neoclassical probes in of the dark energy - university of...

49
in Wayne Hu COSMO04 Toronto, September 2004 of the Dark Energy NeoClassical Probes

Upload: others

Post on 14-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

  • in

    Wayne HuCOSMO04 Toronto, September 2004

    of the Dark Energy

    NeoClassical Probes

  • Structural Fidelity• Dark matter simulations approaching the accuracy of CMB calculations

    WMAP Kravtsov et al (2003)

  • Equation of State Constraints• NeoClassical probes statistically competitive already CMB+SNe+Galaxies+Bias(Lensing)+Lyα

    • Future hinges on controlling systematicsSeljak et al (2004)

    -2

    -1.8

    -1.6

    -1.4

    -1.2

    -1

    -0.8

    -0.6

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    w

    z

    smooth: w=w0+(1-a)wa+(1-a)2waa

    68%

    95%

  • Dark Energy Observables

  • Making Light of the Dark Side• Line element:

    ds2 = a2[(1− 2Φ)dη2 − (1 + 2Φ)(dD2 + D2AdΩ)]

    where η is the conformal time, D comoving distance, DA thecomoving angular diameter distance and Φ the gravitationalpotential

    • Dark components visible in their influence on the metric elementsa and Φ – general relativity considers these the same: consistencyrelation for gravity

    • Light propagates on null geodesics: in the background ∆D = ∆η;around structures according to lensing by Φ

    • Matter dilutes with the expansion and (free) falls in thegravitational potential

  • Friedmann and Poisson Equations• Friedmann equation:(

    dln a

    )2=

    8πG

    3a2∑

    ρ ≡ [aH(a)]2

    implying that the densities of dark components are visible in thedistance-redshift relation (a = (1 + z)−1)

    D =

    ∫dη =

    ∫d ln a

    aH(a)=

    ∫dz

    H

    • Poisson equation:

    ∇2Φ = −4πGa2δρ

    implying that the (comoving gauge) density field of the darkcomponents is visible in the potential (lensing, motion of tracers).

  • Growth Rate• Relativistic stresses in the dark energy can prevent clustering. If

    only dark matter perturbations δm ≡ δρm/ρm are responsible forpotential perturbations on small scales

    d2δmdt2

    + 2H(a)dδmdt

    = 4πGρm(a)δm

    • In a flat universe this can be recast into the growth rateG(a) ∝ δm/a equation which depends only on the properties ofthe dark energy

    d2G

    d ln a2+

    [5

    2− 3

    2w(a)ΩDE(a)

    ]dG

    d ln a+

    3

    2[1− w(a)]ΩDE(a)G = 0

    with initial conditions G =const.

    • Comparison of distance and growth tests dark energy smoothnessand/or general relativity

  • Fixed Deceleration Epoch

  • High-z Energy Densities• WMAP + small scale temperature and polarization measures provides self-calibrating standards for the dark energy probes

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+

    1)C

    l/2π

    (µK

    2 )

    Angular Scale

    00

    1000

    2000

    3000

    4000

    5000

    6000

    10

    90 2 0.5 0.2

    10040 400200 800 1400

    � ModelWMAPCBIACBAR

    TT Cross PowerSpectrum

  • High-z Energy Densities• Relative heights of the first 3 peaks calibrates sound horizon and matter radiation equality horizon

    Multipole moment (l)

    l(l+

    1)C

    l/2π

    (µK

    2 )

    00

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    baryons(sound speed)

  • High-z Energy Densities• Relative heights of the first 3 peaks calibrates sound horizon and matter radiation equality horizon

    Multipole moment (l)

    l(l+

    1)C

    l/2π

    (µK

    2 )

    00

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    dark matter(horizon, equality)

    leading sourceof error!

  • High-z Energy Densities• Cross checked with damping scale (diffusion during horizon time) and polarization (rescattering after diffusion): self-calibrated and internally cross-checked

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+

    1)C

    l/2π

    (µK

    2 )

    00

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    cross checked

  • Standard Ruler• Standard ruler used to measure the angular diameter distance to recombination (z~1100; currently 2-4%) or any redshift for which acoustic phenomena observable

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+

    1)C

    l/2π

    (µK

    2 )

    00

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    angular scalev. physical scale

  • Standard Amplitude• Standard fluctuation: absolute power determines initial fluctuations in the regime 0.01-0.1 Mpc-1

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+

    1)C

    l/2π

    (µK

    2 )

    00

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    k~0.02Mpc-1

    k~0.06Mpc-1

  • Standard Amplitude• Standard fluctuation: precision mainly limited by reionization which lowers the peaks as e-2τ; self-calibrated by polarization, cross checked by CMB lensing in future

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+

    1)C

    l/2π

    (µK

    2 )

    00

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

    e-2τsee saturday/astrophCAPMAP, CBI, DASI

  • σ8(z)• Determination of the normalization during the acceleration epoch,

    even σ8, measures the dark energy with negligible uncertaintyfrom other parameters

    • Approximate scaling (flat, negligible neutrinos: Hu & Jain 2003)

    σ8(z) ≈δζ

    5.6× 10−5

    (Ωbh

    2

    0.024

    )−1/3 (Ωmh

    2

    0.14

    )0.563(3.12h)(n−1)/2

    ×(

    h

    0.72

    )0.693G(z)

    0.76,

    • δζ , Ωbh2, Ωmh2, n all well determined; eventually to ∼ 1%precision

    • h =√

    Ωmh2/Ωm∝ (1− ΩDE)−1/2 measures dark energy density

    • G measures dark energy dependent growth rate

  • Reionization• Biggest surprise of WMAP: early reionization from temperature polarization cross correlation (central value τ=0.17)

    Kogut et al (2003)

    Multipole moment (l)0

    (l+1)

    Cl/2

    π� (µ

    K2 )

    -1

    0

    1

    2

    3

    10 10040 400200 800 1400

    TE Cross PowerSpectrumReionization

  • Leveraging the CMB• Standard fluctuation: large scale - ISW effect; correlation with large-scale structure; clustering of dark energy; low multipole anomalies? polarization

    WMAP: Bennett et al (2003)

    Multipole moment (l)

    l(l+

    1)C

    l/2π

    (µK

    2 )

    00

    1000

    2000

    3000

    4000

    5000

    6000

    10 10040 400200 800 1400

  • Standard Deviants[H0 ↔ w(z = 0.4)][σ8 ↔ dark energy]

  • Dark Energy Sensitivity• Fixed distance to recombination DA(z~1100) • Fixed initial fluctuation G(z~1100)• Constant w=wDE; (ΩDE adjusted - one parameter family of curves)

    ∆DA/DA

    ∆G/G

    ∆H-1/H-1

    ∆wDE=1/30.1

    0

    0.1

    0.2

    -0.2

    -0.1

    1z

  • Dark Energy Sensitivity• Other cosmological test, e.g. volume, SNIa distance constructed as linear combinations

    decelerationepoch measuresHubble constant

    ∆DA/DA

    ∆(H0DA)/H0DA

    ∆H0/H0∆G/G

    ∆H-1/H-1

    ∆wDE=1/30.1

    0

    0.1

    0.2

    -0.2

    -0.1

    1z

  • Amplitude of Fluctuations• Recent determinations:

    compilation: Refrigier (2003)

  • Dark Energy Sensitivity• Three parameter dark energy model: w(z=0)=w0; wa=-dw/da; ΩDE • wa sensitivity; (fixed w0 = -1; ΩDE adjusted)

    decelerationepoch measuresHubble constant

    ∆DA/DA

    ∆(H0DA)/H0DA

    ∆H0/H0∆G/G

    ∆H-1/H-1

    ∆wa=1/2; ∆w0=00.1

    0

    0.1

    0.2

    -0.2

    -0.1

    1z

  • Pivot Redshift

    • Any deviation from w=-1 rules out a cosmological constant

    Seljak et al (2004)

    -2

    -1.8

    -1.6

    -1.4

    -1.2

    -1

    -0.8

    -0.6

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    w

    z

    smooth: w=w0+(1-a)wa+(1-a)2waa

    68%

    95%

    • Equation of state best measured at z~0.2-0.4 = Hubble constant

  • Dark Energy Sensitivity• Three parameter dark energy model: w(z=0)=w0; wa=-dw/da; ΩDE • H0 fixed (or ΩDE); remaining w0-wa degeneracy• Note: degeneracy does not preclude ruling out Λ (w(z)≠-1 at some z)

    decelerationepoch measuresHubble constant

    ∆DA/DA

    ∆(H0DA)/H0DA

    ∆G/G

    ∆H-1/H-1

    ∆wa=1/2; ∆w0=-0.150.1

    0

    0.01

    0.02

    -0.02

    -0.01

    1z

  • Rings of Power

  • Local Test: H0• Locally DA = ∆z/H0, and the observed power spectrum is isotropic in h Mpc-1 space• Template matching the features yields the Hubble constant

    Eisenstein, Hu & Tegmark (1998)k (Mpc–1)

    0.05

    2

    4

    6

    8

    0.1

    Pow

    er

    h

    Observedh Mpc-1

    CMB provided

  • Cosmological Distances• Modes perpendicular to line of sight measure angular diameter distance

    Cooray, Hu, Huterer, Joffre (2001)k (Mpc–1)

    0.05

    2

    4

    6

    8

    0.1

    Pow

    er

    Observedl DA-1

    CMB provided

    DA

  • Cosmological Distances• Modes parallel to line of sight measure the Hubble parameter

    Eisenstein (2003); Seo & Eisenstein (2003) [also Blake & Glazebrook 2003; Linder 2003; Matsubara & Szalay 2002]k (Mpc–1)

    0.05

    2

    4

    6

    8

    0.1

    Pow

    er

    ObservedH/∆z

    CMB provided

    H

  • 0.02

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.04 0.06 0.08 0.10 0.12 0.14k⊥ (Mpc-1)

    k (

    Mpc

    -1)

    0.02 0.04 0.06 0.08 0.10 0.12 0.14k⊥ (Mpc-1)

    Hu & Haiman (2003)

    • Information density in k-space sets requirements for the redshifts• Purely angular limit corresponds to a low-pass k|| redshift survey in the fundamental mode set by redshift resolution

    Projected Power

    (a) DA (b) H

    angularLimber limit

  • Galaxies and Halos• Recent progress in the assignment of galaxies to halos and halo substructure reduces galaxy bias largely to a counting problem

    Kravtsov et al (2003)SDSS: Zehavi et al (2004)

  • Gravitational Lensing

  • Lensing Observables• Correlation of shear distortion of background images: cosmic shear• Cross correlation between foreground lens tracers and shear: galaxy-galaxy lensing

    cosmicshear

    galaxy-galaxy lensing

  • Halos and Shear

  • Lensing Tomography

    • Divide sample by photometric redshifts• Cross correlate samples

    • Order of magnitude increase in precision even after CMB breaks degeneracies

    Hu (1999)

    1

    1

    2

    2

    D0 0.5

    0.1

    1

    2

    3

    0.2

    0.3

    1 1.5 2.0

    g i(D

    ) n

    i(D

    )

    (a) Galaxy Distribution

    (b) Lensing Efficiency

    22

    11

    12

    100 1000 104

    10–5

    10–4

    l

    Pow

    er

    25 deg2, zmed=1

  • Galaxy-Shear Power Spectra• Auto and cross power spectra of galaxy density and shear in multiple redshift bins

    g1g1

    ε1ε1

    ε1ε2ε2ε2g 1ε 2

    g 1ε 1

    g 2ε 2g2ε 1

    g2g2

    100

    10-4

    0.001

    0.01

    0.1

    1000l

    l2C

    l /2π

    Hu & Jain (2003) [also geometric constraints: Jain & Taylor (2003); Bernstein & Jain (2003); Zhang, Hui, Stebbins (2003); Knox & Song (2003)]

    shear-shearcross correlationand B modescheck systematics

    Hoekstra et al (2002); Guzik & Seljak (2001)

  • Mass-Observable Relation

    • With bias determined, galaxy spectrum measures mass spectrum• Use galaxy-galaxy lensing to determine relation with halos or bias

    0.001

    0.01

    0.1

    1

    10

    1011 1012 1013 1014 1015

    Mh (h-1M )

    M*

    ρ0

    dnhd ln Mh N(Mh)

    msAs

    Mth

    σlnM

    z=0

  • Cluster Abundance

  • Counting Halos• Massive halos largely avoid N(Mh) problem of multiple objects

    0.001

    0.01

    0.1

    1

    10

    1011 1012 1013 1014 1015

    Mh (h-1M )

    M*

    ρ0

    dnhd ln Mh N(Mh)

    msAs

    Mth

    σlnM

    z=0

  • Counting Halos for Dark Energy• Number density of massive halos extremely sensitive to the growth of structure and hence the dark energy

    • Potentially %-level precision in dark energy equation of state

    Haiman, Holder & Mohr (2001)

  • Mass-Observable Relation• Relationship between halos of given mass and observables sets mass threshold and scatter around threshold

    • Leading uncertainty in interpreting abundance; self-calibration?

    0.001

    0.01

    0.1

    1

    10

    1011 1012 1013 1014 1015

    Mh (h-1M )

    M*

    ρ0

    dnhd ln Mh N(Mh)

    msAs

    Mth

    σlnM

    z=0

    Pierpaoli, Scott & White (2001); Seljak (2002); Levine, Schultz & White (2002)

  • Dark Energy Clustering

  • ISW Effect• If dark energy is smooth, gravitational potential decays with expansion• Photon receives a blueshift falling in without compensating redshift• Doubled by metric effect of stretching the wavelength

    Sachs & Wolfe (1967); Kofman & Starobinski (1985)

  • ISW Effect• ISW effect hidden in the temperature power spectrum by primary anisotropy and cosmic variance

    [plot: Hu & Scranton (2004)]

    10-12

    10-11

    10-10

    10-9

    l(l+

    1)C

    l /2

    πΘ

    Θ

    10 100l

    total

    ISW

    w=-0.8

  • ISW Galaxy Correlation• A 2-3σ detection of the ISW effect through galaxy correlations

    Boughn & Crittenden (2003); Nolte et al (2003); Fosalba & Gaztanaga (2003); Fosalba et al (2003); Afshordi et al (2003)

    0 10 20 30θ (degrees )

    - 0.4

    - 0.2

    0

    0.2

    0.4

    <X

    T>

    (T

    OT

    cn

    ts s

    -1µK

    )

    Boughn & Crittenden (2003)

  • Dark Energy Smoothness• Ultimately can test the dark energy smoothness to ~3% on 1 Gpc

    Hu & Scranton (2004)

    (Φ−Φ

    s)/Φ

    s

    0.011 10

    0.03

    0.10

    ceη0 (Gpc)

    total

    z10

    fsky=1

  • Summary• NeoClassical probes based on the evolution of structure• CMB fixes deceleration epoch observables: expansion rate, energy

    densities, growth rate, absolute amplitude, volume elements

    • General relativity predicts a consistency relation betweendeviations in distances and growth due to dark energy

    • Leading dark energy distance observable is H0 or equivalentlyw(z ∼ 0.4)

    • Leading growth observable σ8 measures dark energy (andneutrinos)

    • Many NeoClassical tests can measure the evolution of w but allwill require a control over systematic errors at the ∼ 1%

    • Promising probes are beginning to bear fruit: cluster abundance,cosmic shear, galaxy clustering, galaxy galaxy lensing,

  • Dark Energy Sensitivity• H0 fixed (or ΩDE); remaining wDE-ΩT spatial curvature degeneracy• Growth rate breaks the degeneracy anywhere in the acceleration regime

    decelerationepoch measuresHubble constant

    ∆DA/DA∆(H0DA)/H0DA

    ∆G/G

    ∆H-1/H-1

    0.1

    0

    0.01

    0.02

    -0.02

    -0.01

    1z

    ∆wDE=0.05; ∆ΩT=-0.0033

  • Keeping the High-z Fixed• CMB fixes energy densities, expansion rate and distances to deceleration epoch fixed• Example: constant w=wDE models require compensating shifts in ΩDE and h

    -1

    0.7

    0.6

    0.5

    -0.8 -0.6 -0.4wDE

    ΩDEh

    first: Off