network routing dv

53
Network and Network Routing October 28 2009  1

Upload: trucsau

Post on 07-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 1/53

Network and Network Routing

October 28 2009

 

1

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 2/53

  Networ overview 

2

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 3/53

 

dest.

Network layer in every host,

Basic functions:

Data lane: forwardin 

move packets fromrouter’s input port to

Control plane: ath 

determination and call setup 

determine route taken by

3

 destination

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 4/53

 

routing and callsetup

4

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 5/53

 

guaranteed bandwidth?

- loss-free delivery?

in-order deliver ?

Interaction between users and network

signaling: congestion feedback/resource reservation

  efficiency

 5

  scalability

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 6/53

 

Guarantees ?

Architecture Model Bandwidth Loss Order Timing feedback

n erne

ATM

es e or

CBR

none

constant

no

yes

no

yes

no

yes

no n errevia loss/delay)no

ATM VBR rateguaranteedrate

yes yes yes congestionnocon estion

ATM

ATM

ABR

UBR

guaranteed

minimumnone

no

no

yes

es

no

no

yes

Internet model being extended: Intserv, Diffserv

 

6

 ATM: Asynchronous Transfer Mode; CBR: Constant Bit Rate; V: Variable; A: available; U: User

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 7/53

:

Network layer functions:

Transport layerRouting protocols•path selection•e.g., RIP, OSPF, BGP

Control protocols•error reportinge.g. ICMP

Control protocols- router “signaling”e.g. RSVP

 

Networklayer

forwarding. .,

•addressing conventions

•packet format•packet handling conventions

Link layer

7

physical layer

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 8/53

 Networ overview

Control lane: routin overview 

8

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 9/53

 Routin

Goal: determine “good” paths

(sequences of routers) thru

Gra h abstraction for the

.

routing problem:

graph nodes are routers

ra h ed es are h sicalCB

2 53

links links have properties: delay, ED

21

3 12

9

capac y, cos , po cy

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 10/53

 

Optimality

 (for user/provider)

Sim licit

10

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 11/53

 - Robustness- Optimality

  - mp c y

Assume eac in as a atency unction e x :

latency of link e when x amount of trafficgoes t roug e, e.g., prop. + 1/( –x), where prop. is link

propagation delay and the link capacity

Objective: min e xe • le(xe)l(x) = x

s ttotal demand = 1

11

l(x) = 1

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 12/53

 - Robustness- Optimality  - mp c y

ou ng as a arge es gn space

who decides routing? • ource rou ng en o ma e ec on• network routing: networks make decision

h h i i

• multi-path routing• single path routing

  wi routing a apt to networ tra ic eman

• adaptive routing•

12

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 13/53

Routing Design Space: 

- Robustness- Optimality

- , , - mp c y

ou ng as a arge es gn space

who decides routing? ource rou ng en o ma e ec on• network routing: networks make decision

h h i imulti-path routing• single path routing

  wi routing a apt to networ tra ic eman

adaptive routing•

13

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 14/53

, ,

:(selfish routing)

14

Braess’s paradox

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 15/53

 

For a networ wit inear atency unctions

total latency of user (selfish) routing foriven traffic demand

≤ 4/3

total latenc o network o ti al routinfor the traffic demand

15

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 16/53

 

For any networ wit continuous, non-

decreasing latency functions

total latency of user (selfish) routing

 or given tra ic eman

 ≤ 

tota atency o networ optima routingfor twice traffic demand

16

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 17/53

- Robustness- Optimality

Routing Design Space:

 

- mp c y

ou ng as a arge es gn space

who decides routing? • ource rou ng en o ma e ec onnetwork routing: networks make decision

- (applications such as overlay and p2p are trying to bypass it)

how many paths from source s to destination d?• multi-path routing

s ng e pa rou ng w sma amoun o mu pa

will routing adapt to network traffic demand?•static routing (mostly static; adjust in larger timescale)

17

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 18/53

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 19/53

 

network links, the path from a source

protocol is a shortest path among all

t e stat c n costs may e a uste n a

longer time scale: this is called traffic

19

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 20/53

 Networ overview

Control lane: routin overview Distance vector protocols 

20

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 21/53

Distance Vector Routin

, ,protocols

-algorithm (BFA)

 ,destination separately

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 22/53

Distance Vector Routin : Basic Idea

At node i the basic u date rule 

min d d d   

estination

 - di denotes the distance

estimation from i to thedestination,

- N(i) is set of neighbors of

 jid 

ijd no e , an

- dij is the distance of i jd 

22

 assume positive

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 23/53

 Networ overview

Control lane: routin overview Distance vector protocols 

 

23

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 24/53

-CB7 1

 

Nodes update in rounds:

A

E D810 2

there is a global clock;

at the beginning of each round, each node sendsits estimate to all of its neighbors;

at the end of the round, updates its estimation

))((min)1( )( hd d hd   jiji N  ji ?)0(d 

E

24

CD

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 25/53

 Networ overview

Control lane: routin overview Distance vector protocols 

 - SBF/

25

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 26/53

CB7 1

 

A

E D810 2

Initia ization time 0 :

desti0

otherwisei

26

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 27/53

CB71

A

E D810 2

Consider D as destination; d(t) is a vector consisting of

A B C E D

es ma on o eac no e a roun

d(0) 0

d 1  

d(2) 12 3 2 2 0

d(3) 10 3 2 2 0

d(4) 10 3 2 2 0

27

Observation: d(0) d(1) d(2) d(3) d(4) =d*

))((min)1( )( hd d hd  jijiNji

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 28/53

 

))(()( )(  jiji N  ji

 

Consi er two con igurations t an ’ t

If d(t) d’(t) i.e., each node has a hi her estimate in one

scenario (d) than in another scenario (d’),

then d(t+1) d’(t+1) i.e. each node has a hi her esti ate in d than in d’

after one round of synchronous update.

28

))((min)1( )( hd d hd  jijiNji

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 29/53

  ))(()( )(  jiji N  ji

 

:shortest path from i to the destination

≤ 

a e ca e r v a y rue

 a u e rue or ,i.e., Li(h)= di(h), Li(h-1)= di(h-1), …

29

))((min)1( )( hd d hd  jijiNji

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 30/53

  ))(()( )(  jiji N  ji

 

≤ + : 

)1(h L )))((min),(min( h Ld h L minmin hd d hd 

1min hd hd 

since di(h)≤di(h-1)

)())1((min))((min)1( )()( hd hd d hd d hd  i jiji N  j jiji N  ji

30

)1()1( hd h L ii

B ll E i

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 31/53

Bellman E uation

 Bellman equations (BE):

)(min )( jiji N  ji d d d 

where dD = 0.

- SBF/ solves the equations in a

distributed wa- Does the equation have a unique

31

o u on .e., e or e a one

)(min )( jijiNji ddd

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 32/53

 )(min )( jiji N  ji d d d 

 

Assume anot er so ution , we wi s ow t at

d = d*case 1: we show d d*

,paths as follows: for each i, pick a j which

,

23

1Dest.A

7

8 210

32

11E D22

)(min )( jijiNji ddd

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 33/53

 )(min )( jiji N  ji d d d 

 

Case 2: we s ow ≤

assume we run SBF with two initiali i :

one is d   ,

-> monotonicit and conver ence of SBF/ im lthat d ≤ d*

33

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 34/53

 Networ overview

Control lane: routin overview Distance vector protocols 

 - SBF/- SBF/-1

34

SBF at another CB 1

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 35/53

SBF at another CB7 1

a o gura o - A

E D

810

2

Initialization (time 0):

desti0

otherwise1i

35

CB 1

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 36/53

CB 1

A

E D

810

2

Consider D as destination

A B C E D

d(0) -1 -1 -1 -1 0d(1) 6 0 0 2 0

 

d(3) 8 2 2 2 0

d(4) 9 3 3 2 0

d(5) 10 3 3 2 0

d(6) 10 3 3 2 0

36

Observation: d(0) d(1) d(2) d(3) d(4) d(5) = d(6) = d*

Bellman Equation and ))((min)1( )( hd d hd   jiji N  ji

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 37/53

q  -

-1 i i 

At equilibrium, SBF/-1 satisfies the set of equations

called Bellman e uations BE

)(min )( jiji N  ji d d d 

where dD = 0.

Another solution is shortest path solution d*

 thus SBF/-1 converges to shortest path

-

37

 

Problems of running synchronous  BF?

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 38/53

 Networ overview

Control lane: routin overview Distance vector protocols 

 

asynchronous Bellman-Ford (ABF) 

38

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 39/53

-

No notion o g o a iterations

each node updates at its own paceAsynchronously each node i computes

usin last received value di from nei hbor .m n )( jiji N  ji

 its neighbor i:

 packets (no worry for out of order)

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 40/53

-

In genera , no es are using i erent an

possibly inconsistent estimates

 j d j

i j

CB 1

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 41/53

 CB 1

 A

810

2Below is just one step! The protocol repeats forever!

2distance tables

from neighborscomputation E’s

distance distance

table E sends

A

Eta e

to its neighbors

10 15

 

0 7

 

A: 10

B

 

B: 87 0 B: 817 8

C C: 4 1 2 D: 4 9 4

D D: 2 0 D: 2 2

E: 010 8 2

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 42/53

-

ABF wi eventua y converge to t e s ortest

path links can go down and come up – but if topology isstabilized after some time t, ABF will eventuallyconverge o e s or es pa

  t e networ s connecte , t en

converges in finite amount of time, ifcon t ons are met

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 43/53

 

T ere are too many i erent “runs” o ABF,

so need to use monotonicity

i : 

• SBF/; call the sequence U()• SBF/-1; call the sequence L()

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 44/53

 

 j

i

where can distance estimate from node j appear?

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 45/53

 

distance estimates

:

dj

 - d j: currentdistance estimate

di j di j at node j- di j: last d j that

- di

 j: those d

 jthat

to neighbor i

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 46/53

 

Consi er t e time w en t e topo ogy isstabilized as time 0

i

at time 0 on all corresponding elements ofstates L j (0) ≤ d j ≤ U j (0) for all d j state at node j

≤ i ≤ 

L j (0) ≤ update messages di j ≤ U j (0)

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 47/53

 

 j

after at least oneup ate at no e j:d j falls between dj

 j    j j

 did

i j di j

 j :

eventually all di j thatare on y oun e y

L j (0) and U j (0) are

L j(1) and U j(1)

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 48/53

-

communicates its routing table to-

Iterative: continues periodically or

when link changes, e.g. detects a linkfailureAsynchronous: nodes need not 

 Convergence in finite steps,

network is connected

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 49/53

-

Goo news propagate ast

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 50/53

-

This is called the counting-to-infinity 

problemQuestion: why does counting-to-infinity happen?

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 51/53

Backup Slides

51

Using Virtual Circuit to Implement

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 52/53

e wor erv ces

 n or er o prov e some unc ona es, anetwork may choose virtual circuit, e.g., Virtual

Private Network VPN

52

Using Datagram to Implement the

8/3/2019 Network Routing DV

http://slidepdf.com/reader/full/network-routing-dv 53/53

os as c e wor erv ce

A datagram network generally provides simpleservices: the forwarding of packets from src to

dest. We will focus on datagram networks which provide

best effort service 

53

 

the multimedia networking part of the course