new developments in zeolite science and technology · zeolites and zeolite-like materials 13 w.m....

20
Studies in Surface Science and Catalysis 28 New Developments in Zeolite Science and Technology Proceedings of the 7th International Zeolite Conference Tokyo, August 17-22, 1986 Edited by Y. Murakami Department of Synthetic Chemstry, Nagoya University, Nagoya, Japan A. lijima Geological Institute, University of Tokyo, Tokyo, Japan J. W.Ward Union Oil Company of California, U.S.A. Kodansha 1986 Elsevier Tokyo Amsterdam-Oxford-New York-Tokyo

Upload: others

Post on 16-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Stud ies i n Sur face Science and Catalysis 2 8

N e w Developments in Zeol ite Science and Technology Proceedings o f t h e 7 t h In te rnat iona l Zeo l i te Con fe rence T o k y o , A u g u s t 17-22, 1986

Edited by Y. M u r a k a m i Department of Synthetic Chemstry, Nagoya University, Nagoya, Japan

A. l i j ima Geological Institute, University of Tokyo, Tokyo, Japan

J . W . W a r d Union Oil Company of California, U.S.A.

Kodansha 1986 Elsevier Tokyo Amsterdam-Oxford -New York-Tokyo

Page 2: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

C o n t e n t s

Speakers are a s t e r i s k e d . Figures i n parentheses r e f e r t o the Lectures' numbers.

Chairman o f Organizing Committee & Subcommittees ν Sponsors v i L i s t o f C o n t r i b u t o r s v i i Preface xv Contents x v i i

I n t r o d u c t o r y Talk a n d P lenary L e c t u r e s

INTRODUCTORY TALK

P o r o u s C r y s t a l s : A P e r s p e c t i v e R.M. B a r r e r *

PLENARY LECTURES

Z e o l i t e s and Z e o l i t e - l i k e M a t e r i a l s 13 W.M. M e i e r *

E x p l o r a t i o n o f t h e V o i d S i z e and S t r u c t u r e o f Z e o l i t e s and M o l e c u l a r S i e v e s U s i n g C h e m i c a l R e a c t i o n s 23 P.A. J a c o b s , * J.A. M a r t e n s

Geology and Minera logy

G e o l o g i c O c c u r r e n c e o f Z e o l i t e s and Some A s s o c i a t e d M i n e r a l s 35 R.L. Hay* (GM-1-1)

The C r y s t a l C h e m i s t r y o f N a t u r a l Z e o l i t e s 41 G. G o t t a r d i * (GM-1-3)

Geology o f t h e I t a y a Z e o l i t e D e p o s i t , Yamagata, N o r t h e a s t Honshu 51 Y. Watanabe,* M. U t a d a , A. I i j i m a (GM-4-1)

Z e o l i t e s from T e r t i a r y T u f f a c e o u s Rocks i n Y e o n g i l A r e a , K o r e a 59 J.H. Noh,* S . J . Kim (GM-4-2)

xv

Page 3: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

x v i Contents

A n a l c i m e - B e a r i n g P y r o c l a s t i t e s from W e s t e r n T a u r u s M o u n t a i n s , T u r k e y 6 7 Ν. T u z c u * (GM-4-3)

I d e n t i f i c a t i o n and C h a r a c t e r i z a t i o n o f N a t u r a l Z e o l i t e s by M a g n e t i c R e s o n a n c e 71 S. N a k a t a , * S. A s a o k a , T. Kondoh, H. T a k a h a s h i (GM-5-1)

C l i n o p t i l o l i t e D e p o s i t i n t h e P i n e R i d g e I n d i a n R e s e r v a t i o n , South D a k o t a , U.S.A. 79 W.H. Raymond* (GM-5-2)

H y d r o t h e r m a l Z e o l i t e O c c u r r e n c e from t h e Smrekovec Mt. A r e a , S l o v e n i a , Y u g o s l a v i a 87 P. Koviö,* Ν. K r o s l - K u s c e r (GM-5-3)

Z e o l i t e s o f Y a k u t i a 9 3 Κ.Ye. K o l o d e z n i k o v , * V.V. S t e p a n o v (GM-5-4)

Synthes is

A l u m i n o p h o s p h a t e M o l e c u l a r S i e v e s and t h e P e r i o d i c T a b l e 10 3 E.M. F l a n i g e n , * B.M. L o k , R.L. P a t t o n , S.T. W i l s o n (SY-7-1)

P a r a m e t e r s A f f e c t i n g t h e Growth o f L a r g e S i l i c a l i t e C r y s t a l s 113 D.T. H a y h u r s t , * J . C . L e e (SY-7-3)

New Route t o P e n t a s i l - T y p e Z e o l i t e s U s i n g a Non A l k a l i n e Medium i n t h e P r e s e n c e o f F l u o r i d e I o n s 121 J . L . Guth, H. K e s s l e r , * R. Wey (SY-7-4)

T i t a n i u m - S i l i c a l i t e : A N o v e l D e r i v a t i v e i n t h e P e n t a s i l F a m i l y 129 G. P e r e g o , * G. B e l l u s s i , C. Cor n o , Μ. T a r a m a s s o , F . (SY-8-1) Buoncmo, A. E s p o s i t o

The S y n t h e s i s and C h a r a c t e r i z a t i o n o f I r o n S i l i c a t e M olecu­l a r S i e v e s 137 W.J. B a l l , J . Dwyer,* A.A. G a r f o r t h , W.J. S m i t h (SY-8-2)

P r e p a r a t i o n and C h a r a c t e r i z a t i o n o f I r o n B i d i m e n s i o n a l Z e o l i t i c M o n t m o r i l l o n i t e 145 G. M u r a l i D h a r , * M. V i t t a l , T.G. N a r e n d r a Babu (SY-8-3)

C o m p a r a t i v e S t u d y o f Z e o l i t e . A S y n t h e s i s i n B a t c h and Semi-b a t c h R e a c t o r s 15 3 M. T r a s s o p o u l o s , R.W. Thompson* (SY-9-1)

P r e p a r a t i o n and P r o p e r t i e s o f a New S y n t h e t i c Analogue o f N a t u r a l Z e o l i t e M a z z i t e 161 G.V. T s i t s i s h v i l i , * M.K. C h a r k v i a n i (SY-9-2)

The R o l e o f I n t e r f a c i a l E n e r g y i n Z e o l i t e S y n t h e s i s R.A. v a n S a n t e n , J . K e i j s p e r , G. Ooms, A.G.T.G. K o r t b e e k *

169 (SY-9-3)

Page 4: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Contents x v i i

The S y n t h e s i s o f Z e o l i t e NaA from Homogeneous S o l u t i o n s and S t u d i e s o f i t s P r o p e r t i e s 177 Pang Wenqin,* S. Ueda, Μ. Ko i z u m i (SY-10-1)

C l e a r Aqueous N u c l e i S o l u t i o n f o r F a u j a s i t e S y n t h e s i s 185 S. K a s a h a r a , * K. I t a b a s h i , K. Igawa (SY-10-2)

C r y s t a l l i z a t i o n o f H i g h - S i l i c a Z e o l i t e i n t h e M i x t u r e o f Water and O r g a n i c S o l v e n t 19 3 M. Sugimoto,* Κ. T a k a t s u , N. Kawata, T. K o n i s h i (SY-10-3)

The T e m p l a t i n g E f f e c t d u r i n g t h e F o r m a t i o n o f ZSM-5 Type Z e o l i t e 201 Song T i a n y o u , Xu R u r e n , * L i L i y u n , Ye Z h a o h u i (SY-11-1)

The I n f l u e n c e o f Temp l a t e S i z e and Geometry on F a u j a s i t e C r y s t a l l i z a t i o n 207 D.E.W. Vaughan,* K.G. S t r o h m a i e r (SY-11-2)

B i s - Q u a t e r n a r y Ammonium Compounds as T e m p l a t e s i n t h e C r y s t a l l i z a t i o n o f Z e o l i t e s and S i l i c a M o l e c u l a r S i e v e s 215 J . L . C a s c i * (SY-11-3)

Mechanism o f Z e o l i t e C r y s t a l l i z a t i o n w i t h o u t U s i n g T e m p l a t e R e a g e n t s o f O r g a n i c B a s e s 223 F.-Y. D a i , * M. S u z u k i , ( l a t e ) H. T a k a h a s h i , Y. S a i t o (SY-11-4)

R o l e o f A l k a l i and Tetrapropylammonium C a t i o n s i n (M)ZSM-5 H y d r o g e l P r e c u r s o r s 231 J.B. Nagy, P. B o d a r t , E.G. Derouane,* Z. G a b e l i c a , (SY-12-1) A. N a s t r o

N u c l e a t i o n and Growth o f NH4-ZSM-5 Z e o l i t e s 239 L.-Y. Hou,* L.B. Sand, R.W. Thompson (SY-12-2)

A p p l i c a t i o n o f 2 9 S i and 2 7A1 NMR t o D e t e r m i n e t h e D i s t r i ­b u t i o n o f A n i o n s i n Sodium S i l i c a t e and Sodium A l u m i n o -S i l i c a t e S o l u t i o n s 247 A.V. McCormick, A.T. B e l l , * C . J . Radke (SY-12-3)

I n f l u e n c e o f Sodium S a l t s on Z e o l i t e Nu-10 C r y s t a l l i z a t i o n 255 R. A i e l l o , * A. N a s t r o , C. P e l l e g r i n o (SY-12-4)

C r y s t a l l i z a t i o n o f Z e o l i t i c A l u m i n o s i l i c a t e s i n B i c a t i o n i c S y s tems I n c l u d i n g L i t h i u m 26 3 C. C o l e l l a , * M. de'Gennaro, V. I o r i o (SY-12-5)

Ion Exchange and M o d i f i c a t i o n

I o n E xchange i n Z e o l i t e s : Some R e c e n t D e v e l o p m e n t s i n Theory and P r a c t i c e 27 3 R.P. Townsend* (IM-1-1)

M o d e l l i n g and C a l c u l a t i n g I o n - E x c h a n g e P r o c e s s e s o f M e t a l S o r p t i o n by N a t u r a l C l i n o p t i l o l i t e 283 V.A. N i k a s h i n a , * M.M. S e n y a v i n , L . I . M i r o n o v a , V.A. T y u r i n a (IM-1-3)

Page 5: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

x v i i i Contents

T e r n a r y E x c h a n g e E q u i l i b r i a I n v o l v i n g H 3 0 + , Ν Η ι , + and N a + I o n s i n S y n t h e t i c Z e o l i t e s o f t h e F a u j a s i t e S t r u c t u r e 289 K.R. F r a n k l i n , R.P. Townsend, S . J . Whelan, C . J . Adams* (IM-1-4)

Germanium M e t h o x i d e : New R e a g e n t f o r C o n t r o l l i n g t h e P o r e -O p e n i n g S i z e o f Z e o l i t e by CVD 29 7 M. Niwa,* C.V. H i d a l g o , T. H a t t o r i , Y. Murakami (IM-2-1)

The I n f l u e n c e o f S t r u c t u r a l M o d i f i c a t i o n by S i l a n a t i o n on t h e I o n - E x c h a n g e P r o p e r t i e s o f M o r d e n i t e L.P. 305 P. De Hülsters,* J . V e r b i e s t , J . P h i l i p p a e r t s , G. P e e t e r s , (IM-2-2) E . F . V a n s a n t

I n t e r a c t i o n o f T r i c o o r d i n a t e d P h o s p h o r u s Compounds w i t h Z e o l i t e s 311 Th. B e i n , * D.B. C h a s e , R.D. F a r l e e , G.D. S t u c k y (IM-2-3)

The I m p l a n t a t i o n o f B o r o n - N i t r o g e n Compounds i n M o r d e n i t e LP and t h e i r I n f l u e n c e on t h e A d s o r p t i o n P r o p e r t i e s 319 J . P h i l i p p a e r t s , * G. P e e t e r s , E . F . V a n s a n t , P. De Hülsters, (IM-2-4) J . V e r b i e s t

M o d i f i c a t i o n o f Y Type Z e o l i t e by F e r r i c N i t r a t e S o l u t i o n 329 S. H i d a k a , * A. l i n o , K. N i t a , Y. Maeda, K. M o r i n a g a , (IM-2-5) N. Yamazoe

E f f e c t o f R a r e E a r t h L o a d i n g i n Y - Z e o l i t e on i t s D e a l u m i n a -t i o n d u r i n g T h e r m a l T r e a t m e n t 337 J.W. R o e l o f s e n , * H. M a t h i e s , R.L. de G r o o t , P.CM. van (IM-3-1) Woerkom, H. Angad G a u r

The E f f e c t o f D e a l u m i n a t i o n on t h e S t r u c t u r e and A c i d i c P r o p e r t i e s o f O f f r e t i t e 345 C. F e r n a n d e z , A. A u r o u x , * J . C . V e d r i n e , J . Grosmangin, (IM-3-2) G. S z a b o

F a u j a s i t e s E n r i c h e d i n S i l i c o n . A C o m p a r i s o n o f P r o c e s s e s and P r o d u c t s 351 D. A k p o r i a y e , A.P. C h a p p i e , D.M. C l a r k , J . Dwyer,* I . S . (IM-3-3) E l l i o t t , D . J . R a w l e n c e

S t r u c t u r e

Z e o l i t e S t r u c t u r a l I n v e s t i g a t i o n s by High R e s o l u t i o n S o l i d S t a t e MAS NMR 361 G.T. K o k o t a i l o , * C A . F y f e , G . J . Kennedy, G.C. Gobbi, H. ( S T - 9 - 1 ) S t r o b l , C T . P a s z t o r , G.E. B a r l o w , S. B r a d l e y

D i s t r i b u t i o n o f Aluminum i n t h e S y n t h e t i c M o r d e n i t e s 369 K. I t a b a s h i , * T. Okada, K. Igawa ( S T - 9 - 3 )

G e n e r a t i o n o f New P a r a m a g n e t i c Rhodium S p e c i e s i n NaX Z e o l i t e and C o o r d i n a t i o n w i t h A d s o r b a t e s 377 D. G o l d f a r b , L . K e v a n * ( S T - 1 0 - 1 )

Page 6: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Contents x i x

Combined EPR-DRS S p e c t r o s c o p i e s on Z e o l i t e s : C o o r d i n a t i o n o f C u ( I I ) t o an Oxygen S i x - R i n g 385 D. P a c k e t , R.A. S c h o o n h e y d t * ( S T - 1 0 - 2 )

A d s o r p t i o n o f Xenon: A New Method f o r S t u d y i n g Z e o l i t e s 39 3 J . F r a i s s a r d , * T. I t o , M. S p r i n g u e l - H u e t , J . Demarquay ( S T - 1 0 - 3 )

I n S i t u S y n t h e s i s o f I r i d i u m C a r b o n y l C l u s t e r s E n c a g e d i n Y - Z e o l i t e 401 G. B e r g e r e t , * P. G a l l e z o t , F . L e f e b v r e ( S T - 1 1 - 1 )

S u r f a c e S t a t e s o f A l u m i n o p h o s p h a t e and Z e o l i t e M o l e c u l a r S i e v e s 409 S.L. S u i b , * A.M. W i n i e c k i , A. K o s t a p a p a s , L.B. Sand ( S T - 1 1 - 2 )

D i s t r i b u t i o n o f t h e B i v a l e n t N i c k e l I o n i n ZSM-5 M o l e c u l a r S i e v e s 415 L i u Z h e n y i , * Zhang W a n g j i n , Yu Q i n , Lü G u a n g l i e , L i ( S T - 1 1 - 3 ) Wangrong, Wang S h u j u , Zhang Y o u s h i , L i n B i n g x i o n g

The A p p l i c a t i o n o f E l e c t r o n e g a t i v i t y E q u a l i z a t i o n C o n c e p t s t o Z e o l i t e s 423 W.J. M o r t i e r * ( S T - 1 1 - 4 )

Q u a t e r n a r y Ammonium C a t i o n E f f e c t s on t h e C r y s t a l l i z a t i o n o f Z e o l i t e s o f t h e O f f r e t i t e - E r i o n i t e F a m i l y , P a r t I I . E l e c t r o n D i f f r a c t i o n S t u d i e s 429 J.V. S a n d e r s , M.L. O c c e l l i , * R.A. I n n e s , S.S. P o l l a c k ( S T - 1 2 - 1 )

The Absence o f T-O-T A n g l e s o f 180° i n Z e o l i t e s 437 A. A l b e r t i * ( S T - 1 2 - 2 )

The S t r u c t u r e o f Z e o l i t e Li-A(BW) by S i n g l e C r y s t a l D a t a 443 E . K. A n d e r s e n , * G. P l o u g - S ^ r e n s e n ( S T - 1 2 - 3 )

D i s t r i b u t i o n o f C a t i o n s and Water M o l e c u l e s i n t h e H e u l a n d i t e - T y p e Framework 449 K. Sugiyama,* Y. Take*uchi ( S T - 1 2 - 4 )

S t r u c t u r a l S t u d i e s o f G a l l o s i l i c a t e Z e o l i t e s 457 J.M. Newsam,* D.E.W. Vaughan ( S T - 1 2 - 5 )

A d s o r p t i o n and D i f fus ion

I n t r a c r y s t a l l i n e D i f f u s i o n o f C 8 A r o m a t i c I s o m e r s i n NaX Z e o l i t e and N a t u r a l F a u j a s i t e 467 M. Goddard, D.M. Ru t h v e n * (AD-3-1)

The Use o f Computer G r a p h i c s t o S t u d y A d s o r p t i o n , D i f f u s i o n and C a t a l y s i s i n Z e o l i t e s 475 A.K. Nowak,* A.K. Cheetham (AD-3-2)

The E f f e c t s o f Steam T r e a t m e n t I m p r e g n a t i o n w i t h P, Mg and I o n E xchange on D i f f u s i o n i n HZSM-5 Z e o l i t e 481 Chuanchang Wu,* G u a n l i n Q i n , Yuming X i e (AD-3-3)

Page 7: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

xx Contents

S t u d i e s on t h e S u r f a c e A c i d i t y o f HY Z e o l i t e by Combined I R and TPD 4 87 L i Q u a n z h i , * Zhang R u i m i n g , Xue Z h i y u a n (AD-4-1)

B r o n s t e d S i t e P o p u l a t i o n on E x t e r n a l and on I n t e r n a l S u r f a c e o f S h a p e - S e l e c t i v e C a t a l y s t s 495 J . T a k e , * Y. Y a m a g u c h i , K. Miyamoto, H. Ohyama, M. Misono (AD-4-2)

A Method f o r C a l c u l a t i n g A c t i v a t i o n E n e r g y D i s t r i b u t i o n o f D e s o r p t i o n f r om Temperature-Programmed D e s o r p t i o n S p e c t r u m o f Ammonia 50 3 Κ. H a s h i m o t o , * T. Masuda, T. Mori (AD-4-3)

One D i m e n s i o n a l Gas A d s o r b e d i n t h e Z e o l i t i c P o r e 511 T. T a k a i s h i * (AD-5-1)

S m e c t i t e M o l e c u l a r S i e v e s . P a r t I . Hydrogen, D e u t e r i u m , and Neon i n E x p a n d e d F l u o r h e c t o r i t e s 521 R.M. B a r r e r , * R . J . B . C r a v e n (AD-5-3)

A d s o r p t i o n o f H y d r o c a r b o n s i n (Na,K)-ZSM5, - Z S M l l and " A l -F r e e " NaZSM5 and N a Z S M l l 531 Y.H. Ma,* T.D. Tang, L.B. Sand, L.Y. Hou (AD-5-4)

A d s o r p t i o n P r o p e r t i e s o f M i c r o p o r o u s A l u m i n o p h o s p h a t e A l P 0 4 - 5 539 H. S t a c h , H.^Thamm, K. F i e d l e r , B. G r a u e r t , W. W i e k e r , (AD-6-1) E . J a h n , G. Öhlmann*

H y d r o c a r b o n A d s o r p t i o n C h a r a c t e r i z a t i o n o f Some High S i l i c a Z e o l i t e s · 547 E . L . Wu, G.R. L a n d o l t , A.W. C h e s t e r * (AD-6-2)

A d s o r p t i o n E q u i l i b r i u m o f E t h y l e n e - C a r b o n D i o x i d e M i x t u r e on Z e o l i t e ZSM5 555 J i n - G u Wang,* Y.H. Ma, Yang-Chun Chang, H a i - Q i n g L i , T.D. (AD-6-3) Tang

S i m u l a t i o n o f P r e s s u r e S w i n g A d s o r p t i o n f o r A i r S e p a r a t i o n 563 K. C h i h a r a , * Y. Yoneda, S. M o r i s h i t a , M. S u z u k i (AD-6-4)

E f f e c t o f t h e I n t e r a c t i o n b e t w e e n A d m o l e c u l e s on the S o r p t i o n E q u i l i b r i u m a t t h e L i q u i d - S o l i d I n t e r f a c e f o r t h e Y Z e o l i t e 571 S.-K. Ihm,* H.-S. L e e (AD-6-5)

M o l e c u l a r M o b i l i t y o f H y d r o c a r b o n Z S M 5 / S i l i c a l i t e S y s t e m s S t u d i e d by S o r p t i o n U p t a k e and F r e q u e n c y Response Methods 579 M. Bülow, Η. S c h l o d d e r , L.V.C. R e e s , * R.E. R i c h a r d s (AD-7-1)

Z e o l i t i c D i f f u s i v i t i e s o f B i n a r y Gas M i x t u r e s by t h e F r e ­q u e ncy R e s p o n s e Method 5 87 Y. Y a s u d a , * Y. Yamada, I . M a t s u u r a (AD-7-2)

N u c l e a r R e l a x a t i o n S t u d i e s o f A r o m a t i c s i n F a u j a s i t e Type Z e o l i t e s 595 Η. L e c h e r t , * W.D. B a s l e r , K.P. W i t t e r n (AD-7-3)

Page 8: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Contents x x i

Study o f t h e M o b i l i t y o f C a 2 + i n Ca, Na-A by n - P e n t a n e S o r p t i o n 601 D. F r a e n k e l * (AD-7-4)

F o u r D i f f e r e n t S t a t e s o f Benzene A d s o r b e d i n F a u j a s i t e s 609 A. de Mallmann, D. B a r t h o m e u f * (AD-8-1)

Combined UV and I R S p e c t r o s c o p i c S t u d i e s on t h e A d s o r p t i o n o f SO2 o n t o F a u j a s i t e - T y p e Z e o l i t e s 617 H.G. K a r g e , * Μ. £aniecki, Μ. Z i o ^ e k (AD-8-2)

H e a t C a p a c i t i e s and A d s o r p t i o n E n e r g i e s o f H e l i u m A d s o r b e d on Y Z e o l i t e s w i t h V a r i o u s C a t i o n s 625 N. Wada,* Y. Yamamoto, H. K a t o , T. I t o , T. Watanabe (AD-8-3)

NMR I n v e s t i g a t i o n s o f S e l f - D i f f u s i o n i n P e n t a s i l s 633 J . Kärger, Η. P f e i f e r , * D. F r e u d e , J . C a r o , Μ. Bülow, (AD-8-4) G. Öhlmann

Catalys is

C a t a l y t i c and A c i d i c P r o p e r t i e s o f Boron P e n t a s i l Z e o l i t e s 643 G. C o u d u r i e r , J . C . V ^ d r i n e * (CA-1-1)

D i s p r o p o r t i o n a t i o n o f P a r a f f i n s I . P e n t a n e s 653 N.Y. Chen* (CA-1-3)

Shape S e l e c t i v e C r a c k i n g o f O c t a n e i n t h e P r e s e n c e o f A n o t h e r H y d r o c a r b o n on HZSM-5 661 S. Namba,* K. S a t o , K. F u j i t a , J.H. Kim, T. Y a s h i m a (CA-1-4)

P o r e S i z e and Shape E f f e c t s i n Z e o l i t e C a t a l y s i s 669 J.G. B e n d o r a i t i s , A.W. C h e s t e r , * F.G. Dwyer, W.E. Garwood (CA-2-1)

The N a t u r e o f t h e C a t a l y t i c S i t e s i n HZSM-5 — A c t i v i t y Enhancement 677 R.M. Lago, W.O. Haag,* R . J . M i k o v s k y , D.H. O l s o n , S.D. (CA-2-2) H e l l r i n g , K.D. S c h m i t t , G.T. K e r r

I n f l u e n c e o f t h e A c t i v a t i o n C o n d i t i o n s on t h e C a t a l y t i c B e h a v i o u r o f O f f r e t i t e 6 85 F . Hernandez, C. O l i v e r , F . F a j u l a , * F . F i g u e r a s (CA-2-3)

I n v e s t i g a t i o n o f C a r b o n a c e o u s D e p o s i t s on a LaY Z e o l i t e C a t a l y s t by CP/MAS-13C-NMR S p e c t r o s c o p y 693 S. M a i x n e r , C.Y. Chen, P . J . G r o b e t , P.A. J a c o b s , J . (CA-2-4) Weitkamp*

F o r m a t i o n and N a t u r e o f Coke D e p o s i t s on Z e o l i t e s HY and HZSM-5 701 M. G u i s n e t , * P. Magnoux, C. C a n a f f (CA-2-5)

P r e p a r a t i o n o f B i f u n c t i o n a l Pt/H-ZSM5 C a t a l y s t s and t h e i r A p p l i c a t i o n f o r Propane C o n v e r s i o n 709 C.W.R. E n g e l e n , J . P . W o l t h u i z e n , J.H.C. v a n H o o f f , * (CA-3-1) H. W. Zandbergen

Page 9: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

x x i i Contents

T r a n s f o r m a t i o n o f Propene i n t o A r o m a t i c H y d r o c a r b o n s o v e r ZSM-5 Z e o l i t e s 717 M. S h i b a t a , H. K i t a g a w a , Y. Sendoda, Y. Ono* (CA-3-2)

A r o m a t i z a t i o n o f H y d r o c a r b o n s o v e r P l a t i n u m A l k a l i n e E a r t h Z e o l i t e s 725 T.R. Hughes,* W.C. B u s s , P.W. Tamm, R.L. J a c o b s o n (CA-3-3)

A l k y l a t i o n o f C h l o r o b e n z e n e o v e r H-Mordenite and H-ZSM-5: E f f e c t o f S i / A l R a t i o 733 Chen Fang Ren, G. C o u d u r i e r , C. N a c c a c h e * (CA-4-1)

The S e l e c t i v e A l k y l a t i o n o f A n i l i n e w i t h M e t h a n o l o v e r ZSM-5 Z e o l i t e 739 P.Y. Chen, M.C. Chen, Y.Y. Chu, N.S. Chang, T.K. Chuang* (CA-4-2)

P a r a - S e l e c t i v e C h l o r i n a t i o n o f C h l o r o b e n z e n e on M o d i f i e d Y-Type Z e o l i t e s 747 T. M i y a k e , * Κ. S e k i z a w a , T. H i r o n a k a , M. Nakano, S. F u j i i , (CA-4-3) Y. T s u t s u m i

Some C a t a l y t i c A p p l i c a t i o n s o f ZSM-5 Z e o l i t e : P a r a - S e l e c t i v e D e a l k y l a t i o n and Vapor Phase Beckmann R e a r r a n g e m e n t 75 5 H. S a t o , * Ν. I s h i i , K. H i r o s e , S. Nakamura (CA-5-1)

R e a c t i o n o f E t h a n o l and Ammonia t o P y r i d i n e o v e r ZSM-5-Type Z e o l i t e s 763 F . J . v a n d e r Gaag, F . L o u t e r , H. v a n Bekkum* (CA-5-2)

C a t a l y t i c V a p o r - P h a s e H y d r a t i o n o f Lower O l e f i n s o v e r P r o t o n i c Z e o l i t e C a t a l y s t s 771 E. K i k u c h i , * T. Matsuda, K. Shimomura, K. K a w a h a r a , (CA-5-3) Y. M o r i t a

M a n u f a c t u r e o f D i m e t h y l a m i n e U s i n g Z e o l i t e C a t a l y s t 779 Y. A s h i n a , T. F u j i t a , M. F u k a t s u , * K. Niwa, J . Y a g i (CA-5-4)

The I n f l u e n c e o f Hydrogen S u l f i d e i n H y d r o c r a c k i n g o f n-Dodecane o v e r P a l l a d i u m / F a u j a s i t e C a t a l y s t s 787 H. Dauns, S. E r n s t , * J . Weitkamp (CA-6-1)

The K i n e t i c s o f H y d r o d e n i t r o g e n a t i o n o v e r a Z e o l i t e C a t a l y s t 795 I . E . M a x w e l l , * J.A. v a n de G r i e n d (CA-6-2)

H y d r o t h e r m a l A g i n g o f C r a c k i n g C a t a l y s t s — I I I : E f f e c t o f Vanadium on t h e S t r u c t u r e o f LaY Z e o l i t e s 80 3 F. Maug£, J . C . C o u r c e l l e , Ph. E n g e l h a r d , P. G a l l e z o t , * (CA-6-3) J . Grosmangin

On the H y d r o d e s u l f u r i z a t i o n A c t i v i t y o f Z e o l i t e s C o n t a i n i n g T r a n s i t i o n M e t a l s 811 N. D a v i d o v a , * P. K o v a c h e v a , D. Shopov (CA-6-4)

P e n t a s i l - T y p e Z e o l i t e s : R a d i c a l F o r m a t i o n , A c t i v i t y i n t h e O l e f i n O l i g o m e r i z a t i o n and A r o m a t i z a t i o n , P r o c e s s e s o f Coke D e p o s i t i o n 819 A.A. S l i n k i n , A.V. K u c h e r o v , D.A. K o n d r a t y e v , T.N. (CA-6-5) Bondarenko, A.M. R u b i n s t e i n , Kh.M. M i n a c h e v *

Page 10: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Contents x x i i i

New H o r i z o n s i n C a t a l y s i s U s i n g M o d i f i e d and U n m o d i f i e d P e n t a s i l Z e o l i t e s 827 W. Hölderich* (CA-7-1)

C a t a l y t i c and A c i d i c P r o p e r t i e s o f SAPO-5 M o l e c u l a r S i e v e 835 Xu Q i n h u a , * Y a n A i z h e n , Bao S h u l i n , Xu K a i j u n (CA-7-3)

M o l e c u l a r S i e v e E f f e c t s i n C a r b o n i o g e n i c R e a c t i o n s C a t a l y z e d by S i l i c o a l u m i n o p h o s p h a t e M o l e c u l a r S i e v e s 843 R . J . P e l l e t , * G.N. Long, J.A. Rabo (CA-7-4)

M e t a l l o s i l i c a t e Z e o l i t e s a s C a t a l y s t s f o r A l k y l a t i o n o f T o l u e n e w i t h M e t h a n o l 851 R.B. B o r a d e , A.B. H a l g e r i , T.S.R. P r a s a d a Rao* (CA-8-1)

New A s p e c t s i n C a t a l y t i c P e r f o r m a n c e o f N o v e l M e t a l l o s i l i -c a t e s H a v i n g t h e P e n t a s i l P o r e - O p e n i n g S t r u c t u r e 859 T. I n u i , * A. Miyamoto, H. Matsuda, H. Nagata, Y. Makino, (CA-8-2) K. F u k u d a , F . Okazumi

T r a n s a l k y l a t i o n o f A l k y l a r o m a t i c Compounds on S i l i c a t e s w i t h ZSM-5 S t r u c t u r e C o n t a i n i n g A I , B, and Ga 867 H.K. B e y e r , * G. B o r b e l y (CA-8-3)

S e l e c t i v e S y n t h e s i s o f C 3 and Ci+ H y d r o c a r b o n s from S y n t h e s i s Gas by U t i l i z i n g H y b r i d C a t a l y s t s C o n t a i n i n g Y-Type Z e o l i t e s 875 K. F u j i m o t o , * H. S a i m a , H. Tominaga (CA-9-1)

Molybdenum Z e o l i t e s a s F i s c h e r - T r o p s c h C a t a l y s t s : Compara­t i v e S t u d y o f t h e A d s o r p t i o n and D e c o m p o s i t i o n o f Mo(CO)6 i n D i f f e r e n t Z e o l i t e s 883 Yong Y.S., R.F. Howe* (CA-9-2)

R e a c t i o n Mechanism f o r S e l e c t i v e S y n t h e s i s o f G a s o l i n e -Range I s o a l k a n e s f r om S y n g a s o v e r RuPtHY Z e o l i t e s 891 T. T a t s u m i , * Y.G. S h u l , Y. A r a i , H. Tominaga (CA-9-3)

Mechanism o f t h e ZSM-5 C a t a l y z e d F o r m a t i o n o f H y d r o c a r b o n s from Methanol-P'ropanol 899 L.-M. Tau, A.W. F o r t , Β.Η. D a v i s * (CA-10-1)

D e a c t i v a t i o n o f M o d i f i e d P e n t a s i l Z e o l i t e s f o r Me t h a n o l C o n v e r s i o n t o O l e f i n s a t Hi g h T e m p e r a t u r e 90 7 Guoquan Chen, J u a n L i a n g , * Q i n g x i a Wang, Guangyu C a i , (CA-10-2) S u q i n Zhao, M u l i a n g Y i n g

C o m p a r a t i v e I n v e s t i g a t i o n o f Time on S t r e a m S e l e c t i v i t y C h anges d u r i n g M e t h a n o l C o n v e r s i o n on D i f f e r e n t Z e o l i t e s 915 H. S c h u l z , * W-Böhringer, W. B a u m g a r t n e r , Zhao S i w e i (CA-10-3)

P a r t i c l e S i z e E f f e c t on t h e S e l e c t i v i t y f o r Me t h a n o l S y n t h e s i s on F a u j a s i t e X S u p p o r t e d P l a t i n u m 923 N . I . J a e g e r , * G. S c h u l z - E k l o f f , A. S v e n s s o n (CA-11-1)

H y d r o c o n v e r s i o n o f η-Octane on Pt/USY Z e o l i t e s : E f f e c t o f A l l o y i n g P t w i t h Cu 929 M. Dufaux, M. L o k o l o , P. M e r i a u d e a u , * C. N a c c a c h e , Y. Ben (CA-11-2) Taärit

Page 11: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

x x i v Contents

Sodium C l u s t e r s i n Z e o l i t e s a s A c t i v e S i t e s f o r C a r b a n i o n C a t a l y z e d R e a c t i o n s 9 35 L.R.M. M a r t e n s , * P . J . G r o b e t , W.J.M. V e r m e i r e n , P.A. (CA-11-3) J a c o b s

C a t a l y t i c D e c o m p o s i t i o n o f N i t r i c Monoxide o v e r Copper I o n -E x c h a n g e d Z e o l i t e s 943 M. Iwamoto,* H. F u r u k a w a , S. Kagawa (CA-11-4)

Z i n c and A l u m i n i u m S u b s t i t u t i o n s i n M F I - S t r u c t u r e s : S y n t h e s i s , C h a r a c t e r i z a t i o n and C a t a l y s i s 951 W.J. B a l l , S . A . I . B a r r i , S. C a r t l i d g e , B.M. Maunders, (CA-12-1) D.W. W a l k e r *

A c i d - B a s e and C a t a l y t i c P r o p e r t i e s o f A l k a l i M e t a l E x c h a n g e d ZSM5 957 M. D e r e w i n s k i , J . H a b e r , * J . P t a s z y n s k i , J.A. L e r c h e r , (CA-12-2) G. Rumplmayr

I n t e r a c t i o n o f N i c k e l I o n s w i t h E t h y l e n e M o l e c u l e s i n E t h y l e n e D i m e r i z a t i o n o v e r Ni-X Z e o l i t e s 965 L u b i n Zheng,* Gongwei Wang, X i n l a i B a i (CA-12-3)

η-Heptane I s o m e r i z a t i o n o v e r P l a t i n u m - L o a d e d M o r d e n i t e C a t a l y s t s 973 K. Mahos,* R. Nakamura, H. N i i y a m a (CA-12-4)

O x i d a t i v e H e t e r o g e n o u s C a t a l y s i s o v e r Z e o l i t e s 981 D.B. T a g i y e v , * K.M. M i n a c h e v (CA-12-5)

A p p l i c a t i o n

Development o f Z e o l i t e f o r Non-Phosphated D e t e r g e n t s i n J a p a n 991 I . Yamane,* T. Nakazawa (AP-2-1)

S t u d i e s on t h e I n i t i a l P r o d u c t i n t h e S y n t h e s i s o f Z e o l i t e A from C o n c e n t r a t e d S o l u t i o n s 1001 Y. T s u r u t a , * T. S a t o h , T. Y o s h i d a , 0. Okumura, S. Ueda (AP-2-3)

Sodium A l u m i n o s i l i c a t e s i n t h e Washing P r o c e s s . P a r t I X : Mode o f A c t i o n o f Z e o l i t e A / A d d i t i v e S y s t e m s 1009 C. P. Kurzendörfer, Μ. L i p h a r d , W. von R y b i n s k i , M.J. (AP-2-4) Schwuger*

C a l c i u m I o n E x c h a n g i n g B e h a v i o r o f Z e o l i t e A i n the Washing P r o c e s s 1017 T. Mukaiyama,* H. N i s h i o , O. Okumura (AP-2-5)

C a r b o h y d r a t e S e p a r a t i o n s U s i n g Z e o l i t e M o l e c u l a r S i e v e s 1025 J.D. Sherman,* C.C. Chao (AP-6-1)

P o l y v a l e n t C a t i o n E x c h a n g e d X Z e o l i t e s w i t h Improved Gas S e p a r a t i o n P r o p e r t i e s 1033 C G . Coe,* G.E. P a r r i s , R. S r i n i v a s a n , S.R. A u v i l (AP-6-2)

Page 12: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Contents xxv

Vacuum F r e e z e D r y i n g o f Food U s i n g N a t u r a l Z e o l i t e 1041 A. T a k a s a k a , * Y. Matsuda (AP-6-3)

N a t u r a l Z e o l i t e s i n E n e r g y S t o r a g e and Heat Pumps 104 7 S. Ölkü* (AP-6-4)

The E f f e c t o f Z e o l i t e on R u m i n a l B a c t e r i a P o p u l a t i o n and i t s A c t i v i t y i n H e i f e r s F e d S u n f l o w e r : Sorghum S i l a g e 1055 J . G a l i n d o , * A. E l l a s , M.R. G o n z a l e z (AP-6-5)

Page 13: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Interaction of Tricoordinated Phosphorus Compounds with Zeolites

Th. Bein, D. B. Chase, R. D. Farlee and G. D. Stucky Central Research and Development Department, Ε. I . du Pont de Nemours and Company, Experimental Station E262, Wilmington, Delaware 19898, USA

Vapor phase chemisorption of dimethylphosphine (DMP), t r i -methylphosphine and trimethylphosphite (TMP) i n a c i d i c f a u j a s i t e has been studied with i n s i t u IR and MAS-NMR techniques. E f f e c t s of pore f i l l i n g on the s p e c t r a l properties of trimethylphosphine are discussed. Protonation of DMP i n a r e v e r s i b l e a c ^ - b a s e reaction with dry HY z e o l i t e i s indicated by a single Ρ resonance at -56 ppm due to PCCH^^i^ and by the appearence of di f f e r e n t P-H stretching modes. An acid catalyzed Arbuzov rearrangement converts TMP into dimethylmethylphosphonate which s p l i t s off methoxy groups upon heat treatment i n the z e o l i t e .

INTRODUCTION Phosphorus compounds have gained considerable i n t e r e s t i n the surface

chemistry of metal oxides. Research a c t i v i t y encompasses chemisorption studies [1-11], anchoring of phosphine ligands (see e.g., [12,13]), modification of a c i d i c surface properties [14-16], s e l e c t i v e poisoning of acid s i t e s [17], t i t r a t i o n of these properties [18,19], and f i n e tuning of z e o l i t e pore geometries for shape s e l e c t i v e c a t a l y t i c reactions [20-22].

The chemisorption and protonation of trimethylphosphine i n the acid form of f a u j a s i t e s has been studied by means of IR and P-NMR techniques [8,18,19]. Different p^sphonium species which depend on the degree of loading have been reported. Ρ MAS-NMR resonances between -32 and -58 ppm were assigned to Lewis acid-base complexes with a c i d i c species l i k e ΑΙ«0^ c l u s t e r s generated upon dehydroxylation of the HY z e o l i t e [19].

In contrast to the acid-base reactions discussed above, d e t a i l s of the more severe modifications of z e o l i t e s with other phosphorus compounds l i k e P(0R)~, PCl^ or phosphates are much l e s s understood. The purpose of the present worfc i s to understand i n the above context the I n t e r a c t i o n of HY z e o l i t e with DMP, trimethylphosphine and with trimethylphosphite, r e s p e c t i v e l y . The study also emphasizes the value of s o l i d state NMR and i n s i t u IR techniques as powerful diagnostic tools for phosphorus/zeolite systems.

EXPERIMENTAL 1. Materials

Vapor of dimethylphosphine ( A l f a ) was admitted into a storage f l a s k with dried molecular sieve 4A. Trimethylphosphite and trimethylphosphine (Strem Chemicals) were stored over sieve 4A without further p u r i f i c a t i o n . ΝΗ,Υ z e o l i t e with the composition N a g i N H ^ ^ A l ^ S i . ^y^^S4 n H 2 ° W a S o b t a i n e d f r o m Linde (LZ-Y62). Prior to use, the ammonium form of the z e o l i t e was degassed by heating for 12 hours at 670 Κ under 10 tor r to y i e l d the dry proton form (HY). The l i n e a r heating rate was 2 K/min.

311

Page 14: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

312 (IM-2-3)

2. Methods Samples for s o l i d state NMR experiments were prepared as follows. Batches of

dry HY were weighed into a small quartz holder, introduced into a tubular quartz reactor and evacuated at a greaseless vacuumline (10 t o r r ) for 30 min. A degassed and frozen v i a l with the phosphine was allowed to warm up to 273 Κ and dosed manometrically onto the z e o l i t e . After e q u i l i b r a t i n g for 120 min at 295 K, the z e o l i t e was pumped off for 30 min, and weight changes were recorded i n the drybox. Heat treatments were done i n the same reactor under vacuum, with a heating^rate o f . l K/min.

The Ρ and C MAS-NMR spectra were obtained on a Bruker CXP-300 instrument. Andrews type rotors were f i l l e d with ca. 200 mg of sample i n the drybox and introduced into the NMR probe i n a glovebag under flowing nitrogen. Dry nitrogen was used a j the drive gas for the rotor to obtain spinning rates between 2 and 4 kHz. For P, a 30° to 90° pulse with 10 s recycle time was used, depending on the T p to obtain quantitative j p e c t r a . For C, 5 ms cro s s - p o l a r i z a t i o n with 1 to 10 s recycle time was used. Η-decoupling time was 20-60 ms i n both cases. Chemical s h i f t s were referred to 85% ^PO, or (CH^)^Si. No s i g n i f i c a n t oxidation of the phosphines was observed during the NMR experiments.

I n ^ s i t u i n f r a r e d experimentS2were done with self-supporting z e o l i t e wafers (5 mg/cm ) , compacted at 100 kg/cm , i n a controlled-atmosphere c e l l with CaF^ windows connected to a Nicolet 7000 FT-IR spectrometer. Sample treatment was si m i l a r to that of the NMR samples, with the exception of shorter temperature c y c l e s .

RESULTS AND DISCUSSION 1. Acid/base Reactions between Ze o l i t e s and P ( C H 3 ) 3 , PH(CH 3) 2

1.1. Reactions with trimethylphosphine Vapor of trimethylphosphine was dosed into the cage system of dry HY. The

qu a l i t a t i v e d e t a i l s of our r e s u l t s are consistant with both IR and NMR data reported i n the l i t e r a t u r e ^ j e , 1 9 ] .

In F i g . 1, a s e r i e s of Ρ MAS-NMR spectra of trimethylphosphine dosed on dry HY to d i f f e r e n t degrees of loading i s presented. At a temperature of 295 K, the ze o l i t e i s saturated with 5.0 molecules of phosphine per supercage ( 5 . 0 / s . c ) . A sharp resonance at -69 ppm ( F i g . l a ) i s assigned to physisorbed phosphine (2.0/s.c.) and the broader band at -3.4 ppm, proton decoupled, represents 3.0 trimethylphosphonium ions per s.c. In a proton coupled spectrum, a doublet with the t y p i c a l P-H s c a l a r coupling constant of ca. 500 Hz and strong sideband i n t e n s i t y due to P-H dipolar coupling i s observed ( F i g . l b ) .

IR data demonstrate that upon saturation l e s s than 3.0 protons^per s.c. represent the a c c e s s i b l e "supercage protons" observed at 3650 cm since also the 3550 cm band i s reduced i n i n t e n s i t y .

I f 2.8 molecules of trimethylphosphine per s.c. are dosed into the z e o l i t e , protonation i s complete as shown i n F i g . l c : only the phosphonium resonance appears, s h i f t e d to -6 ppm with s i g n i f i c a n t l y reduced sideband i n t e n s i t y . Degassing the sample at 570 Κ under vacuum for 60 min further narrows the phosphonium resonance at -5 ppm with a wel l resolved doublet due to P-H s c a l a r coupling ( F i g . I d ) .

The r e s u l t s of the quantitative dosing and desorption experiments can be understood i n terms of the following model: At lower loadings of the phosphine, there are only phosphonium ions present i n the supercage. Weak repulsion between these species as well as the space a v a i l a b l e i n the cage accoun^for a r e l a t i v e l y high mobility of the ions which r e s u l t s i n a narrow Ρ resonance. I f the loading exceeds the number of protons a v a i l a b l e , a crowded s i t u a t i o n i s expected with trimethylphosphine f i l l i n g up the remaining space and hindering the mobility of^Jhe phosphonium ion, thus changing the chemical s h i f t of the ion to -3 ppm. The Ρ chemical s h i f t of the ion remains -6 ppm up to a loading of 2.8 per s.c. which c l o s e l y corresponds to the maximum number of protons a v a i l a b l e . No evidence can be found for d i f f e r e n t species due to d i f f e r e n t origins of the protons as invoked i n a former study [19]. The data obtained i n

Page 15: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Th. Bein et a l . 313

α) H - d e c o u p l e d

b ) c o u p l e d

1 I I I I ι 1 1 ι ι I I I I I I — I — I — I — I — I — I — I — I I I I — I — I — I I 1 0 0 0 . 0 - 1 0 0

I — I — I — I — I — I — I I I I I I I I I I — I — I — I — ι — I — I — I I I I I I I L

1 0 0 0 . 0 - 1 0 0

P P M

F i g . 1. E f f e c t of pore f i l l i n g on the Ρ MAS-NMR spectrum of P(CH ) adsorbed i n dry ψί z e o l i t e . A, 5.0 per s.c. at 295 K, Η-decoupled. B, spectrum A, H-coupled.

C, 2.8 per s.c. at 295 K, H-coupled. Ij), sample C, degassed at 570 Κ for 60 min, H-coupled.

t h i s study suggest that the chemisorption of trimethylphosphine i n HY i s e s s e n t i a l l y an acid/ base reaction which i s only r e v e r s i b l e under severe degassing conditions.

1.2. Dimethylphosphine as a probe for acid suface s i t e s Dimethylphosphine (DMP) i s a weaker base compared to trimethylphosphine and

d i f f e r e n t behavior i n acid z e o l i t e s can therefore be anticipated. I f HY z e o l i t e i s saturated with DMP and subsequently degassed under vacuum at 295 K, only one species i s detected i n the Ρ NMR at -56 ppm. The Ρ resonance of neat DMP i s

Page 16: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

314 (IM-2-3)

at -9£ ppm. We assign the observed species to the dimethylphosphonium ion (DMPH ) adsorbed i n the^zeolite ( F i g . 2 ) . In the IR experiment, DMP shows a strong band at 2289 cm due to the P-H stretching v i b r a t i o n . The i n t e n s i t y of th i s band allows the determination of adsorbed quantities of the phosphine. Upon adsorption of the molecule i n HY z e o l i t e ^ t h e band i s broadened. ( F i g . 3a). The concomitant disappearence of the 3650 cm band indicates complete proton transfer i n the supercage. Two new bands at 2495 and 2450 cm appear. These bands are interpreted as due to the symmetric and antisymmetric P-H stretching vibrations of DMPH generated i n the z e o l i t e . Degassing experiments indicate that adsorption and proton t r a n s f e r are r e v e r s i b l e with DMP ( F i g . 3b). The hydroxyl groups are restored to the o r i g i n a l i n t e n s i t y , whereas both the P-H and C-H bands dissappear.

These features demonstrate some advantages of DMP as a probe molecule for acid s i t e s on oxide surfaces compared to ^rimethylphosphine: In the IR, independent determination of DMP and DMPH i s possible. In the NMR experiment, DMP i s a r e v e r s i b l e probe for acid s i t e s showing no interference with remaining unprotonated species.

F i g . 2. (Top) Ρ M̂ S-NMR of P(CH 3) 2H i n HY, degassed at 295 K, H-decoupled.

2. Reactions of Trimethylphosphite with Zeolites 2.1. Adsorption at 295 Κ

I f HY i s saturated with 3.6 molecules^rimethylphosphite (TMP) per supercage, one dominant species i s observed i n the Ρ NMR at +36 ppm with a moderate sideband i n t e n s i t y (Fig.4a) This resonance indicates a subs t a n t i a l change i n the i s o t r o p i c s h i f t as compared to the value of the s t a r t i n g phosphine at +140 ppm. A small amount of a second species which shows cr o s s - p o l a r i z a t i o n (CP) i s represented by a resonance at +21 ppm.

The C NMR spectrum of the same system i s dominated by resonances in the methoxy-region at +55 and 53 ppm, i n addition to a smaller peak at +8 ppm which i s assigned to P-CH« (Fig.4b). The key for understanding these r e s u l t s i s a rearrangement reaction of the TMP to y i e l d tetracoordinated dimethylmethyl-phosphonate (DMMP) adsorbed i n the z e o l i t e .

A reaction sequence i s proposed which resembles the well-known Arbusov rearrangement of tri a l k y l p h o s p h i t e s :

Page 17: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Th. Bein e t a L 315

F i g . 3. IR spectra of a wafer of HY, degassed at 670 K, loaded with P(CH KH. A, 30 torr of the phosphine added at 295 K. B, degassed at 360, 440 and 610 Κ for 60 min.

A 3 1 - P d e c o u p l e d

ι j ι t ι ι ι l ι ι ι ι t t ι i ι l ι ι ι i ι ι ι t L L I J

1 0 0 0 . 0 - 1 0 0

P P M

I ι I ι I ι I ι I 1 1 9 0 7 0 5 0 3 0 1 0 - 1 0

P P M

F i g . 4. NMR spectra of trimethylphosphite adsorbed on HY z e o l i t e . A, Ρ MAS-NMR of HY,saturated with TMP at 295 Κ ( H-decoupled). B, spectrum of sample A, cross-polarized and Η-decoupled. (X = rotor s i g n a l )

Page 18: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

316 (IM-2-3)

Η

0=P(OCH 3) 2

[ 3 1 P = +13 ppm)

(H 3CO) 3P (H 3CO) 2(CH 3)PO +

[ 3 1 P = 31 ppm]

[(H 3CO) 3PCH 3] +

Nucleophilic attack of TMP at a methoxy carbon of protonated TMP generates a trimethoxymethylphosphonium ion which acts as chain propagating species. Reaction of t h i s ion with TMP r e s u l t s i n DMMP. Dimethy^hydrogenphosphite i s expected to be a byproduct of t h i s reaction, and the Ρ resonance of t h i s molecule adsorbed into HY indeed resembles the second species observed upon adsorbing TMP i n HY.

I f DMMP i s adsorbed into HY, both the Ρ and C NMR features are s i m i l a r to those obtained with TMP. This presents strong evidence for the reaction proposed above.

2.2. Infrared r e s u l t s A thin wafer of HY saturated with TMP has been studied i n the infrared c e l l .

Proton t r a n s f e r from both supercage and weaker acid s i t e s towards the adsorbed phosphorus compounds i s observed i n the hydroxyl region^(consumption of the 3650 and 3550 cm bands). A new, broad band at ca. 2440 cm i s i n d i c a t i v e for a P-H inte r a c t i o n ( F i g . 5a).

H+ + (H 3CO) 3P > H 3C-0-P(0CH 3) 2 => (H 3(X» 3PCH 3 +

/ \

F i g . 5. IR spectra of a wafer of HY, degassed at 670 K, loaded with TMP. A, loaded at 295 K(5.5 t o r r ) , degassed at 295 Κ for 30 min. Β, degassed at 440 Κ for 60 min. C, degassed at 610 Κ for 60 min.

Fi g . 6. NMR spectra of TMP/HY adduct, degassed at 670 Κ for 12 hours. A, Ρ MAS-NMR of TMP/HY, H-coupled. B, C MAS-NMR of TMP/Hy, cross-polarized and Η-decoupled. (X = rotor)

Page 19: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

Th. Bein et a l . 317

Evidence for the generation of DMMP i s found i n the C-H bending region: The new^methyl group i s represented by a band at 1304, whereas a pair at 146(j)/30 cm accounts for the raethoxy group. In addition, a shoulder at 1250 cm can be understood as being due to the newly generated P=0 double bond.

2.3. Thermal decomposition of the TMP/zeolite adducts Heating the phosphine-loaded wafer i n the inf r a r e d c e l l under vacuum (60 min

at 440 Κ and at 610 K) reduces the o v e r a l l C-H i n t e n s i t y ( F i g . 5b,c). However, the hydroxyl bands are not restored as would be expected upon simple d i s s o c i a t i o n of a phosphonium species. In contrast, the OH-intensity decreases with heating time, in d i c a t i n g an i r r e v e r s i b l e reaction with the phosphorus compound.

NMR data provide further evidence for the species obtained upon thermal desorption treatments. I f TMP adsorbed i n p a r t i a l l y exchanged HY i s degassed at 670 Κ f^y 12 hrs, the rearrangement product DMMP transforms to another species with a Ρ resonance at +13 ppm and strong anisotropy as indicated by the sidebancLintensity ( F i g . 6a).

The C spectrum of TMP heated i n HY at 570 Κ for 12 hrs substantiates the findings of the IR experiments: The methoxy-bands are considerably smaller compared to the system at 295 K, whereas a large f r a c t i o n of methyl groups i s indicated by a resonance at 14 ppm ( F i g . 6b).

Both IR and NMR r e s u l t s suggest that the rearrangement product DMMP reacts i r r e v e r s i b l y with the z e o l i t e hydroxyl groups upon heating under vacuum. This reaction i s accompanied by a loss of methoxy groups which probably desorb from the z e o l i t e as methanol.

We propose the generation of stable condensation products between a (-0) P(0)CH unit and the z e o l i t e framework. Similar behavior of DMMP upon reaction with the hydroxyl groups of ^ 2 ^ 3 n a s keen reported i n the l i t e r a t u r e [3,4], Thermal desorption data together with chemical probing of the modified z e o l i t e w i l l be required to confirm the nature of t h i s reaction, including possible oligomerization of organic fragments i n the pore system.

A more detailed discussion of our studies on organophosphorus and organosilicon chemistry i n z e o l i t e s w i l l be published i n the near future [23].

The technical assistance of R.F. Carver and N. Rapposelli i s g r a t e f u l l y acknowledged.

REFERENCES 1. S. T. L i n and K. J . Klabunde, Langmuir J^, 600 (1985). 2. M. Higo, Y. Owaki and S. Kamata, Chem. L e t t . 1309 (1985). 3. Μ. K. Templeton and W. H. Weinberg, J . Am. Chem. Soc. \07_y 97 (1985). 4. Μ. K. Templeton and W. H. Weinberg, J . Am. Chem. Soc. K)7, 774 (1985). 5. T. Ohgushi, A. Yusa, K. Kinoshita and Y. Yatsurugi, B u l l . Chem. Soc. Jap.

_51, 419 (1978). 6. R. A. Schoonheydt, D. Van Wouwe and H. Leeman, J . C S . Faraday I , 7j5, 2519

(1980). 7. R. A. Schoonheydt, D. Van Wouwe and M. Vanhove, J . C o l l . I n t e r f . S e i . 83^

279 (1981). 8. R. A. Schoonheydt, D. Van Wouwe and H. Leeman, Z e o l i t e s 2> 109 (1982). 9. R. G. Herman, Inorg. Chim. Acta, 34, 119 (1979).

10. G. Geismar and U. Westphal, Z. anorg. a l l g . Chem., 487, 207 (1982). 11. S. P. Banerjee, Thermochim. Acta, _47, 207 (1981). 12. D. K. L i u , M. S. Wrighton, D. R. McKay and G. E. Maciel, Inorg. Chem. 23,

212 (1984). 13. J . P. Collman, J . A. Belmont and J . I . Brauman, J . Am. Chem. S o c , 105, 7288

(1983). 14. W. W. Kaeding and S. A. Butter, J . Cat a l . , 6^, 155 (1980).

Page 20: New Developments in Zeolite Science and Technology · Zeolites and Zeolite-like Materials 13 W.M. Meier* Exploration of the Void Size and Structure of Zeolites and Molecular Sieves

318 (IM-2-3)

15. Μ. Derewinski, J . Haber, J . Ptaszynski, V. Shi r a l k a r and S. Dzwigaj, Stud. Surf. S e i . C a t a l . , 209 (1984).

16. Κ. H. Chandawar, S. B. Kulkarni and P. Ratnasamy, Appl. C a t a l . , 4_, 287 (1982).

17. J . Nunan, J . Cronin and J . Cunningham, J . C a t a l . 87̂ , 77 (1984). 18. W. P. Rothwell, W. X. Shen and J . H< Lunsford, J . Am. Chem. S o c , 106, 2452

(1984) . 19. J . H. Lunsford, W. P. Rothwell and W. Shen, J . Am. Chem. S o c , 107_, 1540

(1985) . 20. N. P. Forbus and W. W. Kaeding, U.S. 4,469,806, 4 Sep 1984. 21. N. P. Forbus and W. W. Kaeding, Eur.Pat.Appl. EP 89,787 28 Sep 1983. 22. Z. Gabelica, G. Debras, J . P. Gilson and E. G. Derouane, Calorim. Anal.

Therm., 14, 371 (1983). 23. T. Bein, D. B. Chase, D. R. Corbin, R. D. Farlee and G. D. Stucky, i n

preparation.