neutrino directionality in liquid scintillator detectors · 2015. 6. 30. · cea/irfu/spp neutrino...

35
Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion Neutrino directionality in liquid scintillator detectors Application to geoneutrinos detection Vincent Fischer CEA/IRFU/SPP Neutrino Geosciences 2015 June 17 th , 2015 Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 1 / 23

Upload: others

Post on 27-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Neutrino directionality in liquid scintillatordetectors

    Application to geoneutrinos detection

    Vincent Fischer

    CEA/IRFU/SPP

    Neutrino Geosciences 2015June 17th, 2015

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 1 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Outline

    1 Neutrino directionality with IBD

    2 Geoneutrino directional detection

    3 Perspectives and conclusion

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 1 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Motivations

    Neutrino directionality consists of retrieving the direction of aneutrino flux

    Easily achievable with ν scattering in Čerenkov detectors

    Potential of directionality with Inverse Beta Decay →• Locating supernovae before optical observation• Studying geo-neutrinos from the Earth’s crust and mantle• Detecting and monitoring nuclear reactors

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 2 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    The Inverse Beta Decay process

    • Inverse beta decay: ν̄e + p → e+ + n• Higher cross section than other ν interactionsσIBD ∼ 10−43cm2

    • Signature → Prompt signal (e+ energydeposition) followed by delayed signal (neutroncapture on Gd or H at 8 or 2.2 MeV).

    • Look for: Energy signature (∼Eν [MeV] forprompt, ∼8 MeV or 2.2 MeV for delayed), timeand space coincidence → Huge backgroundreduction !

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 3 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Directionality with IBD

    Positron• Positron energy:Ee = Eν − (Mn −Mp) + σ (Eν , cos θ)

    • Emission angle:dσ

    d cos θ ∼ 1 + Vea (Eν) cos θ• At low energies → Backward emission on

    average

    → ν̄e interaction ' Prompt event• At higher energies → Forward emission

    → Non relevant for geoneutrinos

    From Vogel&Beacom, PRD, VOLUME 60, 053003

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 4 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Directionality with IBD

    Neutron• Neutron kinetic energy:Tn ' EνEeMn−Mp (1− Ve cos θ)

    • Emission angle:

    cos θn,max =

    √2Eν∆−(∆2−m2e)

    • Forward emission but energy-dependantspread

    • Moderation + Diffusion + Capture →Delayed event

    • Neutron diffusion smears directionalinformation → Statistical-only behavior

    From Vogel&Beacom, PRD, VOLUME 60, 053003

    Diffusion length of thermal neutron (mm)

    Probability

    0 500 1000 1500 2000 2500 30000

    0.5

    1

    1.5

    2

    2.5

    3

    3.5x 10

    −3

    Unloaded0.1%Gd-loaded

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 5 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Directionality with IBD

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 6 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Application: Reactor experiments

    • Observed by CHOOZ and DoubleChooz

    • Low energy neutrinos:• Negligible positron displacement• Strong forward neutron emission

    • Double Chooz results → Seeprevious talk

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 7 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Application: Supernovae early pointing

    • Early pointing of supernovae• Energy range → 0-100 MeV• Important number of IBD

    interactions

    • Almost background-free• Subject of a dedicated study

    V. Fischer, T. Chirac, T. Lasserre, C.Volpe et al.

    Prompt directional detection of galacticsupernova by combining large liquid

    scintillator neutrino detectors

    arXiv:1504.05466 [astro-ph.IM]

    Distance to the Supernova [kpc]

    An

    gu

    lar

    err

    or

    [°]

    2 4 6 8 10 12 14 16 18 20

    10

    20

    30

    40

    50

    60

    70

    80

    KamLAND (1kt)

    SNO+ (0.8kt)

    Borexino (0.3kt)

    DayaBay (0.3kt)

    DoubleChooz (0.05kt)

    RENO (0.1kt)

    MiniBoone (0.7kt)

    JUNO (20kt)

    LENA (50kt)

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 8 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Outline

    1 Neutrino directionality with IBD

    2 Geoneutrino directional detection

    3 Perspectives and conclusion

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 8 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Geo-neutrinos

    • Emitted by consecutive β-decays inTh, U and K chains

    • Originate from the Earth crust andmantle

    • Strong interest in measuring 40Kneutrinos

    • Above IBD threshold (1.8 MeV) →Only 232Th and 238U neutrinos

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 9 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Hypothetical georeactor

    • Postulated by J.M. Herndon• Incompatible with usual BSE model• Self-sustained 3-10 TW nuclear

    reactor

    • 4 km radius at the center of Earth’score

    • U-driven reactor → Typical reactorspectrum

    • Could be proven/discarded usinggeoneutrinos

    • Current limit (Borexino):< 4.5 TW (95% C.L.)

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 10 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Previous geo-neutrino detections

    KamLAND

    • From March 2002 to November2012

    • S/B (geo-ν/reactor) ∼ 0.032(before 2012)

    • Rate: 30 ± 7 TNU (116+28−27 events)

    Borexino

    • From December 2007 to August2012

    • S/B (geo-ν/reactor) ∼ 0.23• Rate: 38.8 ± 12 TNU (14.3 ± 4.4

    events)

    1 TNU = 1 Terrestrial Neutrino Unit = 1 ν̄e.(1032H)−1.y−1

    = 0.113 ×106 ν̄e.cm−2.s−1

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 11 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Detectors of interest

    KamLAND:

    • 1000 t (Japan)• 2700 mwe

    Borexino:

    • 270 t (Italy)• 3800 mwe

    Thick continental crust

    HanoHano:

    • 10 kt (Hawaii)• 3000-5000 mwe

    Thin oceanic crust

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 12 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Expected signals

    Borexino/KamLAND

    • Important reactor background (S/B� 1)

    • Limited size and expected lifetime• Sensitivity to local crust (within

    500 km)

    HanoHano• Low reactor background (S/B ∼

    10)

    • Important size• Sensitivity to mantle/georeactor

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 13 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Simulation - Overview

    • Goal: Simulation of a geoneutrinos detection and sourcereconstruction

    • Development of a fast and reliable toy Monte Carlo for the IBDreaction

    • Energy spectrum and cross-section → Detected spectrum

    • IBD kinematics & GEANT4 inputs → Precise (e+,n) generation

    • Fit of angular distributions → Direction in (θ, φ)

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 14 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Simulation - Geoneutrinos simulation• Main energy spectra considered:

    • Geoneutrino spectrum → Th:U (3.9:1) ν̄e spectra above IBDthreshold at 1.8 MeV

    • Georeactor spectrum → 235U neutrino spectrum (similar to nuclearreactor spectrum)

    • Cross sections:• Strumia & Vissani → Precise well above 100 MeV and in agreement

    with Vogel & Beacom

    Eν [MeV]

    Flu

    en

    ce

    [A

    .U.]

    0 2 4 6 8 100

    0.5

    1

    1.5

    2

    2.5

    3

    3.5x 10

    5

    Geoneutrinos (Th/U=3.9)

    Georeactor (235

    U)

    Eν [MeV]

    Cro

    ss

    se

    cti

    on

    [c

    m2]

    0 20 40 60 80 1000

    1

    2

    3

    4

    5

    6

    7

    x 10−40

    κ Ee . p

    e

    Vogel&Beacom

    Strumia&Vissani

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 15 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Simulation - IBD kinematics

    • Simulation of (e+,n) behavior in liquid scintillator• Use of GEANT4 inputs → Energy-dependant mean path lengths• Reconstruction effects: Vertex and energy resolutions

    Path length [mm]

    Pro

    ba

    bil

    ity

    0 100 200 300 400 500 60010

    −4

    10−3

    10−2

    10−1

    100

    Ee= 10.0 MeV

    Ee= 30.0 MeV

    Ee= 50.0 MeV

    Ee= 70.0 MeV

    Ee= 90.0 MeV

    Tn [MeV]

    Ne

    utr

    on

    ra

    ng

    e [

    mm

    ]

    0 5 10 15 2010

    1

    102

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 16 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Simulation - Direction retrieval• Direction vector for each event:

    −−→Xevt =

    −−−−−→Xdelayed −

    −−−−−→Xprompt

    → (θ,φ) angular distributions• Generation of two datasets: a model (high stat.) and a realistic

    dataset in different directions

    • χ2 minimization on both angular distributions → Find best-fit (θ,φ)and associated errrors

    • χ2 formula →χ2 (φ, θ) =

    ∑Ni

    ∑Nj (Yi −Mi (φ, θ))

    (V −1

    )ij

    (Yj −Mj (φ, θ))

    Azimuthal angle [°]

    Pro

    ba

    bil

    ity

    −180 −135 −90 −45 0 45 90 135 180

    0.025

    0.03

    Zenith angle [°]

    Pro

    ba

    bil

    ity

    −90 −45 0 45 900

    0.05

    0.1

    Cosine projection over initial direction

    Pro

    ba

    bil

    ity

    −1 −0.5 0 0.5 10.04

    0.05

    0.06

    # of events

    An

    gu

    lar

    err

    or

    [°]

    102

    103

    104

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 17 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Results - Georeactor

    • Goal: Locate an hypothetical georeactor• 4 TW georeactor, point-like neutrino source• Event rate: 15.2 ν̄e.y−1.kt−1

    • Energy cut @ 3.3 MeV → 73 % efficiency• No backgrounds taken into account

    Exposure [y]

    An

    gu

    lar

    err

    or

    [°]

    0 10 20 30 40 50 60 70 80 90 1000

    10

    20

    30

    40

    50

    60

    70

    80

    90Borexino (0.27 kt)

    KamLAND (1 kt)

    HanoHano (10 kt)

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 18 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Results - Crust and mantle neutrinos

    • Event rate →• Borexino: 38.1 TNU (observed)• KamLAND: 30.1 TNU (observed)• HanoHano: 7.7 TNU (expected mantle ν rate)

    • Hemispherical source → Reconstruction of the distributionbarycenter

    • No backgrounds, 100% efficiency

    Exposure [y]

    An

    gu

    lar

    err

    or

    [°]

    0 10 20 30 40 50 60 70 80 90 1000

    10

    20

    30

    40

    50

    60

    70

    80

    90Borexino (0.27 kt)

    KamLAND (1 kt)

    HanoHano (10 kt)

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 19 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Results - Summary

    • Requires large scale detectors and long exposure time to provide asomewhat useful directional information

    • Underground detector → Almost all neutrinos come from below• High reactor background → Impossibility to separate local crust and

    reactor events

    • IBD directionality in LS is not suitable for an application togeoneutrinos

    • Low anisotropy of the IBD reaction• Low statistic• High background

    • Precise directionality would help distinguish crust/mantle/georeactorgeo-ν especially far from reactors and continental crust

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 20 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Outline

    1 Neutrino directionality with IBD

    2 Geoneutrino directional detection

    3 Perspectives and conclusion

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 20 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    New detector concepts

    Segmented detectors

    • Existing concept: PROSPECT, MiniTimeCube, PANDA, etc...• Detector divided into several cells• Very precise track and position reconstruction → Good directional

    capabilities

    Water-based liquid scintillator detectors

    • Advanced Scintillator Detector Concept (ASDC)• Mixing of scintillating molecules and water• High light yield (LS) and strong directional capabilities (Čerenkov)

    Hydrogeneous TPC

    • Concept in development → see arXiv:1405.1308• 3D imaging of positron and neutron interactions• Evt-by-evt directional information at low energies

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 21 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Conclusion

    • IBD is the most suitable reaction to detect geoneutrinos

    • However, providing directional information seems hardly achievable

    • Directional information must be provided on an evt-by-evt basis →TPC, scattering, ... ?

    • Interest: Distinguish crust/mantle/georeactor? neutrinos

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 22 / 23

  • Neutrino directionality with IBD Geoneutrino directional detection Perspectives and conclusion

    Thanks

    Thank you for your attention !

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 23 / 23

  • Back-up

    Simulation - Validation tests

    ToyMC vs IBD kinematics

    Generated emission angle vs theory

    Eν [MeV]

    <co

    s θ

    e>

    0 20 40 60 80 100

    0

    0.05

    0.1

    0.15

    0.2

    Vogel and Beacom

    ← Positron

    Neutron →E

    ν [MeV]

    <co

    s θ

    n>

    0 20 40 60 80 1000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    (cosθn)min

    − Vogel and Beacom

    < cosθn >

    (cosθn)min

    ToyMC vs GEANT4

    Best observable: Projections on neutrino axis

    Ee [MeV]

    Mean

    pro

    jecti

    on

    over ν

    axis

    [m

    m]

    0 10 20 30 40 50 60 70 80−20

    0

    20

    40

    60

    80

    100

    Positron

    Neutron

    ← GEANT4

    ToyMC →

    Eν [MeV]

    Mean

    pro

    jecti

    on

    over ν

    axis

    [m

    m]

    0 20 40 60 80 100−20

    0

    20

    40

    60

    80

    100

    120

    Positron

    Neutron

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 1 / 9

  • Back-up

    Directionality methods

    Direction information comes from the detection reaction2 favorite reactions: Electron scattering (ν + e− → ν + e−) and IBD

    (ν̄e + p → e+ + n)

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 2 / 9

  • Back-up

    Event in organic TPC

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 3 / 9

  • Back-up

    Large Scale Scintillator Detectors

    KamLAND, Borexino, SNO+Spherical detectors, large size(KamLAND and SNO+: 1000t,Borexino: 300t)Deep underground, very low backgroundrate

    LVD and MiniBooneLVD: 1000 t of scintillator, deep underground, main goal: supernovadetectionMiniBoone: 680 t at sea level

    The future: JUNO and LENAJUNO: Spherical, 20 kt, construction startedLENA: 50 kt, project ongoing

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 4 / 9

  • Back-up

    Super-Kamiokande

    • 50 kt (22.5 fiducial) WaterČerenkov

    • 13’000 PMT’s• Detection via ν-e− scattering• About 8’000 events expected (IBD

    + scattering) for galactic SN

    • Pointing ability: 8 degrees at10 kpc (95% C.L.)

    • Best current SN detector

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 5 / 9

  • Back-up

    Application to SN detection

    Supernova detection

    Type II (core-collapse) supernova emits ∼ 1057 neutrinos.Current detectors will detect thousands of IBD events for a galacticsupernova.→ Possibility to perform a directionality measurement

    InterestProvides information even if visible light is absorbed by galactic disk.During a core-collapse SN, neutrinos arrive several hours before visiblelight.→ Early pointing of the region of interest over the sky→ Better accuracy using combinations of detectors

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 6 / 9

  • Back-up

    Results

    Distance to the Supernova [kpc]

    An

    gu

    lar

    err

    or

    [°]

    2 4 6 8 10 12 14 16 18 20

    10

    20

    30

    40

    50

    60

    70

    80

    KamLAND (1kt)

    SNO+ (0.8kt)

    Borexino (0.3kt)

    DayaBay (0.3kt)

    DoubleChooz (0.05kt)

    RENO (0.1kt)

    MiniBoone (0.7kt)

    JUNO (20kt)

    LENA (50kt)

    Distance to the Supernova [kpc]

    An

    gu

    lar

    err

    or

    [°]

    5 10 15 20 25 30 35 40 45 50

    10

    20

    30

    40

    50

    60

    SNEWS

    Existing

    Near future

    All

    • Large angular uncertainty for current individual detectors• Combination of current detectors → 45◦(68% C.L.) @ 10 kpc• In a near future (∼ 2018) → 12◦(68% C.L.) @ 10 kpc

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 7 / 9

  • Back-up

    Type II Supernova

    • Core collapse of massive stars (M > 8M�)• Chain fusion of H into Fe → Core collapse (see slide on SN phases)• 99 % of energy emitted as neutrinos (6 flavors) in a 10 s time

    window → ∼ 1053 neutrinos• Neutrino conversion and oscillation effects → Modify amplitude and

    shape of the energy spectrum

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 8 / 9

  • Back-up

    Type II Supernova phases• Hydrogen burning phase (main phase) withstand gravitation• After this phase, gravity takes over and the increase of density

    induces He fusion• He fuses till the creation of a Fe core• Density rises till the core reaches the Chandrasekhar mass (1.4M�)• Electron capture on protons giving neutrons and neutrinos →

    Neutron star creation and iron core collapse• Fall of the outer shells on the core→ Shockwave and matter ejection

    Vincent Fischer : CEA/IRFU/SPP Neutrino directionality in liquid scintillator detectors 9 / 9

    Neutrino directionality with IBDGeoneutrino directional detectionPerspectives and conclusionAppendix