network sdh_optical protection

24
5网络生存性 Network Survivability Agenda Agenda Basic Concepts Protection in SONET/SDH Protection in IP Networks Protection in Optical Layer Interworking between Layers Summary

Upload: kallie-fokker

Post on 09-Nov-2015

219 views

Category:

Documents


0 download

DESCRIPTION

Network SDH_Optical Protection

TRANSCRIPT

  • 5 NetworkSurvivabilityy

    AgendaAgenda BasicConcepts ProtectioninSONET/SDH ProtectioninIPNetworks ProtectioninOpticalLayer InterworkingbetweenLayers Summary

  • 6.1BasicConcepts6.1BasicConcepts

    BasicConception

    NetworkSurvibabilityWhat?

    Theabilityofcontinueprovidingservicesinthepresentoffailures,commonlysupplying99.999%availabilityofthenetwork

    Why?

    Millionsofuserscanbedisruptedandmillionsofdollarscanbelostforsomenetworkrelatedoutageg

    How?

    Providingredundantcapacityandautomaticallyreroutingtraffic

  • BasicConcepts Distinguishsomeprotection()schemes

    DedicatedorSharedAssignmentofprotectionbandwidthonetoone ormultipletoone. Revertiveornonrevertiveswitchingbackornotafterthefailureisrepaired.DedicatedprotectionmaybeRevertiveornonrevertivewhereassharedmustbeRevertive. Unidirectional switching and bidirectional switching Unidirectionalswitchingandbidirectionalswitching(seenext)

    ( ) working

    Basic Concepts

    (a)

    (b)Source

    Dest.Source

    Dest.

    working

    workingprotect

    protect

    traffic

    no traffic

    Figure10.1(a)Unidiretionalprotectionswitching(b)Bidiretionalprotectionswitching

    p

  • BasicConcepts

    How the traffic is rerouted in case of a failureHowthetrafficisreroutedincaseofafailurePathswitchingSpanswitchingRingswitching

    Differentprotectionschemesoperateatdifferentlayersinthenetworkandatdifferentsublayerswithinalayer.

    BasicConcepts

    ( ) (b)

    Normal connection Path switching

    (a) (b)

    (c) (d)

    Span switching Ring switching

    (c) (d)

    Figure 10.2 switching schemes

  • 6.2Protectionin6.2ProtectioninSONET/SDHSONET/SDH

    ProtectionSchemesinSONETandSDH

    SONETandSDHhavethesimilarprotectionh diff t l tschemes,differentnomenclatures

    Eachprotectionschemeassociatedwithaspecificlayerinthenetwork

    SummaryofprotectionschemesinSONETandSDH

    SONET Term 1+1 1:N UPSR BLSRSDH Term

    TypeTopologyLayer

    1+1 1:N SNCP MS-SPRing

    Dedicated Dedicated DedicatedShared SharedPoint-point Point-point Ring RingRing/meshLine/MS Line/MS Line/MSPath/- -/Path

  • ProtectionSchemesinSONETandSDH

    Notes:Notes:N:numberofworkinginterfacesharingasingle

    protectioninterfaceUPSR:UnidirectionalPathSwitchedRingschemeSNCP:1+1SubNetworkConnectionProtectionBLSR:BidirectionalLineSwitchedRingMSSPRing : Multiplexed SectionShared ProtectionMS SPRing:MultiplexedSection SharedProtection

    Ring

    ProtectionSchemesinSONETandSDH

    Restoration time ( Restorationtime(InSONET/SDHstandards,servicemustbewithin

    60ms detect the failure(10ms)

    signal to other nodes,including propagation delay

    actual switching timerestoration

    actual switching time

    reacquire the frame synchronization after the switch-over has occurred

    time

  • PointtoPointLinks

    1+1protectionTraffic is transmitted simultaneously on working andTrafficistransmittedsimultaneouslyonworkingandprotectionfibersfromsourcetodestination.Whenworkingfiberiscut,thedestinationswitchesovertotheotherfibertoreceivedata.

    1:1protection,1:NprotectionTrafficistransmittedoveronlytheworkingfiber,when

    kiworkingfiberiscut,bothsourceanddestinationswitchovertotheprotectionfiber.

    PointtoPointLinks

    splitter switch

    switch

    switch

    switch

    switch

    (a)

    (b)

    switch

    switchswitch

    switchLow-priority data

    (c)

    Figure 10.3 1+1,1:1,1:N protection

  • PointtoPointLinks

    Comparison of 1+1 and 1:1 protectionComparisonof1+1and1:1protection 1+1protectionisfasterandrequiresnosignalingprotocol,while1:1needsprotocol

    Protectionfiberin1:1schemecantransmitlowerprioritytrafficundernormaloperation

    1:1protectioncanbeextendedtoshareasingleprotectionfiberamongmanyworkingfibers(1:N)

    SelfHealingRings

    Concept of ringConceptofringSimplesttopologythatis2connected

    SelfhealingRingsRingscanautomaticallydetectfailuresandreroutetraffic

    awayfromfailedlinksornodesontootherroutesrapidlyroutes rapidly

    Ringarchitectureswidelydeployed Twofiberunidirectionalpathswitchedrings(UPSR) Fourfiberbidirectionallineswitchedrings(BLSR/4) Twofiberbidirectionallineswitchedrings(BLSR/2)

  • UnidirectionalPathSwitchedRings

    WorkingconnectionAtoBg

    ADM A

    B

    C ADM

    ADM working connection B to A

    protect connection B to A

    protect connection protection fiber

    path

    ADMD

    protect connection A to B

    protection fiber

    working fiber

    Figure 10.4 UPSR

    UnidirectionalPathSwitchedRings

    1+1 scheme operating at the path layer1+1schemeoperatingatthepathlayer Easilyhandlefailuresoflinks,nodes Simpletoimplement,thus,lowcost requiringnoprotocolandcommunicationbetween

    nodes,thus,shortrestorationtime Drawback:lowfiberutilization Popularlyusedinlowerspeedlocalexchangeandaccess

    networks

  • UnidirectionalPathSwitchedRings

    Limit on the number of nodes or ring lengthLimitonthenumberofnodesorringlengthLimitedbyrestorationtimeaffectedbythedifferentdelaysassociatedwiththeclockwiseandcouterclockwisepathtakenbyasignal

    BidirectionalLineSwitchedRings

    Operating at the line layer (SONET) or multiplexOperatingatthelinelayer(SONET)ormultiplexsectionlayer(SDH)

    TwotypesofBLSR:BLSR/4

    BLSR/2

  • BidirectionalLineSwitchedRings

    Working connection

    A

    B

    C

    working fibers

    protection fibers

    gADM

    ADMADMprotect connection

    BLSR/4D

    ADM

    Figure 10.5

    BidirectionalLineSwitchedRings

    ADM

    ADM

    ADM

    ADM

    Working connection

    Working/protection fiber

    Working/protection fiber

    ?

    BLSR/2ADM

    Figure 10.6

  • BidirectionalLineSwitchedRings

    BLSR/2issimilarwithBLSR/4 TypesofprotectionschemesBLSR/4

    spanswitching(protectionforworkingfiberfailed)

    ringswitching(protectionforfiberorcablefailed)

    BLSR/2BLSR/2ringswitching

    Priorityofprotectionschemesspanswitchingispriortoringswitching

    BidirectionalLineSwitchedRings

    Working connection

    A

    B

    C

    working fibers

    protection fibers

    gADM

    ADMADMprotect connection

    D

    ADM

    Figure 10.7 span switching

  • BidirectionalLineSwitchedRings

    Working connection

    A

    B

    C

    working fibers

    protection fibers

    gADM

    ADMADM Protect connection

    D

    ADM

    Figure 10.8 ring switching

    BidirectionalLineSwitchedRings

    Priority of protection schemesPriorityofprotectionschemes spanswitchingispriortoringswitching spanswitchingcanbecancelledifspanfailsbothonworkingandprotectionpath

  • BidirectionalLineSwitchedRings

    Difference between BLSR/4 and BLSR/2DifferencebetweenBLSR/4andBLSR/2BLSR/4deployedinlonghaulcarriers,whileBLSR/2inmetrocarriers

    BLSR/4canhandlemorefailuresthanBLSR/2BLSR/4iseasiertoservicethanBLSR/2RingmanagementismorecomplicatedinBLSR/4thanBLSR/2

    6.3Protectionin6.3ProtectioninIPNetworksIPNetworks

  • ProtectioninIPNetworks CharacteristicofIPprotection

    Packetsreroutedincorrectlyandpossiblyloop

    E

    CBA D

    Destination:

    D

    nexthop:Bnexthop:Cnexthop:Dnormaloperationnexthop:Bnexthop:Cnexthop:Bafterfailure,beforeconvergencenexthop:Enexthop:Anexthop:Bafterconvergence

    CBA D

    Figure 10.13 An example of illustrating routing loops

    ProtectioninIPNetworks Slowforalltheroutingtablehavebeenupdated Packets can rerouted on the newly set up LSPs withPacketscanreroutedonthenewlysetupLSPswiththeuseofMPLS

    Detectingfailuresslowly AnotheroptionisrelyingontheunderlyingSONETor

    opticallayertodetectthefailureandinformtheIPlayer(notusuallyused)

  • 6.4WhyOpticalLayer6.4WhyOpticalLayerProtectionProtection

    WhyOpticalLayerProtection

    1 way is considered

    Save 1 wavelengthLightpath

  • WhyOpticalLayerProtection

    Benefitofopticallayerprotection:e e o op ca aye p o ec o Canprovideextensiveprotectionfunctionsforclientlayers(IP,SDH).

    Significantcostsaving Handlesomefaultsmoreefficientlythantheclientlayer

    Can protect multiple failuresCanprotectmultiplefailures Avarietyofmeshbasedprotectionschemesarebeingdeveloped,requiringlessprotectioncapacitythanringbasedschemes

    WhyOpticalLayerProtection

    ADM

    ADMADM ADMADM

    ADM

    OXC

    OXCOXC OXCOXC

    OXC

    SONET connectionSONET connection

    Lightpath Lightpath

    t d li ht th

    ADM ADM

    OXC OXC

    rerouted lightpath

    Figure 10.15 Optical layer protection used to enhance SONET protection

  • WhyOpticalLayerProtection

    Limitations of optical layer protectionLimitationsofopticallayerprotection Notallfailurescanbehandledbytheopticallayer

    Opticallayermaynotbeabletodetecttheappropriateconditionsthatwouldcauseittoinvokeprotectionswitching

    Theopticallayerprotectstrafficinunitsoflightpaths,cantprotectpartsofthetrafficwithinalightpath

    WhyOpticalLayerProtection

    ServiceClassesBasedonOpticalLayerProtectionLevel of Service

    Level of connection availablility

    Restoration time

    Example of protection provider

    Platinum highest Fastest(arou-nd 60ms)

    Didicated 1+1 protection

    Gold high Fast(hundreds of ms)

    Shared mesh protection

    Silver medium medium Providing gbest-effort

    Bronze Low lowest Unprotected lightpaths

    Lead Lowest Lowest Used to protect other classes of service

  • 6.5OpticalLayerProtection6.5OpticalLayerProtectionSchemesSchemes

    OpticalLayerProtectionSchemes

    Opticallayerprotectionislightpathbasedp y p g p OpticalprotectionschemesoperateintheOchorOMS

    layers OchlayerpathlayerOMSlayerlinelayer

  • OpticalLayerProtectionSchemes

    OpticalprotectionschemesinOMSlayer

    OpticalprotectionschemesinOchlayer

    Type Dedicated Shared Dedicated SharedTopology Point-point Point-point Ring Ring

    1+1 1:1 OMS-DPRing OMS-SPRing

    TypeTopology

    1+1 Och-SPRingDedicated SharedShared

    Ring MeshMesh

    Och-Mesh

  • OpticalLayerProtectionSchemes

    Protection schemes referred above are ProtectionschemesreferredabovearemostlysimilartotheircounterpartsinSONET/SDH 1+1OMSProtection1+1LineProtection 1:1OMSProtection1:1LineProtectionOMSDPRing(ULSR)UPSRinOMSlayer

    OMSSPRingBLSR/4,BLSR/2 1+1OchDedicatedProtection1+1ProtectioninOchlayer

    /

    Och-Mesh Protection

    OchSPRingProtectionBLSR/4inOchlayer OchMeshProtection

    Meshprotectionissuitablefordensephysicaltopologies,withtrafficbeingfairlydistributed

    Bandwidthefficiencyofmeshprotectioncomparedtoringprotectiondependson3factors

    Network topologyNetworktopologyTrafficpatternTypeofmeshprotectionscheme

  • OchMeshProtectionanexample

    Mesh network 1+1 dedicated protectionMesh network 1+1 dedicated protection

    Och-SPRing protection Och-Mesh protection

    Figure 10.17 Illustration of bandwidth efficiency of mesh protection

    Protection is set up dynamically

    OchMeshProtection

    Protection lightpaths of mesh protection are only set upProtectionlightpathsofmeshprotectionareonlysetupwhenthereisafailure,notaheadoftime.i.e.ituseadynamicrestoration.

  • OchMeshProtection Themeshprotectionschemeswereabandonedbefore

    forslowrestorationtime(orderofminutes),complexlymanagement and no applicable standardsmanagementandnoapplicablestandards.

    Reasonfortheresurrectionofmeshprotectionschemes

    Theprocessingpoweravailabletoimplementmeshprotectionhasdramaticallyincreased(computingnewroutes)

    OXCandotheropticallayerequipmentprotectbandwidthatmuchlargerlightpathsthanDXC

    Relativelyfastsignalingandroutingprotocolshavebeendeveloped The60msprotectiontimerequirementisnotahardnumber

    Mesh protection is needed deployed requiringMeshprotectionisneededdeployed,requiringfunctionsofroutecomputation,topologymaintenanceandsignalingtosetuptheprotectionroutes

    6.6Interworking6.6InterworkingbetweenLayersbetweenLayers

  • InterworkingbetweenLayers

    Theprotectionmechanismsindifferentlayersd l i icanpreventordelayservicerestoration.

    Restorationofnetworkconvergeshouldunderrightassumptions

    Aviableprotectionpathexistsforeachlayer Theserverlayerisindependentoftheclientlayertodetectfailureand

    invokeitsprotectionswitchingfunctions Theclientlayerprotectionisrevertiveandwillrepeatedlytryswitchingtoy p p y y g

    theotherpath

    Coordinationbetweenprotectionmechanisms Addapriorityamonglayers imposeanadditionalholdofftimeinthehigherlayer