new devices & instrument improvements provide even faster

25
1 New Devices & Instrument Improvements Provide Even Faster Analytical Cycle Times Low Thermal Mass Technology Capillary Flow Technology Page 1 Obtaining Faster GC, GC/MS Analytical Cycle Times – A Variety of Approaches Post-Run Bake-Out Chromatographic Run Post-Run Cool-Down Pre-Run ALS Set-Up Included “ALS Sample Overlap” 7890 GC in in ChemStation SW Faster Cool-down HW/SW Faster GC Column & Gas Selection, Analyses Method Translation New Devices Capillary Flow Technology Signficantly Faster GC (Backflush) Analytical Cycle Times Page 2

Upload: others

Post on 03-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

1

New Devices & Instrument Improvements Provide Even Faster Analytical Cycle Times

Low Thermal Mass Technology Capillary Flow Technology

Page 1

Obtaining Faster GC, GC/MS Analytical Cycle Times – A Variety of Approaches

Post-Run

Bake-Out

Chromatographic

Run

Post-Run

Cool-Down

Pre-Run

ALS Set-Up

Included “ALS Sample Overlap” 7890 GC

in in ChemStation SW Faster Cool-down

HW/SW

Faster GC Column & Gas Selection,

Analyses Method Translation

New Devices Capillary Flow Technology

Signficantly Faster GC (Backflush)

Analytical Cycle Times

Page 2

2

5 10 15 20 25 30 35 40 45 50 55 60 65 70

It took additional 33 minsand column to 320oC to remove these high boilers.

min

Milk Extract

Page 3

Backflush

S/S Inlet

Purged CFTDeviceColumn

1 psi

45 psi

MSD

Aux EPCSplit Vent Trap

During GC Run

After GC Run

S/S Inlet

Purged CFTDeviceColumn

25 psi

4 psi

MSD

Aux EPCSplit Vent Trap

Page 4

3

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Run stopped at 42 min and backflushed at 280oC for 7 mins.

It took additional 33 minsand column to 320oC to remove these high boilers.

Blank run after backflushing

min

showing the column was clean.

Milk Extract

Page 5

Benefits of Backflushing

– More samples/day/instrument

– Less frequent and faster GC & MSD maintenance

– Longer column life (less time at hot temperatures)

– Less chemical background

– Available for Agilent 6890/7890

Page 6

4

Page 7

Capillary Flow Technology

• Photolithographic chemical milling for low dead volume

• Diffusion bond two halves to form a single flow plate

• Small, thin profile provides fast thermal response

• Projection welded connections for leak tight fittings

• Deactivation of all internal surfaces for inertness

… a proprietary Agilent Technology

Capillary Flow Technology

• QuickSwap

• 2D GC – Deans Switch / Heart Cutting

• Splitter to Multiple Detectors

• Multiple Columns/Multiple Detectors

Page 8

5

Each Purged Capillary Flow Device Has Dual Use

Backflushing

– Removes heavies from column

- Plus -

QuickSwap - Remove column w/o venting

– Air & H2O blocked

– Safe disconnection of column from inlet for inlet maintenance

– Reversed flow through column during inlet maintenance

– Maintain constant flow to MSD

(flow rates exceeding 2 mL/min require an MSD with Performance Turbo)

MSD TransferLine

Aux EPC In

Column Effluent

Page 9

MS Transferline

Column

EPC inlet

QuickSwap installed

QuickSwap MSD interface

Page 10

6

Other Purged Capillary Flow Devices AlsoProvide Dual Use (including Backflush Capability)

22--Way Splitter with Way Splitter with MakeupMakeup

33--Way Splitter with Way Splitter with MakeupMakeup

Deans SwitchDeans Switch

Page 11

(Quick Swap Alternatives)

Capillary Flow Technology Connectors

Column 1 In

Restrictor 1

out to vent

Plate

Ferrule

Nut

Restrictor 2

or Column 2

Channel

7

The Metal Ferrule

Square cut is not critical

Seal region

Does not loosen (leak) even with thousands of runs to 350C

Does not shed particles

Other connectors

FID direct

Capillary Flow fitting

Capillary Flow Technology fittings avoid tailing with small but well swept dead volume

1.1 1.15 1.2 1.25 1.3

0

1

2

3

4

5

6

Pentane test chromatogram

Fitting Design Minimizes Tailing

8

Traditional Pesticide Analysis

• GC-ECD for chlorinated

• GC-FPD for sulfur and phosphorus

• GC/MS for confirmation

2 or 3 gas chromatographs

3 injections

Page 15

Agilent’s Ultimate Pesticide Analysis System

• FPD

• µECD

• MS SIM

• MS Scan

1 gas chromatograph

1 injection

Page 16

9

Pesticides: Three Way Splitter with Makeup

1X method with 1:1:0.1 split FPD:MSD:ECD

3-Way Splitter with Makeup

Auto-sampler

7890GC

Column

Phosphorus FPD

30 m X 0.25 mm id X 0.25 um HP-5MS

5975C MSD

uECDAUX EPC

3.8 psig

Page 17

3-Way Splitter System

Deactivated splitter operates to 350 C.

Using metal ferrules eliminates leaks and retightening

To µECD

Column in

Makeup gas from EPC

To MSD

To FPD

Page 18

10

Full scan TIC

SIM

µECD

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

FPD(P)

Milk Extract (1 injection)

Page 19

Faster Chromatography with 2-D GC (Deans switch)

Purity of denatured fuel ethanol(blending stock for RFG)

ASTM method D5501 uses DHA-type column to separate alcohol from C4 and C5 hydrocarbons (60 minute run with sub-ambient oven temperature)

2D GC solution 10x faster and more reliable

Can backflush Deans switch if needed

Page 20

11

9.78 psi 11.14 psi

FID A

S/S Inlet

FID B

PCM

Restrictor

6.54 mL/min

4.54 mL/min

<< 1mL/min

2mL/min

purge

restrictor

8.54 mL/min

Off

6.54 mL/min

Column 1: HP-1

Column 2: Innowax

Heart Cutting 2-D GC – How It Works

Valve off, no heart cutting– inject sample, initial separation on column 1

Page 21

FID A

S/S Inlet

FID B

PCM

On

6.54 mL/min

4.54 mL/min

6.54 mL/min

purge

restrictor

2mL/min 8.54 mL/min

<< 1mL/min

9.78 psi 11.14 psi

Restrictor

Column 1: HP-1

Column 2: Innowax

Heart Cutting 2-D GC – How It Works

Valve on – start heart cut from column 1 to column 2

Page 22

12

FID A

S/S Inlet

FID B

PCM

6.54 mL/min

4.54 mL/min

<< 1mL/min

9.78 psi 11.14 psi

2mL/min

purge

restrictor

8.54 mL/min

Off

6.54 mL/min

BP>Benzene

Restrictor

Column 1: HP-1

Column 2: Innowax

Heart Cutting 2-D GC – How It Works

Valve off – end heart cut, perform 2nd separation on column 2

Page 23

ASTM Method D5501 - Denatured Fuel Ethanol Purity

10 15 20 25 30 35 40 45

methanol

ethanolColumn: HP-1 100m x 0.25mm x 0.5um

Oven: 15 oC to 250 oC

Total Run Time: 60 minutes

Actual “analysis” is <12 min.

Page 24

13

0.95 1 1.05 1.1 1.15 1.2

Methanol

Ethanol

C4, C5 hydrocarbons

C4 hydrocarbons co-elute with methanol and ethanol on a shorter more reasonable column

HP-1 Column

15m x 0.25mm x 0.25um

Denatured Fuel Ethanol Purity

Page 25

Used to “heart cut” alcohols from HP-1 column to Innowax

FID 1

S/S Inlet

FID 2

PCM

Denatured Fuel Ethanol Purity

restrictor0.38m x 0.1 mm UDFS

column1 - HP-115m x 0.25 mm x 0.25um

column2 - Innowax15m x 0.25 mm x 0.25um

?

Page 26

14

Calculator to correctly set flows and restrictor size

Method Developers Tools

Page 27

Used to “heart cut” alcohols from HP-1 column to Innowax

2 3 4 5 6

Natural Gasoline Hydrocarbons

Cut window 0.97 - 1.10 min

Ethanol

C4, C5 hydrocarbons

Methanol

Column 1HP-1

15m x 0.25mm

Column 2Innowax

15m x 0.25mm

Run time is less than 7 minutes

Denatured Fuel Ethanol Purity

Page 28

15

FID A

S/S Inlet

FID B

PCM

<< 1mL/min

purge

restrictor

OffHigh boilers

Restrictor

HP-1

Innowax

Backflush To Decrease Run Time

Valve off – Lower Inlet pressure, Increase PCM pressure

Split vent

(high boilers)

11.14 psi9.78 psi<0.5 psi >60 psi

Page 29

Retention Time Precision – Fish Oil Samples

m in5 .3 5 .4 5 .5 5 .6 5 .7 5 .8 5 .9 6 6 . 1

N or m .

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

m in5 .3 5 .4 5 .5 5 . 6 5 .7 5 .8 5 .9 6 6 .1 6 .2

N or m .

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

10 Runs with Backflushing

10 Runs without Backflushing

Retention times shift ~4-5 sec

during 10 runs

Page 30

16

Obtaining Faster GC, GC/MS Analytical Cycle Times – A Variety of Approaches

Post-Run

Bake-Out

Chromatographic

Run

Post-Run

Cool-Down

Pre-Run

ALS Set-Up

Included “ALS Sample Overlap” 7890 GC

in in ChemStation SW Faster Cool-down

HW/SW

Faster GC Column & Gas Selection,

Analyses Method Translation

New Devices Capillary Flow Technology

Signficantly Faster GC (Backflush)

Analytical Cycle Times

LTM Technology LTM Technology

(Rapid Heating) (Rapid Cooling )

Page 31

“LTM” (Low Thermal Mass) Technology (Patented)

Directly heat/cool fused silica GC columns

Page 32

17

LTM Heating Speeds

Heating speeds can be set up to

1800oC/min

- achievable rates depend on column

mass, configuration and column

void times

- … also including practical trade-offs

of speed vs resolution

Page 33

240V

12095654535

120VInsert

12095654535

“Fast”

120V

7545403020

“Standard”

Temp. Range (oC)

50 to 7070 to 115

115 to 175175 to 300300 to 450

240VInsert

1201201108065

“Turbo”

6890/7890 Oven Ramp Rates

Page 34

18

Faster Cycle Time & Lower Power ConsumptionFaster speed (3-5X) provides higher productivity

� Very fast temperature ramp rates

� Very fast cooling times (< 1 min (!!) for some configurations)

C40 : 2.58 min

Cycle time: 5.5 minC40 : 16.2 min

Cycle time: 27 minLTMLTM

Sim. Dis.Sim. Dis.

Agilent 689030 m x 0.32 mm FS30 s @ 40oC40-180oC @ 30oC/min180 s @ 180oC

0 100 200 300 400 500

0

500

1000

1500

Power (w

)Power (w

)

Time (s)Time (s)

LTM GC30 m x 0.32 mm FS20 s @ 40oC;40-180oC @ 60oC/min40 s @ 180oC

0 40 80 120 160 200

0

10

20

30

40

Power (w

)Power (w

)

Time (s)Time (s)

– Lower power (30x) means lower cost of ownership

Page 35

Typical Cooling Times for a LTM Column (Standard Size)

oC 2 m 5 m 10 m 15 m 30 m

350->300 3 5 6 7 9

300->250 3 5 7 7 13

250->200 4 7 8 10 17

200->150 4 8 11 13 22

150->100 7 13 17 19 36

100->50 13 27 34 41 75

Column Length

Type Time350oC � 50oC LTM (2m Column) 34 seconds (= 3+3+4+4+7+13)Equilibration 3 seconds

350oC � 50oC 7890 GC 3-4 minutesEquilibration 2-3 minutes

Page 36

19

Interfacing LTM GC to an Agilent 7890 or 6890 GC

GC oven door replaced with LTM-ready GC oven door (easy) Use same GC injectors, detectors, autosamplers, software, …

Column Modules mount outside isothermal GC oven for fast heating and cooling

Independent and simultaneous temperature programming of 1-4 column modules

Note: Front thermal shield removed to show LTM column modulesEntire thermal shield should always be in place during operation

LTM Column Modules

LTM Control System

w/ Keypad User Interface

(LTM Control SW for ChemStation

Available from Agilent Nov/Dec’08)

Page 37

A Closer Look

LTM Column ModuleLTM Column Module

LTM Column AssemblyLTM Column Assembly

LTM Retrofit DoorLTM Retrofit Door

Page 38

20

Inside View

Page 39

Some Practical Uses of LTM Rapid Heating/Cooling

EnvironmentalNeed for high through-put, especially for low margin samples (eg. Total Petroleum Hydrocarbon (TPH)), where analytical cycle times are a critical element in making a profit

Hydrocarbon ProcessingCertain process control analyses (eg. Simulated Distillation) lend themselves to batch analysis. Shorter analytical cycle times get data back to operations faster, or allow more samples/shift

Page 40

21

Developing Faster GC Run Times for TPH Analysis(C10����C44 Standard Shown)

2x Faster,7890

min5 10 15 20 25 30 35

pApApApA

020

40

60

80

100

n-C

10

n-C

12

n-C

14

n-C

16

n-C

18

n-C

20

n-C

22 n

-C23

n-C

24

n-C

26

n-C

28

n-C

30

n-C

32

n-C

36

n-C

40

n-C

44

min2 4 6 8 10 12 14 16 18 20

pApApApA

20

40

60

80

100

120

n-C

10

n-C

12 n

-C14

n-C

16

n-C

18

n-C

20

n-C

22

n-C

23

n-C

24

n-C

26

n-C

28

n-C

30

n-C

32

n-C

36

n-C

40

n-C

44

min0.5 1 1.5 2 2.5 3

pApApApA

0

200

400

600

800

1000

n-C

10

n-C

12

n-C

14

n-C

16

n-C

18

n-C

20

n-C

22

n-C

23

n-C

24

n-C

26

n-C

28

n-C

30

n-C

32

n-C

36

n-C

40

n-C

44

10oC/min30m Column - 7890

20oC/min15m Column - 7890

200oC/min5m Column –LTM/7890 10x Faster,

LTM/7890

StandardGC RunTime

Page 41

LTM Also Greatly Reduces Cool-Down Times,���� 9x Faster Heating/Cooling Cycle Times

40 min + 5.4 min

20 min + 5.4 min

3 min + 2 min

GC Run Time Cool Down

9x Faster

Cycle Time

LTM/7890

Page 42

22

Soil Sample by TPH Analysis using LTM/7890Reliable Calculated Results, <3 minute run time

Concentration*

Original Method (30 m) 1097 µg/mL

2X Method (15 m) 920 µg/mL

LTM Method (5 m) 909 µg/mL

*Calculated by Area Sum and Peak Grouping

Page 43

pA

0

1000

2000

3000

4000

5000

6000

min0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

C5

C6 C

7

C8 C 9

C10

C11

C12

C14

C15

C16

C17

C18

C20

C24

C28

C32

C36

C40

pA

min0.25 0.5 0.75 1 1.25 1.5 1.75 20

500

1000

1500

2000

Fast Simulated Distillation Under 3 Minutes by Use of Low Thermal Mass (LTM) Technologies… 6x faster compared to conventional ASTM D2887 procedure

ASTM D2887 Reference Oil

LTM Module : 45ºC to 350ºC at 150ºC/min

Calibration sample C5-C44

LTM Module : 45ºC to 350ºC at 150ºC/min

Page 44

23

min0 0 .5 1 1 .5 2 2 .5

pA

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

Chromatographic overlay of 10 runs Chromatographic overlay of 10 runs shows outstanding repeatabilityshows outstanding repeatability

Fast Simulated Distillation Under 3 Minutes by Use of Low Thermal Mass (LTM) Technologies

Creaked gas oil, diluted 1:3 in pentaneRVM oven : 45ºC to 350ºC at 150ºC/min

Page 45

Retention Time Repeatability (For the data nerds!)C14 to C17 Hydrocarbons

35 C to 350 C @ 50 C/min.

RT Height Area PK Width

C14 Average 3.173296 28692.6 24991.85 0.017406

C14 SD 0.000956 276.1011 559.829 0.000284

C14 RSD 0.030124 0.962273 2.240046 1.633047

C15 Average 3.448155 11586.31 11512.6 0.016083

C15 SD 0.001137 119.7229 154.8721 0.000554

C15 RSD 0.032977 1.033314 1.34524 3.444738

C16 Average 3.721938 23307.99 20345.54 0.017783

C16 SD 0.001384 224.5316 389.5163 0.00069

C16 RSD 0.037178 0.963325 1.914504 3.879877

C17 Average 3.974779 23356.03 19971.48 0.017978

C17 SD 0.001351 239.7177 299.2454 0.000562

C17 RSD 0.033989 1.026363 1.498364 3.127652

Based on 10 runs

Page 46

24

Retention Time Repeatability C14 to C17 Hydrocarbons

35 C to 350 C @ 100 C/min.

RT Height Area PK Width

C14 Average 1.888362 12160.46 19415.62 0.010308

C14 SD 0.000261 124.2667 312.7175 8.91E-05

C14 RSD 0.013798 1.021891 1.610649 0.863997

C15 Average 2.031785 4918.886 8113.916 0.010073

C15 SD 0.000189 49.98891 87.93099 4.06E-05

C15 RSD 0.009323 1.016265 1.083706 0.402904

C16 Average 2.170917 9772.619 15728.54 0.010249

C16 SD 0.000259 101.5109 127.1452 3.25E-05

C16 RSD 0.011925 1.038727 0.808372 0.316714

C17 Average 2.300579 9841.635 15477.91 0.010418

C17 SD 0.000409 198.2333 178.3228 0.000118

C17 RSD 0.017777 2.014231 1.152111 1.136056

Based on 10 runs

Page 47

Retention Time RepeatabilityC5 to C40 Mix

Based on 10 runs

45 C to 350 C @ 250 C/min

Hydrocarbon C5 C6 C7 C8 C9 C10 C11 C12 C14 C15

RT 0.13676 0.17327 0.22944 0.30102 0.3786 0.45672 0.53111 0.60298 0.73073 0.78855

SD 0.00018 0.00018 0.00015 0.00013 0.00013 0.00026 0.0002 0.00027 0.00028 0.00031

RSD 0.13178 0.10606 0.06457 0.04204 0.03505 0.05801 0.03798 0.04518 0.03889 0.03894

Hydrocarbon C16 C17 C18 C20 C24 C28 C32 C36 C40

RT 0.84418 0.89529 0.9439 1.03433 1.19225 1.34146 1.5513 1.90969 2.57287

SD 0.00036 0.0003 0.00037 0.0003 0.00046 0.00079 0.00132 0.00181 0.00377

RSD 0.04321 0.03306 0.03939 0.02915 0.03828 0.05917 0.08512 0.09457 0.14667

Page 48

25

LTM System Technology - Summary

• High efficiency temperature programmingfast heatingfast cooling (< 1 min in some configurations)high throughputfast method development

• High performance chromatographyutilize commercially available columns (up to 30m length)very good retention time repeatability

• Easily integrates with conventional Agilent GC utilize existing injectors, detectors

• Multicolumn temperature control (1-4 modules)simultaneous, independent operation multidimensional GChigh throughput parallel systemsstrong synergy with Agilent’s Capillary Flow Technology

• Available for Agilent 6890/7890

Page 49