network

26
Networks etwork:end-node and router B A C D E F 1 2 3 4 5 6 7 Router End-node link A, B, C, D, E, and F are all end nodes and 1 through 7 are all routers. Each end-node is attached to a router by a link. The end-nodes are actual computers. The function of a router is only to provide switching facilities to move the message from one node to another node

Upload: daksh-bapna

Post on 04-Nov-2014

152 views

Category:

Education


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Network

Networks

Network:end-node and router

B

A

C

D

E

F

1

2

3

4

5

6

7Router

End-node

link

A, B, C, D, E, and F are all end nodes and 1 through 7 are all routers. Each end-node is attached to a router by a link.The end-nodes are actual computers. The function of a router is only to provide switching facilities to move the message from one node to another node until they reach their destinations. For instance, message is transmitted from source node A to destination node D through routers 4, 5, and 3.

Page 2: Network

Routing Techniques

RoutingStatic routing

Dynamic routingStatic Routing: In static routing, for a given source, destinations and routes are all predetermined. They are assigned during the design of a network. For instance, node A can send message to nodeD via 4,5, 3 . Node A can also send message to node D via 1, 2, 3. However, node A cannot send message using the route

4 1 2 3 DA

Advantage: easy to design and set-up cost is not highDisadvantage: not very efficient, delay can be very long.

Page 3: Network

Dynamic Routing

Dynamic Routing: In dynamic routing, the routes are calculated when they needed. The routes are not predetermined.Advantages: more efficient, inherently more fault-tolerant.Disadvantages: Set-up cost is high and it is fairly complex to design.

Page 4: Network

Network Topology: Physical & Logical

• The topology of a network defines how the nodes of a network are connected.• A network is defined by a physical topology and a logical topology.• Physical topology defines how the nodes of the network are physically connected .• Logical topology dedicated connections between certain selected source-destination pairs using the underlying physical topology.• In order to have an efficient system, the logical topology should be chosen such that either the average hop distance or the packet delay or the maximum flow on any link must be minimal.• Another important issue to select the logical topology is the simplicity of the routing.

Page 5: Network

Multi-hop Network

Logical Topology: 2 X 2 torus Physical Topology: 2 X 2 star

3

Starcoupler

1, 2

1, 7

3, 4

4, 6

2, 8

7, 8

3, 5

5, 6

1

4 2

43

21

1

3

8

4

6 2

5

7

Page 6: Network

Physical and Logical topologies

• Node 1 can directly send information to node 2 and node 3 using frequencies and 1 and 2,

• where as if node 1 wants to send message to node 4, it has to multi-hop through either node 2 or node 3.

• For this reason, node 1 is directly logically connected to node 2 and node 3.

• Although, node 1 is not directly physically connected to node 2 and node 3.

• Node 1 is not directly logically connected to node 4.

• If node 1 node 1 communicates with node 4 via node 2, there will be a wavelength conversion from 1 to 3 at node 2.

Page 7: Network

Communication Networks

Network topologies:

1 The Bus Network2 Hub/Tree Network3 Star Network

4 Ring Network

Page 8: Network

A bus network topology

C 1 C 2 C 3

C 4C 5 C 6

Use: This topology is useful in LANs. It does not rely on central host.This network canstill function if one of the computers malfunctions. Other advantages: easy to wire, quick response, less expensive

Problem: The main disadvantage is bad connection to the cable can bring down the entire network. Another problem: collision occurs when 2 nodes send messages simultaneously.

Page 9: Network

Bus Network• In bus network, all stations are attached to a single cable.

• When a station sends a message, it is broadcast down on the cable in both directions. Terminators at the end of the cable prevent the signal from reflecting back to the sender.

• All stations on the cable constantly monitor for messages meant to them. When a station detects a message meant for it, it reads the message from the cable and the other stations will ignore it.

• Since all stations are sharing the same cable, some form of control is needed to make sure which station will transmit when, otherwise there will be a collision.

• Advantages: Easy to wire, quick response, less expensive, and if one station dies, it has no effect on the total network.

• Disadvantage: However bad connection to the cable can short it and bring down the entire network

Page 10: Network

A Hub/Tree Network

Hub Hub

Hub

Hub

Hub

End node

A Hub / Tree Network

Page 11: Network

Tree Network• In hub or tree network, the wires that are used to connect different

nodes are collapsed into a central unit, called hub. • Hub does not perform switching function.• It consists of repeaters that retransmitted all the signals from

nodes to all other nodes in the same way. • The multipoint nature of tree topology gives rise to several

problems.• The access control is fairly difficult to determine the time slot for

each node. Another problem with multipoint is signal balancing.• When two device exchange data over a link, the signal strength of

the transmitter should be adjusted.• If it is low, after attenuation, it might not meet the minimum

signal strength requirement of the transmitter and minimum signal to noise ratio. If it is very high, it can overload the circuitry of the transmitter resulting in harmonics and other spurious signals.

Page 12: Network

A ring network topology

C 1

C 2

C 3

C 4

C 5

C 6

Use: This topology is useful in LANs. It does not rely on central host.This network canstill function if one of the computers malfunctions.

Problems: The connecting wire, cable, or optical fiber forms a closedloop. Data are passed along the ring from one computer to another.

Page 13: Network

Ring Network• Ring network consists of nodes that are joined by point-to-point

connection to form a closed loop or ring.

• The transmitted signal is regenerated at each node.

• It is a shared-access network and it has the capability of broadcasting messages.

• It needs some form of access control to determine which node will transmit when.

Advantages

• The most important advantage of this network is its point-to-point connections.

• The electronics and maintenance of point-to-point links are much simpler than multi cast links.

Page 14: Network

Ring Network• The structure of this network is very simple and it is very easy to

insert and delete any number of nodes.

• For this reason, ring network is easily scalable and highly modular.

• Fault isolation and recovery are much simpler than tree.

Disadvantages:

• The disadvantage is it offers only two alternate routes and thereby it can manage only a single fault.

• Another important drawback of ring network is its large diameter.

• If diameter of a network is high, the number of edges involved in each communication will also be very high resulting in high signal attenuation and network blocking probability.

Page 15: Network

A star network topology

HostCPU

C 1

C 2

C 3

C 4

C 5

C 6

Use: This topology is useful for applications where processing must be centralized and somecan be performed locally.

Problems: All communication pass through the central computer.The communications in the network will stop if the host computer stops functioning.

Page 16: Network

Star Network

• In star network, each station is connected via a point-to-point link to a central point.

• This central point is called hub, multi port repeater, or concentrator.

• The central point may be “passive”, “active”, or “intelligent”.

• A passive hub simply connects the arms of a star, no signal regeneration is performed.

• An active hub is like a passive hub, except that it regenerates signals.

• Intelligent hubs not only regenerate signals but also perform activities such as intelligent path selection and network management.

Page 17: Network

Star Network

Advantage:

The main advantage of the star architecture over the bus is its small excess loss, since in case of n-user star the excess loss increases logarithmically with n, while in case of n-user bus it increases linearly with n.

Disadvantage:

Since all information in a star network goes through a central point, stars are easy to troubleshoot.

Page 18: Network

Complex Networks: De Bruijn graphs

001

010

011 110

101

111

100

000

no. of nodes= 2 ^ 3 = 8

Advantages: diameter= max hop no. = 3

Page 19: Network

Complex Networks:ShuffleNet

A ( 2, 2 ) Shuffle Net.

0

1

2

3

4

5

6

7

0

1

2

3

Page 20: Network

Complex Networks: Manhattan Street Network

A 4 x 4 Manhattan Street Network

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Page 21: Network

Complex Networks:Binary Hypercube

An 8-node binary hypercube

010 011

111

101 100

110

001 000

Page 22: Network

Fault-tolerant network

• reliable operation in faulty networks.

• alternate ways of communication.

• faults in optical networks

channel fault

link fault

node fault

Page 23: Network

Channel fault

• Why and when it occurs? A channel fault occurs when a single wavelength channel on a link between two nodes has failed due to the failure of the laser or receiver for that wavelength channel, or due to cable disconnections.

• How to manage? Thus fault can be managed by routing the traffic to a spare channel on the same physical link and bypassing the faulty channel.

Page 24: Network

Link fault• Why and when it occurs? A link fault occurs due to fiber cut or due to noise (particularly those running over long distance).

• How to manage? It can be managed by using a bundle of protection fibers in addition to the working fiber. The performance or survivability is limited by the number of links in each bundle. Another way of solving this problem is by providing a “loopback” mechanism within each node on the same working fiber.

Page 25: Network

Node fault• Why and when it occurs? A node fault occurs due to power outages or catastrophic failure in an entire WADM node failure.

• How to handle? It is complicated to handle since when this fault occurs, a part of the conversion capability of the network as a whole is lost and leaves an open circuit and can result in deadlock of all routing networks. One solution is to introduce redundancy in the internal connections of the networks rather than in the connections of the nodes. In case of multiple failures, the solution is a “firewall” that can prevent deadlock spreading in the network. This can be achieved by a simple device that tomes out if a packet passing through it stay longer than a specified time.

Page 26: Network

Survivable route graph

F

E

G

D

A

C

B

D

B

A Network. Survival route graph.

E

F

G

A

C