have S-idempotents?

(vii) Show S5 3F × have only finite number of

69. Let S4 4F × =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a aa a a a

a a a a

a a a a

-ª º°« »

°« »®« »°« »°¬ ¼¯

ai ∈ Q,

semigroup of super square matrices.

(i) Find zero divisors in S4 4F × .

(ii) Can S4 4F × have S-zero divisors?

(iii) Can SF have S-idempotents?

Page 324: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 324/344

(iii) Can 4 4F × have S idempotents?

(iv) Find the main complement of 

3 01 0

0 3 1

0 1

ª « « « « ¬

( ) I SF S i ?

(i) Find ideal of  S3 7F × .(ii) Is S

3 7F × a S-semigroup?

(iii) Can S3 7F × have S-ideals?

(iv) Show S3 7F × can have only finite number o

idempotents.

(v) Show S3 7F × has no units.

71. Obtain some interesting properties about ( SCF , ×

72. Find some applications of the semigroup ( SmF

×n).

73. Find the difference between ( Sn nF × , ×) and ( S

n nF ×

74. Find some special and distinct features enjoyed

75. Prove { Sn mF × , n ≠ m, +, ×n} is a commutat

infinite order.

6 S 1 2 3 4 5a a a a a-ª º°® Q 1

Page 325: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 325/344

76. Let S2 5F × = 1 2 3 4 5

6 7 8 9 10a a a a a

ª º°®

« »¬ ¼°̄ai ∈ Q, 1

×n} be a ring of super row vectors.

(i) Find ideals in S2 5F × .

(ii) Is S2 5F a S-ring?

77. Let S8 3F × =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

a a aa a a

a a a

a a a

a a a

a a a

a a a

a a a

-ª º°« »°« »°« »°« »°« »®« »

°« »°« »°« »°« »°« »¬ ¼¯

ai ∈ Q, 1 ≤ i

a super column vector ring.

(i) Prove S8 3F × has zero divisors.(ii) Prove S

8 3F × has units.

(iii) Can S8 3F × have S-units?

(iv) Is S8 3F × a S-ring?

(v) Prove S

8 3F

×

has idempotents?

1

2

3

a

a

a

-ª º°« »°« »°« »°« »

Page 326: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 326/344

78. Let SCF =

4

5

6

7

8

aa

a

a

a

°« »°« »°« »°« »®

« »°« »°« »°« »°

ai  ∈ R, 1 ≤ i ≤ 10, +,

(iii) Can SCF have S-idempotents?(iv) Can S

CF have S-units?

79. Let S3 3F × =

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q, 1 ≤ i ≤ 8,

square super matrix ring.(i) Prove S

3 3F × is a commutative ring.

(ii) Find ideals in S3 3F × .

(iii) IsS

3 3F × a S-ring?(iv) Show S

3 3F × has only finite number of idemp

(v) Can S3 3F × have S-ideals?

80. Enumerate some special features enjoyed by s

ringsS

CF (orS

RF orS

n nF × orS

n mF × ; m ≠ n).

81. Find some applications of the rings mentioned(80).

82 Prove R = {(a1 | a2 | | an) | ai ∈ Q+ ∪ {0} 1

Page 327: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 327/344

82. Prove R = {(a1 | a2 | … | an) | ai ∈ Q  ∪ {0}, 1

semigroup under +.

(i) Can R have ideals?

(ii) Can R have S-zero divisors?

84. Let T =

1

2

3

4

5

aa

a

a

a

-ª º°« »°« »°« »®

« »°« »°« »°¬ ¼¯

ai  ∈ Z+  ∪ {0}, 1 ≤ i

semigroup under ×n.(i) Prove T is a commutative semigroup

(ii) Can T have S-zero divisors?

(iii) Show T can have only finite number o

idempotents.

(iv) Show T can have no units.

(v) Can T have S-ideals?

85. Let W =1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a

a a a a a

a a a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈

≤ 15, ×n} be a semigroup.

Page 328: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 328/344

≤ 15, ×n} be a semigroup.

(i) Find the number of idempotents in W.(ii) Is W a S-semigroup?(iii) Find units in W.(iv) Show all elements are not units in W.

a a a a a a-ª º

(ii) Does M contain S-zero divisors?(iii) Prove M has only finite number of idempot

(iv) Can M have S-idempotents?

(v) Can M have S-units?

87. Let M = S2 3F × = 1 2 3

4 5 6

a a a

a a a

-ª º°®« »

¬ ¼°̄ai ∈ Z+ ∪ {0

+, ×n} be a semiring.

(i) Prove M is not a semifield.(ii) Find subsemirings in M.

88. Obtain some interesting properties enjoyed super matrix semirings with entries from Q+ ∪

89. Distinguish between a super square matrix super square matrix semiring.

1 6a a-ª º°« »

Page 329: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 329/344

90. Let P =2 7

3 8

4 9

5 10

a aa a

a a

a a

°« »

°« »°« »®« »°« »°« »°¬ ¼¯

ai ∈ R+ ∪ {0}, 1 ≤ i ≤ 10,

semiring.

91. Let T =

1 2 3 4 5 6

8 9

15 16

22 23

29 30

36 37

43 44

a a a a a a aa a ... ... ... ... a

a a ... ... ... ... a

a a ... ... ... ... a

a a ... ... ... ... a

a a ... ... ... ... a

a a ... ... ... ... a

-ª °« °« °« °« °®« °«

°« °« °«

¬ °̄

{0}, 1 ≤ i ≤ 49, +, ×n} be a semiring.

(i) Show T has only finite number of idem(ii) Find zero divisors of T.

(iii) Find idempotents of T.

(iv) Can T have S-zero divisors?

(v) Is T a S-semiring?

92. Find some interesting properties of semirings.

a a a aª º 0 0ª

Page 330: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 330/344

93. Let M = {

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a

a a a a

a a a a

a a a a

ª º« »« »« »« »¬ ¼

 ∪ 

0 0

0 0

0 0

0 0

ª « « « « ¬

94. Can P =

1

2

3

4

5

6

aa

a

a

a

a

-ª º°« »°« »°« »°

« »®« »°« »°

« »°« »°¬ ¼¯

 ∪

00

0

0

0

0

ª º« »« »« »« »« »« »

« »« »¬ ¼

where ai ∈ Q+, 1 ≤ i ≤ 6

a semifield?

95. Is T = {(a1 | a2 a3 | a4 a5 a6) ∪ (0 | 0 0 | 0 0 0) | i ≤ 6, +, ×n} a semifield?

Can T have subsemifields?

96. Let W =

1 2 3 4

5 6 7 8

9 12

13 16

17 20

21 24

25 28

a a a a

a a a a

a . . aa . . a

a . . a

a . . a

a a

-ª º°« »°« »

°« »°« »°« »°« »®

« »°« »°« »°

 ∪ 

0 0 0

0 0 0

0 0 00 0 0

0 0 0

0 0 0

0 0 0

ª « «

« « « « « « «

Page 331: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 331/344

25 28

29 32

33 36

a . . a

a . . a

a . . a

°« »°« »°« »°¬ ¼¯

0 0 0

0 0 0

0 0 0

« « « ¬

ai ∈ R+, 1 ≤ i ≤ 36, +, ×n} be a semifield of sut Fi d b ifi ld f W C

99. Let X =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a aa a a a

a a a a

a a a a

-ª º°« »°« »®« »°« »°¬ ¼¯

where ai ∈

≤ 16} be a super square matrix linear asemifield S = R+ ∪ {0}.

(i) Find a basis of X over S.

(ii) Is X finite dimensional?

(iii) Write X as a direct sum of semivector

(iv) Write X as a pseudo direct sum

subspaces.

(v) Let V ⊆ X be a subspace find V⊥ so t

a complement?

100. Let V =1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

-ª º°« »®« »°« »¬ ¼¯

ai ∈ Q+ ∪ {0},

Page 332: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 332/344

¯super matrix semivector space over the se∪ {0}.

(i) Can W =1 2 3a a a

a a a

-ª º°« »®« » ai ∈ Z

101. Let V =

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

a a a a a aa a a a a a

a a a a a a

a a a a a a

-ª º°« »°« »®« »°« »°« »¬ ¼¯

ai ∈

1 ≤ i ≤ 24} be a super matrix semilinear algebZ+ ∪ {0}.

(i) Is V finite dimensional?

(ii) Find subspaces of V so that V can be w

direct sum of super matrix semivector subs(iii) Write V as a pseudo direct sum of su

semilinear algebra.

(iv) Let M =

1 6 7 8

2 9 10 11

3 12 13 14

4 5

a 0 0 a a a

a 0 0 a a aa 0 0 a a a

0 a a 0 0 0

-ª º°« »°« »®« »°« »°« »¬ ¼¯

{0}, 1 ≤ i ≤ 14} ⊆ V be a super matrixsubalgebra of V.

Page 333: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 333/344

g

a) How many complements exists for M?b) Write down the main complement of M.

(iii) Can V have linearly independent enumber (cardinality) is greater than thof the basis of V over S?

103. Let M =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

a a a a

a a a a

a a a a

a a a a

a a a a

a a a a

a a a aa a a a

a a a a

a a a a

-ª º°« »

°« »°« »°« »°« »°« »°

« »®« »°« »

°« »°« »°« »°« »°« »°¬ ¼¯

where ai ∈

i ≤ 40} be a super column vector semiline

the semifield S = Z+ ∪ {0}.

(i) Find a basis for M over S.

(ii) Write M as a pseudo direct sum of

vector semilinear subalgebra over S.

Page 334: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 334/344

g

(iii) Write M as a direct sum of super

semilinear subalgebras over S.

(iv) Write M = W + W⊥ where W⊥ is

l t f W

(ii) Let M = ii

i 0

a x∞

=

-®¯¦ ai = (0 0 | m1 m2 m3 |

m2, m3 ∈ Q+ ∪ {0}} ⊆ P be a super row linear subalgebra over S. Find M⊥ so thM⊥.

(iii) Let T = ii

i 0

a x∞

=

-®¯¦ ai = (d1 d2 | 0 0 0 | d3

Z+ ∪ {0}, 1 ≤ j ≤ 4} ⊆ P be a semi sublinof P over S. Can we find a orthogonal comT of P over S so that T + T⊥ = P?

105. Let S = ii

i 0

a x∞

=

-®¯¦ ai =

1

2

3

4

5

6

7

8

9

d

d

d

d

dd

d

d

d

ª º« »« »« »« »« »

« »« »« »« »« »« »« »

d j ∈ Z+ ∪ {0}, 1

Page 335: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 335/344

9

10

11

d

d

« »« »« »« »¬ ¼

a super column matrix semilinear algebrasemifield F = Z+ ∪ {0}.

106. Let T = ii

i 0

a x∞

=

-®¯¦ ai =

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

m m mm m m

m m m

m m m

m m m

m m mm m m

m m m

m m m

m m mm m m

ª º« »« »« »« »« »« »

« »« »« »« »« »« »« »« »« »« »¬ ¼

1 ≤ i ≤ 33} be a super column vector semover S = Z+ ∪ {0}.(i) Find a basis for T over S.

(ii) Can T have more than one basis?(iii) Write T as direct sum.

(iv) Write T as pseudo direct sum.

Page 336: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 336/344

107. Let M = ii

i 0

d x∞

=

-®¯¦ di =

1 2 3

5 6 7

9 10 11

13 14 15

17 18 19

a a aa a a

a a a

a a a

a a a

ª « « « « « « «

 108. Obtain some unique properties enjoyed by sucoefficient polynomial rings.

109. Find some special features of super matrixpolynomial semivector spaces over the semifiel

{0}.

110. Describe any special feature enjoyed by sucoefficient polynomial semivector space semifield S = Z+ ∪ {0}.

111. Give some applications of super matrix polynomial semilinear algebras defined over a s

Page 337: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 337/344

 

)857+(55 ($',1* 

1. Abraham, R.,   Linear and Multilinear A

Benjamin Inc., 1966.

2. Albert, A., Structure of Algebras, Colloq. P

Math. Soc., 1939.3. Gel'fand, I.M.,   Lectures on linear algeb

New York, 1961.

4. Greub, W.H.,   Linear Algebra, Fourth EdVerlag, 1974.

Page 338: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 338/344

5. Halmos, P.R., Finite dimensional vector Nostrand Co, Princeton, 1958.

6. Harvey E. Rose,   Linear Algebra, Bir K2002.

7. Herstein I.N., Abstract Algebra, John Wiley,

Page 339: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 339/344

 

,1'(; 

D

Derivatives of matrix coefficient polynomials, 21-9

I

Integral of matrix coefficient polynomials, 26-33

L

Linear algebra of super column matrices, 225-9

Page 340: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 340/344

Linear algebra of super row matrices, 225-9Linear algebra under natural product of matrices, 91-

M

Matrix coefficient polynomials, 8

P

Polynomial with matrix coefficients, 8Polynomials with column matrix coefficients, 11-35Polynomials with row matrix coefficients, 11-35

R

Ring of column matrices under natural product, 63-8Ring of row matrix coefficient polynomials, 16-9

S

Semifield of matrices under natural product, 76-9Semifields, 7Semigroup of row matrix coefficient polynomials, 16-8Semigroup of super column vector, 198-204Semigroup of super row vectors, 198-200Semiring of matrices under natural product, 75-80Semirings, 7

Semivector spaces, 7S-ideal, 7Smarandache linear algebra, 10Smarandache semigroup under natural product, 42-9Smarandache semigroup, 7Smarandache semiring, 77-83Smarandache subsemigroup, 46-53

S d h b i i 77 83

Page 341: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 341/344

Smarandache subsemiring, 77-83Smarandache vector spaces, 10Special column matrix S-field, 100-4S-ring of matrices under natural product, 70-5S-rings, 7S-Special strong column matrix vector space, 103-7

Super matrix semigroup under natural product, 182-Super row matrix coefficient polynomials, 252-5Super row matrix, 8-9, 163-6Super row vector semiring, 212-6Super row vector, 9, 163-8Super square matrix semiring, 212-7Super square matrix, 9, 163-9 

Page 342: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 342/344

$%2877+($87+256

'U:%9DVDQWKD.DQGDVDP\ LV DQ $VVRFLDWH 3URI

'HSDUWPHQW RI 0DWKHPDWLFV ,QGLDQ ,QVWLWXWH RI0DGUDV &KHQQDL ,Q WKH SDVW GHFDGH VKH KDV JXLGH

VFKRODUV LQ WKH GLIIHUHQW ILHOGV RI QRQDVVRFLDWLY

DOJHEUDLF FRGLQJ WKHRU\ WUDQVSRUWDWLRQ WKHRU\ IX]]\DSSOLFDWLRQV RI IX]]\ WKHRU\ RI WKH SUREOHPV IDFHGLQGXVWULHV DQG FHPHQW LQGXVWULHV 6KH KDV WR KHU

UHVHDUFK SDSHUV 6KH KDV JXLGHG RYHU 06F D

SURZHFWV6KHKDVN RU5HGLQFROODERUDWLRQSURZHFWVN LW

6SDFH2HVHDUFK1UJDQL]DWLRQDQGN LWKWKH7DPLO%DGX

&RQWURO 6RFLHW\ 6KH LV SUHVHQWO\ N RU5LQJ RQ D UHVH

IXQGHG E\ WKH *RDUG RI 2HVHDUFK LQ %XFOHD RYHUQPHQWRI,QGLD7KLVLVKHU

UGERR5

1Q ,QGLDV 9WK ,QGHSHQGHQFH 'D\ 'U.DV

FRQIHUUHG WKH (DOSDQD &KDN OD $N DUG IRU &RXUDJH QWHUSULVH E\WKH 6WDWH RYHUQPHQW RI 7DPLO %DGXLQ

RI KHU VXVWDLQHG ILJKW IRU VRFLDO ZXVWLFH LQ WKH ,QGLDQ

7HFKQRORJ\,,70DGUDVDQGIRUKHUFRQWULEXWLRQWRP

7KH DN DUG LQVWLWXWHG LQ WKH PHPRU\ RI ,QGLDDVWURQDXW (DOSDQD &KDN OD N KR GLHG DERDUG 6S

&ROXPELD FDUULHG D FDVK SUL]H RI ILYH OD5K UXSHHV

SUL]HPRQH\IRUDQ\,QGLDQDN DUGDQGDJROGPHGDO

6KHFDQEHFRQWDFWHGDW YDVDQWKD5DQGDVDP\JPDLOFR8HE6LWHKWWS::PDWLLWPDFLQ:KRPH:N EY:SXEOLF;KWPO

RUKWWS::N N N YDVDQWKDLQ

Page 343: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 343/344

'U )ORUHQWLQ 6PDUDQGDFKH LV D 3URIHVVRU RI 0DW

WKH <QLYHUVLW\ RI%HN 0H=LFRLQ<6$ >HSXEOLVKHG RY

DQG A99 DUWLFOHV DQG QRWHV LQ PDWKHPDWLFV SK\VLFV

SV\FKRORJ\ UHEXV OLWHUDWXUH ,Q PDWKHPDWLFV KLV UHQXPEHU WKHRU\ QRQ XFOLGHDQ JHRPHWU\ V\QWKHWLF

DOJHEUDLF VWUXFWXUHV VWDWLVWLFV QHXWURVRSKLF ORJL

Page 344: Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

8/3/2019 Natural Product Xn on Matrices, by W. B. Vasantha Kandasamy, Florentin Smarandache

http://slidepdf.com/reader/full/natural-product-xn-on-matrices-by-w-b-vasantha-kandasamy-florentin-smarandache 344/344