netfficient d1.6 outline specification document for all energy...

29
Project funded by the European Union’s Horizon 2020 research and innovation programme Project No. 646463 Project acronym: NETfficient Project title: Energy and economic efficiency for today’s smart communities through integrated multi storage technologies Programme: H2020LCE20143 Start date of project: 01.01.2015 Duration: 48 months Deliverable 1.6 Outline specification document for all energy storage technologies* Author: WININERTIA TECHNOLOGIES S.L. Due date of deliverable: 30/09/2015 Actual submission date: 30/09/2015 Deliverable Name Outline specification document for all energy storage technologies Deliverable Number D1.6 Work Package WP 1 Associated Task T1.7 Covered Period M1M48 Due Date M9 Completion Date 30/09/2015 Submission Date 30/09/2015 Deliverable Lead Partner WININERTIA Deliverable Author WININERTIA Version 1.0 Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Ref. Ares(2015)4142728 - 07/10/2015

Upload: others

Post on 10-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

Project  funded  by  the  European  Union’s    Horizon  2020  research  and  innovation  programme    

 

 

 

Project  No.  646463  

Project  acronym:  NETfficient    

Project  title:  

Energy  and  economic  efficiency  for  today’s  smart  communities  through  integrated  multi  storage  technologies  

 

Programme:  H2020-­‐LCE-­‐2014-­‐3  Start  date  of  project:  01.01.2015  Duration:  48  months    

Deliverable  1.6    Outline  specification  document  for  all  energy  storage  technologies*    

 Author:  WININERTIA  TECHNOLOGIES  S.L.  

Due  date  of  deliverable:  30/09/2015   Actual  submission  date:  30/09/2015    

Deliverable  Name   Outline  specification  document  for  all  energy  storage  technologies  Deliverable  Number   D1.6  Work  Package   WP  1  Associated  Task   T1.7  Covered  Period   M1-­‐M48  Due  Date   M9  Completion  Date   30/09/2015  Submission  Date   30/09/2015  Deliverable  Lead  Partner   WININERTIA  Deliverable  Author   WININERTIA  Version   1.0    

Dissemination  Level  PU   Public   X  PP   Restricted  to  other  programme  participants  (including  the  Commission  

Services)    

RE   Restricted  to  a  group  specified  by  the  consortium  (including  the  Commission  Services)  

 

CO   Confidential,  only  for  members  of  the  consortium  (including  the  Commission  Services)  

 

Ref. Ares(2015)4142728 - 07/10/2015

Page 2: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  2  Confidential  document  

     

CHANGE  CONTROL  

 

DOCUMENT  HISTORY  

Version   Date   Change  History   Author(s)   Organisation  1.0   30.09.15   Initial  Version   González  del  Valle   WinInertia  1.1          1.2          1.3          

 

 

DISTRIBUTION  LIST  

Date   Issue   Group  28/09/2015   Revision   AYESA,  WININERTIA,  FRAU,  WF1,  VES,  PTS  29/09/2010   Acceptance   AYESA,  WININERTIA,  FRAU,  WF1,  VES,  PTS  30/09/2010   Submission   AYESA,  WININERTIA,  FRAU,  WF1,  VES,  PTS  

 

   

Page 3: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  3  Confidential  document  

Table  of  content    

Table  of  content  .................................................................................................................  3  

1.   Introduction  ................................................................................................................  4  

2.   SHAD®  System  .............................................................................................................  5  

2.1   Product  Overview  ...............................................................................................................  5  

2.2   A  Hybrid  Storage  Technology  ..............................................................................................  6  

2.3   Technology  Product  Overview  .............................................................................................  7  

2.4   Technology  .........................................................................................................................  8  2.4.1   Energy  Management  System  ...............................................................................................  8  2.4.2   SHAD®  DC/DC  Power  Electronics  .......................................................................................  10  2.4.3   MAXWELL  Ultracapacitors  Stacks  ......................................................................................  11  

2.5   Hybrid  Energy  Storage  Solutions  .......................................................................................  13  2.5.1   HESS  solution  overview  .....................................................................................................  13  2.5.2   Hybrid  solutions:  A  cost  effective  opportunity  ..................................................................  13  2.5.3   Hybrid  solutions:  Benefits  .................................................................................................  14  

2.6   Business  cases  ...................................................................................................................  15  2.6.1   Peak  Service  Group  ............................................................................................................  15  

3.   Battery  System  ..........................................................................................................  16  

3.1   Product  Overview  .............................................................................................................  16  

3.2   Cycle  life  Expectation  ........................................................................................................  16  

3.3   MV  Storage  solution  .........................................................................................................  16  3.3.1   Main  characteristics  ..........................................................................................................  16  3.3.2   Battery  system  architecture  ..............................................................................................  17  3.3.3   Battery  modularity  and  safety  ...........................................................................................  18  3.3.4   Mechanical  specifications  ..................................................................................................  19  

3.4   LV  Storage  solution  –  PowerRack  system  solution  .............................................................  22  

4.   Second  live  EV  Batteries  (2LEVB)  ................................................................................  24  

4.1   Product  Overview  .............................................................................................................  24  

4.2   Technology  .......................................................................................................................  24  

4.3   Business  cases  ...................................................................................................................  25  

5.   Solenco  Power  Box  ....................................................................................................  26  

5.1   Product  Overview  .............................................................................................................  26  

6.   Other  energy  vector  solutions  ....................................................................................  28  

6.1   Overview  ..........................................................................................................................  28    

 

   

Page 4: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  4  Confidential  document  

1. Introduction  Worldwide,  electric  power  grid  are  undergoing  substantial  and  operational  changes,  driven  by:  

• Growing  amount  of  intermittent  renewable  energy  generation  from  wind  and  solar  PV.  • Increasing  global  electricity  consumption  • Aging  grid  assets  requiring  replacement  or  refurbishment  • Rising  drive  towards  decreased  fuel  consumption  and  carbon  emissions  output  

Energy   storage   systems   (ESSs)   for   the   electric   grid   can   provide   important   benefits   to   customers,  utilities  or  grid  operators.  ESSs  can  be   integrated  at  different   levels  of   the  electric  grid.   Ideally,  ESS  operate  as  flexible  resources  that  fulfill  multiple  grid  applications:  

• Generation:  Price  arbitrage,  capacity  firming  • Transmission:  Frequency  regulation,  voltage  control,  investment  deferral,  black  start  • Distribution:  capacity  support,  local  voltage  control,  reactive  power  compensation  • Customer:  peak  shaving,  off-­‐grid  supply,  energy  management  

Hybrid  energy  storage  systems  (HESSs)  have  been  demonstrated  in  the  market.  Unlike  a  conventional  ESS,  a  HESS  provides  a  spectrum  of  solutions  and  can  capture  multiple  value  streams  within  a  single  system  by:  

• Optimizing  use  of  the  high  energy  density  storage  technology  • Offering  a  rapid  response  to  short  term  issues  • Minimizing  investment  cost,  minimal  maintenance  and  extended  life  

 With   increased   adoption,  HESSs  will  more   rapidly   facilitate   introduction  of   renewables   generation,  accelerate   decarbonization,   improve   the   security   and   efficiency   of   electricity   transmission   and  distribution,   and   stabilize   market   prices   for   electricity,   while   also   ensuring   a   higher   availability   of  power  supply.    Inside  the  NETfficient  project,  the  different  ESS  to  be  used  are:    

• UltraCapacitors  (SHAD®  solution)  • Li-­‐Ion  Batteries  • Second  Live  Electrical  Vehicles  Batteries  (2LEVB)  • Hydrogen  systems  (Solenco  solution)  

 

These  different  ESS  are  the  main  topic  to  be  described  in  this  Deliverable.    

Page 5: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  5  Confidential  document  

2. SHAD®  System  Win   Inertia,   a   leader   in   the   design   and   development   of   power   electronics   systems   and  

controls,  along  with  Maxwell  Technologies,  the  global  leader  in  ultracapacitors,  are  offer  the  SHAD®,  an  innovative,  multi-­‐purpose,  and  cost  effective  hybrid  energy  storage  solution  for  the  grid.  

Win  Inertia  and  Maxwell's  HESS  plays  a  pivotal  role   in  the  electric  grids  of  the  future,  while  effectively  facing  the  following  challenges:  

• Increased   need   for   high   quality   reliable   power   as   a   result   of   increased   use   of   consumer  power  electronics  

• Elevated  peak  demands  and  need  for  fast  and  efficient  responses  to  changes  within  the  grid  • Heightened  need  to  integrate  distributed  and  intermittent  renewable  energy  resources  into  

the  electric  supply  system  • Intensified  congestion  in  transmission  and  distribution  systems  • Decreased   dependence   on   fossil-­‐fuels   and   improved   returns   on   renewable   energy  

investments    • Increased  need  for  stabilization  of  isolated,  weak  or  poorly  fed  grids  

 

2.1 Product  Overview  SHAD®   is  an  energy   storage   solution  with  high  power  density,   specially  designed   to  ensure  

grid  stabilization  and  offer  an  optimal  response  for  high  power  and  short  duration  energy  events.  

As  the  optimized  hybrid  energy  storage  solution,  the  SHAD®  solution  has  been  conceived  to  perform  enhanced  hybridization  of  high  power  ultracapacitors  with  a  myriad  of  other  energy  storage  technologies   (batteries,   flywheels,  etc.)  under  a  unique  DC  bus,  offering  a   large  portfolio  of  energy  services.   In  addition  to   its  hybrid  capabilities,  advanced  power  electronics  and  energy  management  algorithms,   the   SHAD®   solution   can   be   operated   as   a   traditional   ESS   and   offer   its   services   to   any  power  plant  or  utility,  meeting  and  beating  all  the  grid  operator's  power  needs.  

WI-­‐Maxwell's   SHAD®   solution   is   a   fully   integrated,   turnkey,   containerized   high   power   and  energy  technology,  specially  designed  to  solve  the  usual  problems  in  grids'  stabilization,  weak  grids,  isolated  grids  or  renewable  energies  integration  

Key  customer  benefits  

• Lower  investment  (15-­‐25%  CAPEX  reduction)  • Decrease  O&M  costs  (25-­‐35%  OPEX  reduction)  • Flexibility  in  terms  of  energy  and  power  • Common  interface  with  existing  systems  • Reduces  ESS´s  degradation    

Product  highlights  

• Energy  and  power  modularity  • Scalability  • Optimum  sizing  • Energy  storage  hybridization  • Multiple  grid  services    

Page 6: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  6  Confidential  document  

SHAD®  Applications  

• Grid  stabilization  • Power  Service  Group  • Grid  Services  • Renewable  energy  Integration  • Weak  or  isolated  grids  

 

2.2 A  Hybrid  Storage  Technology    

   SHAD®  allows  the  integration  of  a  large  variety  of  energy  storage  technologies  within  the  same  

solution   and   device.   This   allow   us   to   optimize   the   design   of   a   solution   in   which   different   storage  technologies  coexist,  obtaining  the  maximum  benefit  of  each  of  the  energy  storage  systems.  

When   all   this   is   combined   with   the   flexibility   and   modularity   of   the   power   electronics,   a  versatile   solution,   which   can   integrate   ultracapacitors   (UCAPs)   with   any   other   storage   system,  independent  of   its   nature   (Li-­‐Ion  batteries,  Ni-­‐Cd  batteries,  H2  batteries,   flow  batteries,   flywheels,  etc.)  offer  a  wide  variety  of  responses  and  grid  services.  

 HYBRID  RESPONSES:  • Very  high  power  density  and  short  duration  (seconds-­‐minutes),  through  Maxwell's  UCAPs  • High  energy  density  to  moderate  power  density  (dozens  of  minutes-­‐hours),  through  Li-­‐Ion  

batteries  • Very   high   energy   density   and   low   power   density   (hours)   through   high   energy   density  

devices  (VRLA,  Ld-­‐Ac,  lead  crystal,  NaS,  Ni-­‐Mh  batteries  or  others)      

Page 7: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  7  Confidential  document  

   

2.3 Technology  Product  Overview  

 

Win  Inertia  and  Maxwell’s  SHAD®  product  is  based  on  the  seamless  performance  of  several  technologies  such  as  DC/DC  power  converters  for  energy  storage  systems’  integration,  Maxwell’s  UCAP  stacks  for  high  power  and  short  duration  events,  and  energy  management  systems  with  enhanced  energy  management  algorithms.  The  diagram  above  shows  the  different  elements  of  the  entire  SHAD®  product  

ENERGY  MODULARITY  

The  SHAD®  solution  integrates  Maxwell  ultracapacitor  stacks,  designed  and  optimized  by  Win  Inertia,  for  grid  applications  in  terms  of  power  and  energy  sizing.  Several  ultracapacitor  stacks  can  work  together  in  order  to  meet  customers’  energy  requirements.  

 

Page 8: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  8  Confidential  document  

POWER  MODULARITY  

The  SHAD®  power  electronics  (DC/DC  converters)  are  based  on  power  modules  (70kW,  136kW,  277kW)  that  achieve  an  optimized  integration  of  Maxwell’s  ultracapacitors.  Several  power  modules  can  work  together  offering  power  from  70kW  to  2.7MW  

 

2.4 Technology  2.4.1 Energy  Management  System  

Win  Inertia’s  Energy  Management  System  is  a  flexible  hardware  and  embedded  software  platform  that  performs  real-­‐time  management  and  control  of  the  operation  of  Maxwell’s  ultracapacitor  stacks  and  power  electronics  as  well  as  other  energy  storage  systems  connected  to  the  SHAD®  solution  

 

Win  Inertia’s  EMS,  according  to  power  plant  controller’s  commands,  manages  and  controls  the  SHAD®  units  (UCAP  stacks  and  DC/DC  power  modules)  in  order  to  meet  the  grid  requirements,  in  terms  of  power,  energy  and  grid  services.  

HYBRID  ENERGY  STORAGE  MANAGEMENT  ALGORITHMS  

EMS  management  algorithms  integrate  dynamic  modellings  of  the  energy  storage  systems,  based  on  their  environmental,  chemical  and  electrical  parameters  as  well  as  thermal  inertia.  

Page 9: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  9  Confidential  document  

 

 

The  proper  development  and  evolution  of  these  modeling’s  allow  the  SHAD®  units  to  supply  the  required  energy  needs,  ensuring  that  the  operation  of  the  energy  storage  systems  is  always  within  its  comfort  zone,  avoiding  premature  degradation  and  ensuring  their  operation  in  optimal  conditions.    

Win   Inertia’s   EMS  decides  which   energy   storage   systems  provide   the   service   requested   by  the  grid,  depending  on  the  state  of  each  energy  storage  system  and  its  operational  conditions  

DISTRIBUTED  ENERGY  MANAGEMENT  ALGORITHMS  

The  operation  of  the  distribution  grid  is  facilitated  by  the  distributed  management  algorithms,  implemented  in  the  EMS  of  the  hybrid  SHAD®  technology.  The  EMS  management  algorithms  have  a  distributed  characteristic,  which  enables  scalability  at  a  system  level  in  case  it  should  be  necessary.  

Win  Inertia’s  Power  Plant  Controller  (PPC)  evaluates  the  grid  operator’s  demands  and  based  on  this  information,  commands  the  EMSs  which  SHAD®  unit  injects  to  or  absorbs  power  from  the  grid,  depending  on  its  state  and  the  service  to  be  provided.    

The  EMS  is  scalable  and  flexible,  this  implies  that  if  due  to  the  evolution  of  the  energy  needs  it  becomes  necessary  to  increase  capacity  by  adding  new  SHAD®  units  into  the  system,  the  EMS  of  each  SHAD®  can  coordinate  its  operation  to  allow  the  operation  of  various  SHAD®  devices  as  a  single  entity,  facilitating  a  globalized  operation,  thanks  to  the  “Energy  to  Share”  and  “Energy  to  Use”  concepts.    

WI  -­‐EMS  (HARDWARE  PLATFORM)  Maximum  number  of  channels   Up  to  32  channels  Maximum  sampling  frequency   250  kHz  Digital  Signal  Processors   Texas  Instrument  DSP  Core  Processor   ARM  Cortex  A9  processor  with  Ultra  Low  Power  

Consumption  ADC   24  bits  ADC  converter  Signal-­‐to-­‐Noise  Ratio   >  91.5  dB  Multitechnology   Voltage,  current,  vibrations,  ultrasound,  

thermography,  phase  analysis...  

Page 10: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  10  Confidential  document  

Memory   128  Gbyte  (can  be  extended  to  500  Gbyte  Display   Optional  Communications  ports   Fast  Ethernet  100BaseT,  Wi-­‐Fi  802.11g,CANbus,  

RS23/485,  Zigbee,  Optic  fiber  Communications  protocols   Modbus  TCP/IP,  Modbus  RTU,  CANopen,  

CANv2.0A,  IEC  60870  5-­‐101,  IEC  60870-­‐  5-­‐104  Management  algortihms   Life  control  algorithms  

SoC,  SoH  and  SoF  Dynamic  modelling  Hybrid  algorithms  Predictive  intelligence  

 

2.4.2 SHAD®  DC/DC  Power  Electronics  

Win  Inertia,  a  leader  in  the  design  and  development  of  power  electronics  systems  and  controls,  has  designed  and  developed  flexible,  modular  and  multiport  DC  power  converters  based  on  power  modules  that  achieve  a  seamless  and  coordinated  integration  of  Maxwell´s  ultracapacitors,  batteries  or  any  other  storage  technology  under  a  unique  DC  bus  

 

 

 

 

SHAD®  DC/DC  POWER  ELECTRONICS:  KEY  FACTOR  

Win  Inertia’s  SHAD®  DC/DC  power  electronics  are  the  key  element  for  the  perfect  integration  of  ultracapacitors  and  other  energy  storage  systems,  such  as  any  kind  of  battery  technology,  flywheels,  fuel  cells  or  other  energy  storage  system.  

Thanks  to   its  modular  and  flexible  architecture  and   its  enhanced  control  electronics  systems,  SHAD®  DC/DC  converters  achieve  an  optimal  management  of  the  energy  storage  systems,   injecting  to  or  absorbing  energy  from  each  energy  storage  system  in  the  SHAD®  solution  

Page 11: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  11  Confidential  document  

SHAD®  power  converters  operate  the  energy  storage  systems  in  such  a  way  that  they  remain  within  their  comfort  zones,  minimizing  their  degradation  and  maximizing  their  performance  

 

     

SHAD  POWER  ELECTRONICS:  MODULAR  TECHNOLOGY  

Win   Inertia   offers   a  wide   variety   of   power  modules   in   order   to  meet   the   grid’s   energy   and  power  needs.  The  SHAD®  power  converter’s  range  varies  between  70  kW  and  277  kW.  Depending  on  the   power   needs,   up   to   2.7Mw   can   be   provided   through   the   coordinated   operation   of   multiple  SHAD®  power  modules    

SHAD  POWER  ELECTRONICS:  HIGHLIGHTS  

• Power  modularity(from  70kW  to  2.7mW)  • Multiport  DC  interface  • Optimum  integration  of  Maxwell´s  UCAPS  • Integration  of  the  other  energy  storage  systems.  • Flexible  architecture  (robustness)  • Reduced  energy  storage  system  degradation    

2.4.3 MAXWELL  Ultracapacitors  Stacks  

In  order  to  provide  a  system  that  offers  high  power  density  responses,  Win  Inertia  has  designed  a  high  power  solution  integrating  Maxwell’s  ultracapacitor  technology.  

Each  of  Maxwell’s  ultracapacitor  stacks  integrates  a  monitoring  and  equalization  technology  (UCMS®)  that  performs  real-­‐time  evaluations  and  controls  the  ultracapacitor  stacks  operation.  

Ultracapacitors  are  unique  energy  storage  devices  that  exhibit  very  high  power  densities  and  exceptionally  long  life,  on  the  order  of  20  years  and  millions  of  cycles.  Maxwell’s  ultracapacitors,  which  store  and  discharge  energy  very  quickly,  complement  a  primary  energy  source  that  cannot  repeatedly  provide  bursts  of  power,  like  an  internal  combustion  engine.  

Ultracapacitors  are  currently  used  in  thousands  of  applications  and  are  being  considered  in  a  host  of  new  applications.  The  most  important  are:  

• Back-­‐up  power  • Regenerative  power  

Page 12: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  12  Confidential  document  

• Frequency  regulation  • Grid  Stability  

 

ULTRACAPACITORS  MANAGEMENT  SYSTEM  (UCMS®)  

Win  Inertia’s  storage  management  system  has  the  capability  to  monitor  and  perform  passive  and  active  balancing  in  energy  storage  systems  based  on  any  number  of  electromechanical  cells.  

 

UCMS®  is  an  integrated  management  system  with  over-­‐charge/discharge  protection,  accurate  state  of  charge  and  state  of  health  reporting  and  optional  active  cell  balancing.  

• Optimize  UCAPs’  performance  using  passive  and/or  active  cell  balancing  • Decrease  O&M  costs  and  optimize  the  operation  of  UCAPs,  avoiding  high  or  unexpected  

operation  costs  • Evaluate  in  real-­‐time  the  state  of  health  and  expected  service  life  of  UCAPs  • Monitor  in  real-­‐time  and  control  critical  parameters  (voltage,  current,  temperature)  • Predict  cell’s/tray’s/stack’s  replacement  • Make  real-­‐time  decisions  in  order  to  change  the  operations  conditions  and  extend  

UCAPs’  lifetimes  • Control  the  State  of  Charge  (SoC),  State  of  Health  (SoH),  State  of  Function  (SoF)    and  its  

corresponding  optimization    

Page 13: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  13  Confidential  document  

 

 

2.5 Hybrid  Energy  Storage  Solutions  Win  Inertia  and  Maxwell’s  HESS  achieves  cost-­‐effective  integrations  of  renewable  energies,  

significant  decreases  in  fuel  consumption,  grid  stabilization  and  an  optimized  dimensioning  of  energy  storage  systems,  through  the  perfect  integration  of  ultracapacitors  with  other  storage  technologies  (batteries,  flywheels,  fuel-­‐cells,  etc.)  and  advanced    power  electronics  (DC/DC  converters  and  power  conversion  systems)  with  primary  energy  sources  (renewable  energies,  fuel  generators,  etc.).  

2.5.1 HESS  solution  overview  

• Win  inertia  and  Maxwell    SHAD®  system    • Power  conversion  systems  (PCS)  • Power  plant  controller  (PPC)  • Energy  storage  systems  integration    • Energy  sources  integration  • Auxiliary  system  integration    • Grid  operator  interface    

2.5.2 Hybrid  solutions:  A  cost  effective  opportunity    

The  key  barriers  for  grid  energy  storage  are  cost  and  operating  lifetime.  The  hybrid  solution  demonstrates  a  step-­‐change  breakthrough  for  both  of  these  aspects  through  the  combination  and  optimization  of  multiple  types  of  energy  storage,  adapted  to  the  project’s  needs.  

The  WI-­‐Maxwell’s  hybrid  solution  is  designed  to  provide  an  optimal  high  power  and  high  energy  density  response.    

Using  hybrid  technology  allows  for  an  optimal  sizing  thanks  to  the  variety  of  responses  offered  by  the  energy  storage  systems  integrated  into  the  HESS  solution.  

    Therefore,   the   oversizing   of   installed   energy   to   provide   the   required   power   response   is  avoided  and,  as  a  consequence,  the  CAPEX  and  OPEX  are  reduced.  

 

 

 

 

Page 14: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  14  Confidential  document  

 

 

2.5.3 Hybrid  solutions:  Benefits    

• Reduce  CAPEX  and  OPEX  significantly.    • Ensure  grid  stability  support  under  variations  of  the  PV  power  production  due  to  ramp  

rate  effect  or  peak  power  demands.    • Offer  energy  back-­‐up  that  ensures  the  shutdown  of  diesel  generators  and  reduces  fossil  

fuel  consumption.    • Achieve  maximum  lifetimes  of  the  energy  storage  system,  thanks  to  decreased  

degradation.    • Guarantee  continuous  high  quality  supply    • Enhance  the  distribution  grid  • Provide  simultaneous  grid  services  as  opposed  to  traditional  ESSs  that  can  only  provide  

one  

 

Page 15: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  15  Confidential  document  

2.6 Business  cases  2.6.1 Peak  Service  Group  

 

 

The  following  economic  case  study  is  an  analysis  of  the  use  of  a  hybrid  storage  system  based  on  Maxwell  and  Win  Inertia’s  SHAD®  technology  to  provide  two  types  of  services,  one  in  cases  of  high  power  density  (frequency  regulation)  and  another  in  cases  of  high  energy  density  (prolonged  back-­‐up),  all  within  a  single  integrated  device.  

Hybrid  solution  for  a  2  MW  peak  service  group  for  frequency  regulation  services:  

• Installed  power  cost  :  1.89$/W  (approx.)    • 2MW  peak  power      • Total  investment  between  15-­‐30%    • Installed  energy  cost:  2.21$/WH  (approx.)  (cost  reduced  by  15-­‐25%)    • Useful  energy  cost:  3.25$/WH  (approx.)  (cost  reduced  by  30-­‐40%)    • Installed  energy  reduced  by  30-­‐35%    • Batteries  investment  reduced  by  35-­‐45%    • OPEX  reduced  by  25-­‐35%  and  CAPEX  reduced  by  15-­‐25%      

Page 16: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  16  Confidential  document  

3. Battery  System  3.1 Product  Overview  PowerTech  Systems  will  provide  a  Lithium-­‐ion  battery  system.  In  the  case  of  MV,  this  system  will  be  

tied  to  SHAD@  and  also  an  inverter  with  their  associated  monitoring  systems  to  form  the  Hybrid  Energy  Storage  System  (HESS).  

3.2 Cycle  life  Expectation    Lithium  Iron  Phosphate  Is  one  of  the  best  chemistry  in  terms  of  life  cycle.  Lifespan  ainly  depends  on  

two  variables  :    

• Level  of  power  In  charge  and  Discharge    • Depth  of  Discharge  (DoD)  for  each  charge  discharge  cycle.    

The  below  figure  shows  the  relation  between  lifespan  (in  number  of  cycle)  vs  DoD  and  level  of  power  in  C-­‐°-­‐Rate.  

 

 

3.3 MV  Storage  solution  3.3.1  Main  characteristics  

MV  Storage  Solution  Set  up   Unipolar  Footprint   Small  footprint  

Page 17: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  17  Confidential  document  

Environment   Passive  cooling  Low  noise  disturbance  Ambien  temp  >  0ºC  

Safety  features   Over  current  detection  Charge  over-­‐voltage  and  discharge  under-­‐voltage  detection  Cell  voltage  measurement  and  protection  Cell  temperature  measurement  and  protection  Dual  isolated  power  contactor  for  positive  and  negative  pole  Passive  cell  balancing  –  active  module  balancing  SOC  measurement  SOH  measurement  

Battery  Management  System   24  bits  ADC  converter  Precharge   >  91.5  dB  Current  Probe   Voltage,  current,  vibrations,  ultrasound,  

thermography,  phase  analysis...  Internal  Communications   128  Gbyte  (can  be  extended  to  500  Gbyte  External  Communications   Optional  Communications  ports   Fast  Ethernet  100BaseT,  Wi-­‐Fi  802.11g,CANbus,  

RS23/485,  Zigbee,  Optic  fiber  Communications  protocols   Modbus  TCP/IP,  Modbus  RTU,  CANopen,  

CANv2.0A,  IEC  60870  5-­‐101,  IEC  60870-­‐  5-­‐104  Management  algortihms   Life  control  algorithms  

SoC,  SoH  and  SoF  Dynamic  modelling  Hybrid  algorithms  Predictive  intelligence  

 

3.3.2 Battery  system  architecture  

The  architecture  will  be  made  of  12  strings  of  16  x  2.6kWh  modules  in  series.  The  12  strings  will  be  then  interconnected  in  parallel  to  provide  the  half  MWh  battery  system.    

Each  slave  embeds  a  BMS  that  manages  locally  16  cells.  All  information  are  sent  to  the  master  BMS  of  the  string.    

Each  master  BMS  embedded  precharge  system,  protection  contactors  and  high  voltage  fuse.  Master  role  is  to  monitor  slaves,  balance  modules,  calculate  SOC  an  SOH,  and  secure  a  string  by  removing  it  from  the  pool  in  case  of  failure.    

One  master  is  affected  to  external  communication.  It  centralizes  all  information  coming  from  masters,  compute  it  and  send  it  to  distant  hosts  using  a  dedicated  CAN  bus.    

Figure  below  shows  an  overview  of  the  battery  architecture  

 

Page 18: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  18  Confidential  document  

 

 

3.3.3 Battery  modularity  and  safety  

  About  safety  features,  each  stack  comprises:  

• 16  x  modules  of  16  cells  • 16  slave  BMS  for  local  cell  protection  and  monitoring  • 1  master  BMS  

Page 19: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  19  Confidential  document  

 

Each  stack  is  stand-­‐alone  and  managed  by  a  master  BMS.  When  all  safety  conditions  are  satisfied,  stack  will  join  the  pool  of  stack  using  precharge  algorithm  and  contactor  and  close  the  two  main  leads  contactors.    

If  one  stack  has  a  fault  detected,  it  will  leave  the  main  pool  of  stack  and  will  come  back  as  soon  issue  is  fixed.    

Upstream  of  the  MV,  the  ground  fault  detection  system  will  take  place  to  monitor  potential  issue  in  relation  with  battery  stack  isolation.  

 

MV  battery  for  Borkum  is  a  large  scale  battery.  In  order  to  facilitate  tests,  implementation  and  installation,  we  think  that  a  modular  system  will  be  the  best  solution  for  this  project.    

3.3.4 Mechanical  specifications  

   Benefits  of  a  modular  solution  :    

• Easier  to  transport,  install  and  configure    • Scalable  system,  allow  more  power  or  energy  by  adding  new  modules    • Lower  transportation,  comission  and  decomission  costs.    • Maintenance  facilitated.  

In  the  next  image  you  can  see  a  3D  overview  of  PowerRack  2.6kWh  module  

 

Page 20: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  20  Confidential  document  

 

Power  Rack  General  specifications  Nominal  voltage   51,2V  Max  Voltage   58,4V  Min  Voltage  minimale   44.0V  Nominal  capacity   50Ah  Specific  energy   5.12kWh  Weight   30kg  Height   3U  Width   19’’  format  Depth   45cm  Technology   LiFePo4    

Li-­‐BMS  (Master  BMS)  

 

General  specifications  Number  of  modules  managed   Up  to  25  Number  of  Li-­‐BMS  in  parallel   Up  tp  20  Precharge  system   Built-­‐in  External  communication   CAN,  CAN  2B,  CANOpen  

Page 21: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  21  Confidential  document  

Weight   10kg  Height   2U  Width   19’’  format  Depth   35cm    

MV  battery  mechanical  details  

Over  view  of  a  41.2kWh  String  –  Rack  50U  

 

Page 22: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  22  Confidential  document  

 

Overview  of  MV  battery  system  12x50U  battery  racks  +  1  rack  for  power  concentration  

Dimensions  Width   7,92m  Height   2,37m  Depth   0,67m  Weight  racks   1040kg  Weight  modules   5760kg  Weight  others  (wires)   1000kg  Total  Weight   7800kg    

3.4 LV  Storage  solution  –  PowerRack  system  solution  PowerRack  system  is  a  powerful  and    scalable  solution  for  a  wide  variety  of    stationary  applications.    

 Applications:    

• Residential  • commercial,    • industrial  applications,    • UPS,    • telecommunications,    • weak  grid,    • off-­‐grid  • self-­‐sufficiency  systems.    

 PowerTech   Systems   has   rigorously   selected   and   tested   best-­‐in-­‐class   Lithium   Iron   Phosphate   cells  

that  are  assembled  in  this  product,  in  order  to  provide  high  lifespan  and  performance.    Lithium   Iron   Phosphate   (LFP)   is   currently   the   best   solution   for   storing   energy,   because   of   its  

durability,   its   high   security   and   its   technical   superiority   compared   to   other   technologies   on   the  market.      The  key  points  of  PowerRack  system:    

• Very  high  energy  density    • Configure  easily   the  system  to  a  variety  of  voltages  according   to  each  customer’s   specific  

needs    • High  reliability,  robustness  and  durability    

Page 23: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  23  Confidential  document  

• Ease  of  deployment  and  scalability  (19  inches  standard)    • Centralized  monitoring  for  system  control    

   PowerRack   systems   embed   smart   BMS:   Battery   Management   System’s   (BMS)   main   task   is   to  

control  each  vital  element  of  battery:  voltage  and  cell   temperature,  power  supplied  by  the  system,  load  control,  etc.  The  BMS  incorporates  some  smart  balancing  algorithm  that  controls  that  all  cells  in  the  system  are  constantly  at  the  same  voltage  level.    State  of  Charge  (SoC)and  State  of  Health  (SoH)  are  precisely  measured  by  powerful  algorithms.  BMS  is  also  equipped  with  a  built-­‐in  multi-­‐protocol  communication  module   (CAN,  CAN  open,  RS232,  ModBus)   to  back  up  all  operating   information   for  external  control  and  monitoring,  or  for  integration  with  other  systems.      The  modularity  and  scalability  of  PowerRack  system  offer  a  wide  range  of  configurations  :    

• PowerRack  system  supports  from  one  single  module,  up  to  500  modules.    • Stored  energy  can  vary  from  2.5kWh  to  1.250  MWh.    • Nominal  voltage  range  from  51.2V  to  1024V    

 

   

Page 24: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  24  Confidential  document  

4. Second  live  EV  Batteries  (2LEVB)  Williams  Advanced  Engineering  is  the  technology  and  engineering  services  business  of  the  Williams  Group  of  companies  that  includes  the  world  famous  Williams  Martini  Racing  Formula  One  team.  Williams  Advanced  Engineering  provides  world  class  technical  innovation,  engineering,  testing,  and  manufacturing  services  to  deliver  energy  efficient  performance  to  the  Automotive,  Motorsport,  Civil  Aerospace,  Defence,  Sports  Science  and  Energy  Sectors.  Williams  Advanced  Engineering  specialises  in  advanced  lightweight  materials,  hybrid  power  systems  and  electronics,  cutting  edge  aerodynamics,  vehicle  dynamics,  and  holistic  integration  capabilities    Williams  Advanced  Engineering  combines  cutting  edge  technology  and  the  industry’s  best  engineers,  with  a  precision  and  speed  to  market  derived  from  four  decades  of  success  in  the  ultra  competitive  environment  of  Formula  One.  Working  in  close  collaboration  with  our  customers  and  partners,  Williams  Advanced  Engineering  creates  energy  efficient  performance  to  meet  the  sustainability  challenges  of  the  21st  Century.  

4.1 Product  Overview  An  increasingly  large  amount  of  Electric  Vehicles  (EV)  are  being  produced  and  sold  around  the  world.  When  an  EV  battery  has  served  its  useful  life  in  the  vehicle  it  can  be  repurposed  for  applications  such  as  stationary  energy  storage.    

As  the  EV  vehicle  market  grows  a  plentiful  supply  of  second  life  EV  batteries  are  becoming  available.  These  batteries  have  significant  value  and  offer  a  great  opportunity  to  be  repurposed  as  cost  effective  stationary  energy  storage  solutions.  

For  NETfficient  Williams  Advanced  Engineering  is  using  its  state-­‐of-­‐the-­‐art  technology  to  repurpose  a  20kWh  second  life  EV  battery  for  a  residential  energy  storage  system,  interfacing  with  a  LV  grid.    

Key  customer  benefits  

• Increases  self-­‐consumption  of  locally  produced  energy  thereby  reducing  energy  bills  and  carbon  footprint  

• A  compact  solution  benefiting  from  automotive  design  standards  • Improves  the  sustainability  of  EV  and  hybrid  vehicles  through  a  circular  economy  for  

second  life  EV  batteries  

Product  highlights  

• Safe,  reliable  and  cost  effective  • Scalability  • Interchangeability  

4.2 Technology  Williams  Advanced  Engineering  provides  a  repurposed  second  life  EV  battery  which  has  a  stored  energy  of  20kWh.  

Williams   Advanced   Engineering‘s   innovative   supervisory   controller   for   the   energy   storage   system  utilises  smart  algorithms  and  dedicated  hardware  to  ensure  an  optimised  function.    

 

 

Page 25: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  25  Confidential  document  

4.3 Business  cases  The  primary  use  of  the  second  life  EV  battery  system  is  to  enhance  the  self-­‐consumption  of  locally  produced  renewable  energy.  The  price  point  of  the  system  benefits  from  the  cost  advantages  of  repurposing  EV  batteries.  Depending  on  country  and  legislation,  the  system  could  also  be  extended  to  include:  

• Reducing  the  electricity  bills  of  homeowners,  and  reducing  peak  load  for  operators,  by  charging  the  battery  storage  system  during  low  consumptions  times  when  electricity  prices  could  be  lower  and  reusing  that  energy  during  the  peaks  

• Improves  the  sustainability  of  EV  and  hybrid  vehicles  by  providing  a  second  market  for  car  batteries  

• Increase  the  storage  capacity  of  the  network  

   

Page 26: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  26  Confidential  document  

5. Solenco  Power  Box  The  Hydrogen  Power  Box  (HPB)  or  Solenco  Power  Box  is  an  energy  storage  system  based  on  

hydrogen  technology.  It  is  charged  by  electrical  power  from  a  renewable  source  (typically  solar  PV)  and  returns  both  heat  and  electrical  power.  It  is  the  missing  link  between  residential  needs  and  the  given  solar  system.  It  allows  to  store  energy  when  available  and  use  when  needed.  It  provides  a  one-­‐stop  solution  for  both  heat  and  power  needs  and  it  eliminates  the  need  for  a  grid  connection.  Unlike  battery  systems  it  can  store  for  hours  to  months  without  degeneration/degradation  as  it  uses  compressed  gas.  This  allows  energy  transfer  from  one  season  to  another.  The  basic  form  of  storage,  hydrogen,  can  be  shared  between  houses  as  well  or  be  used  as  zero  emission  fuel  in  hydrogen  powered  cars.  The  system  is  designed  to  be  intelligent.  It  will  monitor  all  energy  flows  in  the  house  

5.1 Product  Overview  For  over  40  years,  industry  has  used  hydrogen  in  vast  quantities  as  an  industrial  chemical  and  fuel  

for  space  exploration.  During  that  time,  industry  has  develop  an  infrastructure  to  produce,  store  ,  transport  and  utilize  hydrogen  safely.  

Hydrogen  is  no  more  or  less  dangerous  than  other  flammable  fuels,  including  gasoline  and  natural  gas.  In  fact,  some  of  the  hydrogen’s  differences  actually  provide  safety  benefits  compared  to  gasoline  or  other  fuels.  

Hydrogen  is  the  lightest  and  smallest  element,  and  a  gas  under  ambient  conditions.  It  is  14  times  lighter  than  air,  which  means  that  when  it  is  released,  it  typically  rises  and  diffuses  quickly.  Hydrogen  is  abundant  in  nature  but  rarely  found  “by  itself”.  Instead,  it  must  be  produced  from  compounds  that  contain  it,  such  as  natural  gas,  coal,  water,  and  biomass  resources  including  biofuels  and  other  agricultural  products.  Two  currently  used  methods  include  natural  gas  reforming  and  electrolysis.  

The  volume  ratio  of  liquid  to  gas  is  1:848.  So,  if  you  picture  one  litter  of  liquid  hydrogen,  that  same  amount  of  hydrogen,  existing  as  a  gas,  would  theoretically,  occupy  848  liters  (without  compression).  However,  all  flammable  fuels  must  be  handled  responsibly.  Like  gasoline  and  natural  gas,  hydrogen  is  flammable  and  can  behave  dangerously  under  specific  conditions.  Hydrogen  can  be  handled  safely  when  simple  guidelines  are  observed  and  the  user  has  an  understanding  of  its  behavior.  

Hydrogen  has  a  rapid  diffusivity  (3.8  times  faster  than  natural  gas),  which  means  that  when  released,  it  dilutes  quickly  into  a  non-­‐flammable  concentration.  

Hydrogen  rises  2  times  faster  than  He  and  6  times  faster  than  natural  gas  at  a  speed  of  almost  20m/s  (72km/h).  Therefore,  unless  a  roof,  a  poorly  ventilated  room  or  some  other  structure  contains  the  rising  gas,  the  laws  of  physics  prevent  hydrogen  from  lingering  near  a  leak  (or  near  people  using  hydrogen-­‐fueled  equipment).  Simply  stated,  to  become  a  fire  hazard,  hydrogen  must  first  be  confined  –  but  as  the  lightest  element  in  the  universe,  confining  hydrogen  is  very  difficult.  Industry  takes  there  properties  into  account  when  designing  structures  where  hydrogen  will  be  used.  The  designs  help  hydrogen  escape  up  and  away  from  the  user  in  case  of  an  unexpected  release.  

Hydrogen  combustion  primarily  produces  heat  and  water.  Due  to  the  absence  of  carbon  and  the  presence  of  heat  absorbing  water  vapor  created  when  hydrogen  burns,  a  hydrogen  fire  has  significantly  less  radiant  heat  compared  to  a  hydrocarbon  fire.  Since  the  flame  emits  low  levels  of  heat  near  the  flame  (the  flame  itself  is  just  as  hot),  the  risk  of  secondary  fires  is  lower.  This  fact  has  a  significant  impact  for  the  public  and  rescue  workers  compared  to  hydrocarbon  flames.  

Page 27: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  27  Confidential  document  

Like  any  flammable  fuel,  hydrogen  can  combust.  But  hydrogen’s  buoyancy,  diffusivity  and  small  molecular  size  make  it  difficult  to  contain  and  create  a  combustible  situation.  In  order  for  a  hydrogen  fire  to  occur,  an  adequate  concentration  of  hydrogen,  the  presence  of  an  ignition  source  and  the  right  amounts  of  oxidizer  (like  oxygen)  must  be  present  at  the  same  time.  Hydrogen  has  a  wide  flammability  range  (4-­‐74%  in  air)  and  the  energy  required  to  ignite  hydrogen  (0.002ml)  can  be  very  low.  However,  at  low  concentrations  (below  10%)  the  energy  required  to  ignite  hydrogen  is  high  –  similar  to  the  energy  required  to  ignite  natural  gas  and  gasoline  in  their  respective  flammability  ranges  –  making  hydrogen  realistically  more  difficult  to  ignite  near  the  lower  flammability  limit.  On  the  other  hand,  if  conditions  exist  where  the  hydrogen  concentration  increased  toward  the  stoichiometric  (most  easily  ignited)  mixture  of  29%  hydrogen  (in  air),  the  ignition  energy  drops  to  about  one  fifteenth  of  that  required  to  ignite  natural  gas  (or  one  tenth  for  gasoline).  

An  explosion  cannot  occur  in  a  tank  or  any  contained  location  that  contains  only  hydrogen.  An  oxidizer,  such  as  oxygen  must  be  present  in  a  concentration  of  at  least  10%  pure  oxygen  or  41%  air.  Hydrogen  can  be  explosive  at  concentrations  of  18,3  –  59%  and  although  the  range  is  wide,  it  is  important  to  remember  that  gasoline  can  present  a  more  dangerous  potential  than  hydrogen  since  the  potential  for  explosion  occurs  with  gasoline  at  much  lower  concentrations,  1.1  –  3.3%.  Furthermore,  there  is  very  little  llikehood  that  hydrogen  will  explode  in  open  air,  due  to  its  tendency  to  rise  quickly.  This  is  the  opposite  of  what  we  find  for  heavier  gases  such  as  propane  or  gasoline  fumes,  which  hover  near  the  ground,  creating  a  greater  danger  for  explosion.  

Hydrogen  is  a  very  small  molecule  with  a  low  viscosity  –  and  therefore  prone  to  leakage.  Hydrogen  is  also  known  to  absorb  into  certain  metals,  which  can  lead  to  embrittlement  and  structural  failure.  So,  in  addition  to  designing  systems  with  leak  detection  and  sufficient  ventilation,  industry  must  be  carful  to  select  materials  that  will  not  suffer  embrittlement.  

Hydrogen  has  a  high  energy  content  by  weight  but  not  by  volume,  which  is  a  particular  challenge  for  storage.  In  order  to  store  sufficient  quantities  of  hydrogen  gas,  it  is  compressed  and  stored  at  high  pressures  (up  to  700  bar).  For  increased  safety,  hydrogen  tanks  for  vehicles  are  equipped  with  pressure  relief  that  will  prevent  the  pressures  in  the  tanks  from  becoming  too  high.  

In  the  confined  space  of  the  Solenco  Power  Box,  hydrogen  can  accumulate  and  reach  a  flammable  concentration.  Therefore  proper  ventilation  and  the  use  of  detection  sensors  are  installed  in  the  Solenco  Power  Box  to  mitigate  these  hazards.  

As  noted,  hydrogen  has  a  low  minimum  ignition  energy  in  ideal  combustion  concentrations.  Like  today’s  gasoline  systems,  the  Solenco  Power  Box  is  designed  with  grounding  to  prevent  ignition  by  static  charge.  And  because  hydrogen  is  lighter  than  air  and  will  quickly  rise  if  released,  electrical  equipment  is  not  placed  directly  above  a  potential  source  of  hydrogen.  

Compared  to  conventional  backup  systems  using  batteries  or  generators,  the  Solenco  Power  Box  offers  longer  runtime  and  greater  reliability,  requires  less  maintenance  and  is  also  monitored  remotely.  

   

Page 28: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  28  Confidential  document  

 

6. Other  energy  vector  solutions  As  described  in  use  case  5,  NETfficient  will  apply  another  vector  solution  for  energy  storage  not  

being  an  electric  battery.  

6.1 Overview  In  use  case  5,  the  water  temperature  of  the  Borkum  aquarium  is  to  be  regulated  at  a  constant  value  (14°C).  These  regulations  consist  in  either  heat  up  or  cool  down  the  water  if  its  temperature  differs  from  the  desired.    

The  system  working  now,  uses  a  cooling  /  heating  unit  connected  to  the  grid  which  regulates  the  temperature  of  aquarium’s  the  water  circuit.  During  the  course  of  the  year  about  90%  of  the  time,  cooling  is  needed,  in  the  rest  of  the  time  heating.  

In  real  application,  there  are  no  situations  where  heating  and  cooling  are  alternating.  Thus,  there  is  a  short  time  period  over  the  year  where  heating  is  needed  and  a  longer  period  where  only  cooling  is  needed.  

In  the  NETfficient-­‐scenario,  the  cooling  /  heating  unit  would  be  connected  (via  an  intelligent  point  of  supply    Node)  to  a  PV  generator,  maintaining  the  grid  connection  if  needed.  On  the  other  side,  the  unit  would  not  be  connected  directly  to  the  aquariums  water  circuit  but  to  a  seasonal  thermal  energy  storage  which  in  return  would  be  connected  to  the  aquarium’s  water  circuit  via  a  heat  exchanger  guaranteeing  the  constant  water  temperature.  

The  seasonal  thermal  energy  storage  thus  will  take  the  role  of  a  storing  device  keeping  the  thermal  energy  produced  by  use  of  solar  energy.  

 

 

 

 

Page 29: NETfficient D1.6 Outline specification document for all energy …netfficient-project.eu/wp-content/uploads/2017/06/D1.6... · 2017-06-13 · ( ( (D1.6((( Version(1.1((©NETfficient(consortium((

      D1.6    

  Version  1.1  

 ©  NETfficient  consortium       Page  |  29  Confidential  document  

 

The  seasonal  thermal  energy  storage  used  is  dimensioned  to  regulate  the  21m3  in  the  water  circuit.