near infrared-ii imaging, plasmonic platforms, graphene ...dailab.stanford.edu/2013 07 dai group...

70
Near Infrared-II Imaging, Plasmonic Platforms, Graphene Nanoribbons & Novel Materials for Energy Hongjie Dai Department of Chemistry, Stanford University

Upload: vubao

Post on 14-Apr-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Near Infrared-II Imaging,

Plasmonic Platforms,

Graphene Nanoribbons

&

Novel Materials for Energy

Hongjie Dai

Department of Chemistry, Stanford University

Our Current Research

NanoCarbon-

Inorganic Hybrid

materials

ENERGY

Carbon Nanotube

(CNT) & graphene

NANO-BIO

Graphene

Nanoribbon

NOVEL

1D SYSTEMS

500nm

Plasmonic Gold Films

Interface Nanomaterials with Bio-Systems

Carbon Nanotube

(CNT) & Nano-

graphene

500nm

Plasmonic Gold Films

• Utilization of the physical (electrical,

optical…) properties of nanomaterials

for imaging, detection, diagnosis and

treatment of diseases (cancer, heart

disease...)

Top Fatal Diseases:

1. Ischaemic heart disease

Annual deaths: ~ 7,200,000

2. Cancers

Annual deaths: ~7,100,000

3. Cerebrovascular disease (Stroke)

Annual deaths: ~ 5,500,000

Vessel diseases: #1 killer

500 nm

Making CNTs Biocompatible and Non-Toxic

in

PBS in PBS

80ºC

a NH2

NH2

NH2

Polyethylene Glycol

• Length 50- 200nm.

• Soluble in buffers and serum.

• Antibodies or peptides can be

attached.

SWNT/Phospholipid-PEG

(PEG)

XCNH

OPO

H

O

O -O

OO

OCH2CH2

O

O

45

(Kam, N.W.S. et al. PNAS 2005, 102, 11600.)

Photoluminescence Emission Wavelength (nm)

Exci

tati

on

Wav

elen

gth

(n

m)

(6,5) (10,2) (8,7)

Carbon Nanotubes Fluorescence in NIR-II

Resonance Raman

• Excited resonantly through Eii transitions in 500-900nm range.

• Fluoresce in 1-1.4 mm range (NIR II); large Stoke’s shift.

Weisman & Smalley @Rice

Smith, Andrew. M., Mancini, Michael. C.

Nie, Shuming. Nat Nano 2009, 4, 710.

Developing Optical Imaging in

The Second NIR Window (NIR-II, 1-1.4 mm)

Old NIR window

A new window

Si detector InGaAs detector

Kevin Welsher, Sarah P.

Sherlock, and Hongjie Dai.

PNAS. 108, 8943-8948, 2011.

Sc

att

eri

ng

Co

eff

icie

nt

[mm

-1]

Scattering l-a : Absorbance:

Reduced tissue scattering

in NIR-II

NIR I NIR II

Untreated

30 min

100 nM

NIR-II signal 1000 nm – 1400 nm

Little or no autofluorescence

NIR II Imaging of Mice

Welsher, K. et al. Nature Nanotechnology; 2009

With intravenously injected SWCNTs:

8

Deep-Tissue NIR II Video Rate Imaging

3.5 sec

3.5 sec

lungs

lungs

17.3 sec

(c)

17.3 sec

liver

liver

69 sec

69 sec

spleen

spleen

5.2 sec

5.2 sec

kidney

kidneys

Welsher, K.*, Sherlock, S.* Dai, H. Proc. Nat. Acad. Sci. 2011.

(Image into the body of a mouse optically)

9

Anatomical Mapping by Principle Component

Analysis (PCA) of NIR II Video Imaging

kidney

liver

lungs lungs

liver

kidney

spleen

heart

spleen

lungs

spleen

lungs

liver

kidney

spleen

kidney

kidney

liver

pancreas

pancreas pancreas

Welsher, K.*, Sherlock, S.* Dai, H. Proc. Nat. Acad. Sci. 2011.

• PCA groups pixels with similar time variance in signal

600 800 1000 1200 1400

Emission of IR800

(NIR-I)

Emission of nanotubes

(NIR-II)

Inte

ns

ity

[a

.u.]

Wavelength [nm]

Absorption

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lize

d P

L i

nte

ns

ity

Position [mm]

0.607 mm

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lize

d P

L i

nte

ns

ity

Position [mm]0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

No

rma

lized

PL

in

ten

sit

y

Position [mm]

cross section profile

1.37 mm

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lized

PL

in

ten

sit

y

Position [mm]

0.283 mm

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lized

in

ten

sit

y

Position [mm]

0.583 mm

0 1 2 3 4 5 60.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lize

d P

L i

nte

ns

ity

Position [mm]

1 cm (f) (g) (h)

(l) (m) (n)

NIR-I IR dye 800

NIR-II SWNT

1x magnified

(i) (j) (k)

(o) (p)

5 mm 1 mm

(q)

1 cm

5 mm 1 mm

2.5x magnified 7x magnified

InGaAs camera

(NIR-II)

Si camera

(NIR-I)

mirror

zoomable lens

set

Simultaneous Imaging in NIR-I &NIR II

SWNT

+

IRDye-

800

complex

NIR-I Peripheral Vessel Imaging Imaging in NIR-I by detecting IRDye800 fluorescence:

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0

No

rma

lize

d P

L i

nte

ns

ity

Position [mm]

cross section profile

0 2 4 6 80.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lize

d P

L i

nte

ns

ity

Position [mm]0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lize

d P

L i

nte

ns

ity

Position [mm]

1 cm

Low mag Medium mag High mag

5 mm 1 mm

0 1 2 3 4 50.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lize

d P

L i

nte

ns

ity

Position [mm]0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lized

in

ten

sit

y

Position [mm]0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0 cross section profile

No

rma

lized

PL

in

ten

sit

y

Position [mm]

(i)

(l)

NIR-

II

NIR-II Peripheral Vessel Imaging

Imaging in NIR-II by detecting SWNT fluorescence:

G. Hong, J. Lee, J. Cooke, H. Dai, Nature Medicine, 2012

5mm 5mm

NIR-I750-900nm

NIR-II1000-1400nm

NIR-I vs NIR-II imaging of ischemic mouse hindlimb

NIR-II Imaging: Reduced Scattering

G. Hong, J. Lee, J. Cooke, H. Dai, Nature Medicine, 2012

Previous imaging modality: micro-CT, MRI

Clear vs. Smoggy Day in Beijing

t = 0 s t = 4.98 s t = 10.68 s

t = 30.62 s PCA

(a) (b) (c)

(d) (e)

aorta inferior

epigastric

femoral

external iliac

inferior

epigastric

heart

aorta epigastric

artery

femoral artery

femoral vein

epigastric veins

iliacfemoral

(f)

Sub-cm Deep Vessel Imaging &

Differentiation

G. Hong, J. Lee, J. Cooke, H. Dai, Nature Medicine, 2012

Video Rate Imaging of

Blood Flow in Healthy vs. Ischemic Hindlimb

(12,1)-enriched SWNTs

103.5 s

3.1 s

PCA

Chirality Separated SWNT for NIR-II Imaging

S. Diao, H. Dai, et al., J. Am. Chem. Soc. 2012

Gel filtration separation method:

F. Hennrich, M Kappes and coworkers @ Karlsruhe Institute of Technology

Chirality Separated SWNT for

Tumor Photothermal Therapy

A. Antaris, et. al., ACS Nano, 2013

• Ultra-low dosage: ~ 4 μg of (6,5) SWCNTs per mouse

(0.254 mg/kg)

• Dual imaging & photothermal therapy

Density gradient centrifugation method:

M. Hersam, Northwestern.

A

B

C

Polyethylene glycol

(PEG)

SN-38

0

2000000

4000000

6000000

8000000

400 500 600 700

Wavelength (nm)

Flu

ore

sc

en

ce

In

ten

sit

y

SN38

GO-SN38

0

0.2

0.4

0.6

0.8

1

1.2

200 400 600 800Wavelength (nm)

Ab

so

rba

nc

e

GOGO-SN38SN38, in methanolGO Loaded SN38

Graphene for Biology and Medicine

• p-stacking of SN38 cancer drug graphene oxide for drug delivery.

• SN38: a potent, insoluble cancer drug

J Am Chem Soc. 2008 August 20; 130(33):

10876–10877.

Z. Liu, H. Dai et al., J. Am. Chem. Soc. 2008

Graphene Oxide Are Fluorescent in

NIR-I & NIR-II Hailiang Wang, Joshua T.

Robinson, et. al. J. Am.

Chem. Soc., 131, 9910-

9911, 2009.

X. Sun, H. Dai, et. al. Nano Res, 1, 203-212 , 2008.

200 400 600 800 1000 12000

10

20

30

40

50

60

70

80

Ab

so

rban

ce

Wavelength (nm)

Nano-rGO

Nano-GO

Nano-Sized Reduced Graphene Oxide (rGO)

100 nm

100 nm

Nano-GO with

PEGylation

Nano-rGO

2 μm

GO as made

Non-covalent functionalized nano-rGO

Biocompatible

High optical absorbance in NIR

Useful for photothermal therapy

Joshua T. Robinson, H. Dai, et. al.

J. Am. Chem. Soc. 133, 6825-6831, 2011.

Nano-rGO

Nano-GO

pH 1 pH 13 2x PBS Serum

Photothermal Ablation of Cancer Cells With

RGD Peptide/Nano-rGO Complex

We are able to

photothermally

ablate cells with

targeted rGO.

In vivo trials are

currently underway

Joshua T. Robinson, H. Dai, et. al.

J. Am. Chem. Soc. 133, 6825-6831, 2011.

A Nanostructured Gold Platform for Biological Assays

(ELISA, Microarrays…)

A novel microarray platform on

nanostructured gold films for ultra-

sensitive multiplexed immunoassay of

proteins

- Sensitivity: down to ~ 1 fM (0.01

pg/ml) level (ELISA: pM level)

- Dynamic range: > 6 orders of

magnitude dynamic range.

- Multiplexed: detection of hundreds of

proteins each time.

- Uses small volume of serum or other

biological sample.

- Low cost; rapid; high throughput.

A powerful approach to disease

diagnosis:

- Cancer;

- Autoimmune disease diagnosis

(diabetes, rheumatoid arthritis,

Lupus,…)

• Can capture and

detect large numbers

of biological

molecules.

• High throughput.

• Little sample volume

needed.

• Powerful for

proteomic research

and diagnostics

• But sensitivity has

been limited.

S. Tabakman et al., Nature Comm. 2011

Plamonic substrate

antigen

Secondary antibody

Fluorophore reporter

PEG star

Autoantibody,

cytokine…

Plamonic Au substrate

• Many nano-gaps

• Gold film surface plasmon resonance in NIR range

1 mm

Fluorescence Enhancement of NIR Dyes

-1 000

0

1 000

Y (

µm

)

0 X (µm)

x10 3

20

40

Inte

nsi

ty (

cnt/

sec)

400 µm

-1 000

0 Y (

µm

)

0 X (µm)

x10 3

20

40

Inte

nsi

ty (

cnt/

sec)

400 µm

-1 000

0

1 000

Y (

µm

)

0 X (µm)

x10 3

20

40

Inte

nsi

ty (

cnt/

sec)

400 µm

-1 000

0 Y (

µm

)

0 X (µm)

x10 3

20

40

Inte

nsi

ty (

cnt/

sec)

400 µm

-1 000

0 Y (

µm

)

0 X (µm)

x10 3

50

100

Inte

nsi

ty (

cnt/

sec)

400 µm

-1 000

0

1 000

Y (

µm

)

0 X (µm)

x10 3

50

100

Inte

nsi

ty (

cnt/

sec)

400 µm

-1 000

0 Y (

µm

)

0 X (µm)

x10 3

50

100

Inte

nsi

ty (

cnt/

sec)

400 µm

-1 000

0

1 000

Y (

µm

)

0 X (µm)

x10 3

50

100

Inte

nsi

ty (

cnt/

sec)

400 µm

1 ? m

1 cm

1 m m

1 cm 1 cm

650 700 750 0.0

2.0x10 5

4.0x10 5

6.0x10 5

Flu

ore

scen

ce

inte

nsit

y

IgG-Cy5 on Au/Au IgG-cy5 on glass

Wavelength (nm) Wavelength (nm)

800 850 900 0.0

2.0x10 5

4.0x10 5

6.0x10 5

IgG-IRDye800 on Au/Au IgG-IRDye800 on glass

~ 100 fold enhancement

Multiplexed ImmunoAssays on Fluorescence

Enhancing, PEG-Star Coated Au Films

Glass Gold10

100

1000

10000

IRDye800 Fluorescence Intensity

Flu

orescen

ce I

nte

nsit

y

Plamonic substrate

antigen

Secondary antibody

Fluorophore reporter

6arm-PEG-COOH:

(10kDa)

AuGlass

AuGlass

AuGlass

AuGlass

22 22 22NH

C=O C=O C=OC=O

C=OC=O

C=O C=O

NHNH

NH NH

NHNH NH2

NH2

NH2

NH2 NHNH NHNH NHNH NHNH NHNH

C=O C=O C=OC=O

C=OC=O

C=O C=O

NHNH

NH NH

SS S SSS SS SAu

Glass

Au

Glass

Au

Glass

22 22 22NH

C=O C=O C=OC=O

C=OC=O

C=O C=O

NHNH

NH NH

NHNH NH2

NH2

NH2

NH2 NHNH NHNH NHNH NHNH NHNH

C=O C=O C=OC=O

C=OC=O

C=O C=O

NHNH

NH NH

SS S SSS SS S

Au

Glass

PEG star

CEA

Plamonic Au substrate

• Fluorescence enhancement (no quenching);

• Boosts binding signal for immunoassays by 100X

• Minimal nonspecific signal through surface chemistry

• PEG cushion retains protein structures and functions

S. Tabakman et al., Nature Comm. 2011

Cancer Biomarker Detection on Au Platform Towards

Early Cancer Diagnosis

• fM sensitivity

• 6 logs

• Branched PEG-

star blocking:

minimal non-

specific binding

• Plasmonics:

boosts specific

signal

26

Cancer Biomarker Detection from

Tumor-Bearing Animals • CEA in the serum of LS174T xenograft mouse models

measured on plasmonic Au/Au films

Days post-inoculationCEA concentration (M)

10-10 10-11 10-12 10-13 10-14 blank10-1510-10 10-11 10-12 10-13 10-14 blank10-15 0 14 16 19

105

106

107

Flu

ore

scen

ce In

ten

sit

y

50 100 150 200

1E-13

1E-12

1E-11

CE

A C

on

ce

ntr

ati

on

(M

)

Tumor Volume (mm3)

LS174T

Tumor

(CEA+)

ELISA detection limit

S. Tabakman, Nature Comm. 2011

100

1000

Flu

ore

scen

ce In

ten

sit

y

100

1000

100

1000

µArray/Au

Nitrocellulose

Glass

*

* *

27

Multiplexed Autoantibody Detection on Gold

• Much broader dynamic range on gold.

• Lower detection limit down to fM

• Highly sensitive antigen microarrays

100

1000

Fluorescence Intensity

100

1000

100

1000

µA

rra

y/A

u

Nitro

cellu

lose

Gla

ss

S. Tabakman et al., Nature Comm. 2011;

With Dr. P.J. Utz,

Stanford Medical School

Human Cytokine (IL-6) Detection on Gold

Cytokine detection ar

Collaboration with

Novo Nordisk

in place

Selective Cytokine Detection on Gold

Multiplexed Detection of Cytokines Secreted

by Cancer Cells

Array on Gold: Array on Nitrocellulose:

(Bo Zhang, et al., Nano Research, 2013)

A New Platform for Biological Detection

• A plasmonic Au platform for ELISA & microarray

detection.

• Sensitivity: down to ~ 1 fM (0.01 pg/ml) level.

- Dynamic range spans > 6 orders of magnitude.

- Single assay or multiplexed.

- Uses small volume of serum/blood or other samples.

- Simple & low cost

- Compatible with existing instrumentation.

- Protein arrays, cytokine arrays, antigen arrays, peptide,

carbohydrate, DNA, RNA…

- For genomics, proteomics research and diagnostics.

A novel microarray platform on

nanostructured gold films for ultra-

sensitive multiplexed immunoassay of

proteins

- Sensitivity: down to ~ 1 fM (0.01

pg/ml) level (ELISA: pM level)

- Dynamic range: > 6 orders of

magnitude dynamic range.

- Multiplexed: detection of hundreds

of proteins each time.

- Uses small volume of serum or

other biological sample.

- Low cost; rapid; high throughput.

A powerful approach to disease

diagnosis:

- Cancer;

- Autoimmune disease diagnosis

(diabetes, rheumatoid arthritis,

Lupus,…)

Graphene Nanoribbons (GNR) Arm-chair GNR Zig-Zag GNR

Rich edge related chemistry and physics predicted

(Xiaolin Li, Xinran Wang, et al., Science, 2008)

Chemical Synthesis of Graphene Nanoribbons

Unzip

Nanotubes

For

Graphene

Nanoribbons

(L. Jiao, et. al., Nature,

2009;

J. Tour group, Nature,

2009)

(b) (c)

Nanoribbons Synthesis by Physical and Chemical Means

Plasma

L. Jiao, et. al., Nature, 2009;

L. Jiao, et. al., Nature Nano, 2010;

High Quality Nanoribbons with Smooth Edges

• Moire pattern between layers

• Smooth edges, little roughness.

4 nm 4 nm

L. Xie (with K. Suenaga group) et al., JACS, 2011

Crommie, Dai, Louie groups, Nature Physics, 2011

• Highly Smooth edges

• Observation of

magnetic edge states at

nanoribbon edges

STM of Graphene Nanoribbons (GNR)

-3 -2 -1 0 1 2 3Vgs (V)

-40

-20

0

20

40

Vd

s (

mV

)

1.5

1.0

0.5

0.0

c T=2K

2.82.62.42.22.01.81.6Vgs (V)

-20

0

20

Vd

s (

mV

)

0.4

0.2

0.0

-40

-20

0

20

40

Vd

s (

mV

)

1.0

0.5

0.0

# holes

6 5 4 3 2 1

# electrons

1 2 3 Δε10 =3.6

Δε20 =16.2

d

e

1.0

0.5

0.0G

(e

2/h

)

-3 -2 -1 0 1Vgs (V)

4

3

2

1

0

G (

e2/h

)

-40 -20 0 20 40Vgs(V)

100nm

3.6

3.9

G (

e2/h

)

200100

T (K)

Vg=Vdirac-35V

L~86nm

W~14nm

a

0.01

2

4

0.1

2

4

1

2

4

G (

e2/h

)

20100-10-20Vgs(V)

290K 250K 200K 150K 100K 60K

4

0

G (

e2/h

)

-40 40Vgs (V)

b

0.01

2

4

0.1

2

4

1

2

4

G (

e2/h

)

20100-10-20Vgs(V)

290K 250K 200K 150K 100K 60K

2K

0.4

0.3

0.2

G (

e2/h

)

1050-5Vds (mV)

Quantum Transport of High Quality

Nanoribbons at 1.5 K

(Xinran Wang et al., Nature Nano, 2011)

Growth of Inorganic-NanoCarbon Hybrid for Energy

Storage and Electrocatalysis

H+H2 O2

OH-

e-e-

• High activity and rate capability.

• Durable.

• Low cost; non-precious metal based

(H. Wang et. al.,

Chem. Rev., 2013)

(Y. Liang et. al., JACS

(perspective),

2013)

ALD Growth of Metal Oxide on

Graphene

ALD nucleation requires surface functional groups.

Graphene edges and defect sites are more reactive.

(X. Wang, H. Dai, et al. JACS, 2008)

Nucleation and Growth of Inorganic Materials on

Oxidized Nano-Carbon

• Nucleation step: metal ions binding to COOH groups on GO or CNT. • Growth step: the degree of graphene oxidation affects morphology. • Nanoparticles grown are electrically wired up to carbon. • Covalent coupling between nanoparticle and carbon observed. • A series of covalently coupled hybrid materials for energy applications.

Precursor Free particles

B

nucleation/growth on oxygen functional groups

on nano-carbon

Traditional: free particles + carbon black (or CNTs)

‘Strongly coupled hybrid’ of

inorganic/nano-carbon

(SC-hybrid)

Strongly Coupled-Hybrid of Oxides, Hydroxides

Phosphate, Sulfides… and Graphene

MoS2

10 nm

graphene

Co3O4

LiMn0.75Fe0.25PO4

graphene

Graphene Ni(OH)2

100nm

(f)

(d)

(e)

(a) (b)

(c)

Nanoparticle Growth Morphology

(MoS2:/graphene: an advanced hydrogen evolution catalyst)

Free growth

Growth on GO

(Y. Li et al., JACS, 2011)

LiMn0.75Fe0.25PO4 Grows into Nanorods on Graphene

10 20 30 40 50 60 70 80

(34

0)

(33

1)

(31

1)

(11

2)

Inte

ns

ity

(a

.u.)

2 (Degree)

(40

0)

(13

1)

(16

0)

(03

1)

(12

1)

(11

1)

(12

0)(0

11

)(0

20

)

(22

2)

(04

1)

(14

0)

(21

1)

100nm

100nm

LiMn0.75Fe0.25PO4

graphene

20 nm

Li+ diffusion

path [010]

1nm

5 nm [100]

[001]

0.47nm

(001)

1.04nm

(100)

(H. Wang et al., with Yi Cui group, Angew Chemie, 2011)

LiMn0.75Fe0.25PO4 /GO as a Fast, High-Voltage,

Stable Cathode Material for Li Ion Battery

0 50 100 150

2.0

2.5

3.0

3.5

4.0

4.5

V

olt

ag

e v

s L

i/L

i+ (

V)

Specific Capacity (mAh/g)

charge

discharge

0 20 40 60 80 1000

40

80

120

160

Sp

ecif

ic C

ap

acit

y (

mA

h/g

)

Cycle Number

0 20 40 60 80 1000

40

80

120

160

Sp

ec

ific

Ca

pac

ity (

mA

h/g

)

Discharge Rate (C)

0 30 60 90 120 150

2.0

2.5

3.0

3.5

4.0

100C

50C

20C

10C

2C

Vo

ltag

e v

s L

i/L

i+ (

V)

Discharge Capacity (mAh/g)

0.5C

3 min discharge time

GS

Ni(OH)2 300nm GS Ni(OH)2

100nm 10 20 30 40 50 60 70 80

(103)

(003)

(012)

(002)

(011)

Gra

ph

ite (

002)

(100)

Inte

nsit

y (

a.u

.)

2 (Degree)

(001)

Ni(OH)2 Nanoplates Grown on Graphene

1. Ni(Ac)2, 80OC

DMF/H2O (10:1)

2. H2O, 180OC

Hydrothermal

(Hailiang Wang et al., J. Am. Chem. Soc., 2010)

For ultra-fast Ni based alkaline batteries

47

Ultrafast Ni-Fe Battery

Anode Cathode

FeOx

Fe

Ni(OH)2

NiOOH

(H, Wang, et al., Nature Comm., 2012)

0 50 100 150 200

0.4

0.8

1.2

1.6

2.0

Vo

lta

ge

(V

)

Time (s)

37A/g

(e)

0 40 80 120

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Vo

lta

ge

(V

)

Discharge Capacity (mAh/g)

1.5A/g

3.7A/g

7.4A/g

15A/g

37A/g

0 200 400 600 800 0.0

0.2

0.4

0.6

0.8

1.0

Ca

pa

cit

y R

ete

nti

on

Cycle Number

(f) 0.5 1.0 1.5 2.0 -0.15

-0.10

-0.05

0.00

0.05

0.10

0.15 C

urr

en

t (A

)

Voltage (V)

100mV/s

40mV/s

20mV/s

10mV/s charging

discharging

Ultra-Fast Ni-Fe Battery

Higher energy density than

supercapacitors

Safe (KOH in water as electrolyte).

fast (2 min charge; 10 s discharge)

like supercap

(H, Wang, et al., Nature Comm., 2012)

Speeding Up Thomas Edison’s Ni-Fe Battery

Have been used for > a century.

Good energy density; Safe (KOH as electrolyte).

Slow (hours of charge-discharge).

To demonstrate the reliability of the Edison nickel-iron battery, a battery-powered Bailey was entered in a 1,000-mile endurance run in 1910. (National Park Service / June 26, 2012)

SCIENCE

Stanford researchers update safer, cheaper Edison battery

Recharge a car

in minutes?

10 nm

graphene

Co3O4

Co3O4/Graphene and Co3O4/Nanotube Electrocatalysts for

Oxygen Reduction (ORR) and Evolution (OER)

20 30 40 50 60 70

2 (degree)

Inte

nsi

ty (

a.u

.)

220

311

400

511 440

0.08 0.12 0.16

0.02

0.03

0.04

J -1(m

2/A

)

0.75V

0.70V

0.65V

0.60V

-1/2 (s1/2/rad1/2)

n = 3.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0-7

-6

-5

-4

-3

-2

-1

0

1

2

Cu

rren

t D

ensi

ty (

mA

/cm

2)

Potential (V vs RHE)

400 rpm

625 rpm

900 rpm

1225 rpm

1600 rpm

2025 rpm

Co3O4/N-rmGO

0.2 0.4 0.6 0.8 1.0

50 mA

Potential (V vs RHE)

Co3O4/rmGO

Co3O4/N-rmGO

Pt/C

(Y. Liang, Y. Li, H. Wang, et al., Nature Materials, 2011; J. Am. Chem. Soc. 2012)

0.7 0.8 0.9 1.0-60

-40

-20

0

Co3O

4

Co3O

4 + N-rmGO mixture

Co3O

4/N-rmGOC

urr

ent

Den

sity

(m

A/c

m2)

Potential (V vs RHE)

Activity due to

Co3O4 covalent

coupling to GO

100 nm

10 nm

530 540 550

Abso

rpti

on

(a.

u.)

Photon Energy (eV)

Co3O4/N-rmGO

Co3O4

O K-edge

775 780 785 790 795 800

Ab

sorp

tio

n (

a.u

.)

Co3O4/N-rmGO

Co3O4

Photon Energy (eV)

Co L-edge

O 2p–Co 3d

unoccupied O 2p–Co 3d

hybridized state

Co 3d

e-

O2

X-Ray Absorption Spectroscopy

280 285 290 295 300

Abso

rpti

on

(a.u

.)

Photon energy (eV)

Co3O4/N-rmGO

N-rmGO

C K-edge

C=O p* C 1s →p*

C 1s →s*

• Perturbed C-O groups in GO upon particle growth: evidence of

Co-O-C-graphene bonding

• Strong coupling is responsible for high activity and stability of

catalysts

Harsh oxidation of double walled CNTs followed by NH3 annealing

Damaged outer-walls forming nanoscale graphene oxide pieces attached to the mostly intact

inner-walls (nanotube-nanographene complex, or NT-G)

Fe inherited from the catalyst seeds for the growth of CNTs

Exfoliating Double (Triple) Walled Nanotubes for ORR

Catalysts in Acids

Hummers’

oxidation

NH3 annealing

Y. Li et al., Nature Nano, 2012

(d) NT-NG

(e)

attached

nano-graphene

(f)

damaged

outer-walls

CNT

CNT

Nanotube-Nanographene Complexes Doped with

Fe and N

Y. Li et al., Nature Nano, 2012

• Intact inner wall for charge transport

• Highly defective/functional outerwall for catalytic sites

• Fe impurities are from nanotube raw material

(a)

(b)

(c)

(d)

An Active ORR Catalyst in Acid & Base

Y. Li et al.,

Nature

Nano,

accepted

BF (a) ADF (b)

CNT

nanographene

Atomic Scale Imaging and Chemical Mapping

Fe mapping combined mapping

(d) ADF (c)

(e) N mapping (f) (g)

W. Zhou & S. Pennycook. Oakridge

Single atom EELS

N Map Fe Map

N+Fe Map ADF

N

Fe

Single-Atom Imaging: Fe, N and C

High Energy Rechargeable

Zinc-Air Battery

• Primary Zn-air

battery has been

commercialized

• Not rechargeable

battery

2

44 ( ) 2Zn OH Zn OH e- - -

Why Zinc-Air Battery?

• Much higher

energy density

than lithium ion

batteries

Benefit of Rechargeable Zn Air Batteries

Why Zn air?

• Abundance of Zn on earth

• Safety and low-cost

• High energy density: 2 times of lithium ion battery.

One of the challenges for rechargeable Zn-air batteries:

• Cathode side need more active and stable electrocatalysts for

ORR & OER

Anode:

Cathode: 2 22 4 4O H O e OH- -

2

44 ( ) 2Zn OH Zn OH e- - -

(ORR/OER)

ORR: oxygen reduction reaction

OER: oxygen evolution reaction

Figure 1 CoO/N-CNT

NiFe LDH/CNT

OH-

O2

b c

e f

CoO nanocrystals

CNT

CNT

NiFe LDH plates

NiFe LDH plates

CNT

Electrocatalysts for Oxygen Electrodes

ORR:

OER:

(Y. Liang, Nature Mater. 2011, JACS, 2012)

(M. Gong, JACS, 2013)

CoO/Oxidized-Nanotube Electrocatalyst for ORR

20 30 40 50 60 70

2 (degree)

Inte

nsi

ty (

a.u

.)

220

311

400

511 440

0.2 0.4 0.6 0.8 1.0

50 mA

Potential (V vs RHE)

Co3O4/rmGO

Co3O4/N-rmGO

Pt/C

(Y. Liang, Y. Li, H. Wang, et al., J. Am. Chem. Soc. 2012)

0.7 0.8 0.9 1.0-60

-40

-20

0

Co3O

4

Co3O

4 + N-rmGO mixture

Co3O

4/N-rmGOC

urr

ent

Den

sity

(m

A/c

m2)

Potential (V vs RHE)

Activity due to

Co3O4 covalent

coupling to GO

10 nm

100 nm

• Metal-oxide/Nanotube hybrid

outperform metal-oxide/graphene

• Higher electrical conductivity of

oxidized multi-walled nanotubes

A New OER Catalyst:

Ultrathin Nanoplates of NiFe Layered Double

Hydroxide/CNT Hybrid

63

(M. Gong et al., JACS, 2013)

• One of the most active catalyst to evolve oxygen in alkaline solutions

• Cheap and stable

Higher Activity and Durable than Ir/C in

Basic Solutions

64

0 2000 4000 6000 8000 10000-0.2

0.0

0.2

0.4

0.6

0.8

ORR

CoO/N-CNT

NiFe LDH/CNT

Pt/C

Ir/C

OER

Po

ten

tia

l (V

vs H

g/H

gO

)

Time (s)

j = 20 mA/cm2

theoretical potential

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-200

-150

-100

-50

0

50

100

ORR

CoO/N-CNT

NiFe LDH/CNT

Pt/C

Ir/C

Cu

rren

t D

ensity (

mA

/cm

2)

Potential (V vs Hg/HgO)

OER

Eo = O2/OH

-

a

b

Electrocatalysts for Oxygen Electrodes

• Highly active in basic solutions,

matching Pt or Ir.

• Stable over days tested.

(Y. Li et al., Nature Comm., in press)

0 100 200 300 400 500 6000.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Vo

lta

ge

(V

)

Specific Capacity (mAh/g)

10 mA/cm2

100 mA/cm2

0.0 0.1 0.2 0.3 0.4 0.5 0.60.4

0.6

0.8

1.0

1.2

1.4

CoO/N-CNT

Pt/C Pow

er

De

nsity (

W/c

m2)

Volta

ge

(V

)

Current Density (A/cm2)

0.00

0.05

0.10

0.15

0.20

0.25

Primary Zn-Air Battery

• High discharge peak power density

~265 mW/cm2

• Current density ~200 mA/cm2 at 1 V

• Energy density > 700 Wh/kg.

Y Li et al., Nature Comm., 2013

0.00 0.05 0.10 0.15 0.20 0.25 0.300.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

discharging

CoO/N-CNT + FeNi LDH

Pt/C + Ir/C

Current Density (A/cm2)

Voltage (

V)

charging

Figure 5

a

b

c

0 4 8 12 16 20 24 28 32 36 40

1.2

1.4

1.6

1.8

2.0

2.2

Voltage (

V)

Time (h)

j = 50 mA/cm2

d

Rechargeable Zn-Air Battery in a

Tri-Electrode Configuration

Summary 1. Systematic study of inorganic nanocrystal

growth on graphene

2. Using graphene hybrid materials to boost

the performance of supercapacitors, Ni-Fe

batteries, and Li ion batteries

68

0 20 40 60 80 100 120 140 160 180 200

1.2

1.4

1.6

1.8

2.0j = 20 mA/cm

2 CoO/N-CNT + NiFe LDH

Pt/C + Ir/C

Vo

lta

ge

(V

)

Time (h)

• Low charge-discharge voltage polarization of

~ 0.70 V at 20 mA/cm2

• High reversibility and stability over long charge

and discharge cycles (10 h discharge time)

High Performance Rechargeable

Zn-Air Battery

Y Li et al., Nature Comm., 2013

• CNTs and nano-graphene for biology and medicine.

• A new near-infrared II imaging is developed.

• High quality graphene nanoribbons for physics and

devices.

• Novel Inorganic-carbon hybrid materials for fast energy

storage/release & advanced electrocatalysis.

• Graphene allows atomic/chemical imaging of catalyst sites

Summary

Acknowledgement

Professor Yi Cui

Professor Stephen Pennycook

Professor Wei Fei

Xiaolin Li, Liying Jiao

Xinran Wang, Liming Xie

Hailiang Wang

Yongye Liang

Yanguang Li

Tyler Medford, Wesley Chang

Yuan Yang

Guosong Hong, Kevin Welsher, Sarah Sherlock,

Joshua Robinson, Scott Tabakman, Bo Zhang

Shuo Diao, Alexander Antaris

Nadine Wong Shi Kam, Zhuang Liu,

Giuseppe Prencipe, Andrew Goodwin

Yuichiro Kato, Sasa Zaric, Zhuo Chen.

Professor P. J. Utz

Professor John Cooke

Nano-Bio: Energy & Electronics: