new impactsofhydraulicfracturinginfrastructuredevelopment ! … · 2015. 3. 9. ·...

14
Impacts of Hydraulic Fracturing Infrastructure Development on Valued Fish (Brook Trout) Habitat Maya WeltmanFahs, Cornell University Department of Natural Resources and New York Cooperative Fish and Wildlife Research, [email protected]; Todd Walter, Cornell University Department of Biological and Environmental Engineering, [email protected] Abstract Eastern brook trout are native to the eastern United States and a good indicator species of anthropogenic disturbance in streams because they require clean cold water, intact habitat, and strong supporting food webs to maintain healthy populations. Brook trout have been reduced or extirpated across much of their native range, primarily because of anthropogenic land and water alterations, which have resulted in habitat reduction and fragmentation, water quality and temperature changes, and modification of the biological environment through introduction of other species. This declining species faces further pressure from the rapid expansion natural gas extraction activity in the Marcellus Shale region, which overlaps twentysix percent of the historical distribution of brook trout habitat. The objective of this study is twofold: (1) to observe the effects of infrastructure development for well pads, roads and pipelines on brook trout habitat and populations under the existing regime of shale gas activities in Pennsylvania and (2) to build a model for prediction of shale gas infrastructure locations and impacts in New York State. Three Summary Points of Interest Initial data processing shows significant differences in brook trout sizes (length and weight) across the three drilling treatments (Active Drilling; Predrilling Land Clearing; Control); Field collected data (including water chemistry and macroinvertebrate community structures) is being analyzed to examine possible correlations between observed fish sizes and environmental conditions; Third field collection year is currently underway, with seasonal collections for springsummerfall. Keywords: brook trout, freshwater macroinvertebrates; hydraulic fracturing infrastructure, land use impact modeling, stream ecology N EW Y ORK S TATE W ATER R ESOURCES I NSTITUTE Department of Earth and Atmospheric Sciences 1123 Bradfield Hall, Cornell University Tel: (607) 255-3034 Ithaca, NY 14853-1901 Fax: (607) 255-2016 http://wri.eas.cornell.edu Email: [email protected]

Upload: others

Post on 25-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

 

 Impacts  of  Hydraulic  Fracturing  Infrastructure  Development    

on  Valued  Fish  (Brook  Trout)  Habitat    

Maya  Weltman-­‐Fahs,  Cornell  University  Department  of  Natural  Resources  and    New  York  Cooperative  Fish  and  Wildlife  Research,  [email protected];    

Todd  Walter,  Cornell  University  Department  of  Biological  and  Environmental  Engineering,  [email protected]    

Abstract    Eastern  brook  trout  are  native  to  the  eastern  United  States  and  a  good  indicator  species  of  anthropogenic  disturbance  in  streams   because   they   require   clean   cold  water,   intact   habitat,   and   strong   supporting   food  webs   to  maintain   healthy  populations.   Brook   trout   have   been   reduced   or   extirpated   across   much   of   their   native   range,   primarily   because   of  anthropogenic   land  and  water   alterations,  which  have   resulted   in  habitat   reduction  and   fragmentation,  water  quality  and   temperature  changes,  and  modification  of   the  biological  environment   through   introduction  of  other   species.  This  declining  species  faces  further  pressure  from  the  rapid  expansion  natural  gas  extraction  activity  in  the  Marcellus  Shale  region,  which  overlaps  twenty-­‐six  percent  of  the  historical  distribution  of  brook  trout  habitat.  The  objective  of  this  study  is   twofold:   (1)   to  observe   the  effects  of   infrastructure  development   for  well  pads,   roads  and  pipelines  on  brook   trout  habitat  and  populations  under   the  existing   regime  of   shale  gas  activities   in  Pennsylvania  and   (2)   to  build  a  model   for  prediction  of  shale  gas  infrastructure  locations  and  impacts  in  New  York  State.    Three  Summary  Points  of  Interest  • Initial   data   processing   shows   significant   differences   in   brook   trout   sizes   (length   and   weight)   across   the   three  

drilling  treatments  (Active  Drilling;  Pre-­‐drilling  Land  Clearing;  Control);  • Field  collected  data  (including  water  chemistry  and  macroinvertebrate  community  structures)  is  being  analyzed  to  

examine  possible  correlations  between  observed  fish  sizes  and  environmental  conditions;  • Third  field  collection  year  is  currently  underway,  with  seasonal  collections  for  spring-­‐summer-­‐fall.    Keywords:   brook   trout,   freshwater  macroinvertebrates;   hydraulic   fracturing   infrastructure,   land   use   impact  modeling,  stream  ecology          

NEW YORK STATE WATER RESOURCES INSTITUTE

Department of Earth and Atmospheric Sciences 1123 Bradfield Hall, Cornell University Tel: (607) 255-3034 Ithaca, NY 14853-1901 Fax: (607) 255-2016 http://wri.eas.cornell.edu Email: [email protected]

Page 2: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

Introduction  Eastern  brook  trout  have  a  historic  range  extending  from  the  southern  Appalachians  in  Georgia  north  to  Maine  

(MacCrimmon  and  Campbell  1969)  (Fig.  1).  Substantial  loss  of  brook  trout  populations  within  their  native  range  has  occurred  due  to  anthropogenic  impacts;  in  fact  only  31%  of  subwatersheds  (6th  level,  12-­‐digit  Hydrological  Units  (HUC12),  as  defined  by  the  Watershed  Boundary  Dataset  –  USDA-­‐NRCS  2012)  within  the  historic  range  of  brook  trout  are  currently  expected  to  support  intact  populations  (self-­‐sustaining  populations  greater  than  50%  of  the  historical  population)  (Hudy  et  al.  2008).  Expansion  of  hydraulic  fracturing  infrastructure  within  the  Marcellus  Shale  region  presents  another  potential  threat  to  native  brook  trout  populations.    

Natural  gas  extraction  from  subterranean  gas-­‐rich  shale  deposits  has  been  underway  in  the  northeastern  United  States  for  almost  200  years,  but  has  expanded  rapidly  over  the  past  decade  within  the  Devonian  Marcellus  Shale  formation  (Williams  2008;  Fig.  1).  This  expansion  has  largely  been  driven  by  the  development  and  refinement  of  the  horizontal  hydraulic  fracturing  process  (USEIA  2011),  which  was  granted  exemptions  to  the  Clean  Water  and  the  Safe  Drinking  Water  Acts  under  the  Energy  Policy  Act  of  2005  (EPA  2005).  Hydraulic  fracturing  has  since  expanded  rapidly  in  the  Marcellus  Shale  deposit  in  portions  of  West  Virginia  and  Pennsylvania  (Fig.  1),  is  expected  to  continue  into  Ohio  and  New  York,  and  will  likely  continue  to  expand  within  these  states  to  include  the  gas-­‐bearing  Utica  Shale  formation  (Williams  2008).    

Examination  of  potential  impacts  of  hydraulic  fracturing  for  natural  gas  extraction  in  the  Marcellus  Shale  on  brook  trout  populations  reveals  three  key  pathways  of  influence:  hydrological,  physical,  and  chemical.  These  pathways  originate  from  the  various  activities  associated  with  the  hydraulic  fracturing  method  of  natural  gas  extraction  and  may  affect  brook  trout  at  one  or  more  stages  of  their  life  cycle  through  direct  and  indirect  mechanisms  (Fig.  2).  For  the  purpose  of  this  study,  the  planned  (“deterministic”)  activities,  including  building  and  land  clearing  for  the  required  infrastructure  (Rahm  and  Riha  2012)  are  examined.    The  study  includes  a  field  component  in  Pennsylvania  and  a  modeling  component  in  New  York  State  

Pennsylvania  Study  background  The  Pennsylvania  Department  of  Conservation  and  Natural  Resources  (PADCNR)  manages  2.2  million  acres  of  

Pennsylvania  State  Forest  land,  of  which  1.5  million  acres  overlies  the  Marcellus  Shale  deposit  (PADCNR  2014).  The  State  Forests  have  a  variety  of  recreational  land  uses  that  have  historically  involved  minimal  land  alteration  (PADCNR  2012),  allowing  many  subwatersheds  in  the  state  forest  land  to  have  maintained  greater  than  95%  forest  cover  prior  to  2008  (PADCNR  2010,  2012).    Since  2008,  a  total  of  138,866  acres  of  state  forest  land  were  leased  by  DCNR  to  various  drilling  companies  for  natural  gas  exploration  in  the  Marcellus  Shale  (PADCNR  2014).    As  of  the  most  recent  report  released  in  June  20142,  DCNR  had  approved  227  well  pads  and  977  shale  gas  wells,  of  which  429  wells  had  been  drilled  (PADCNR  2014).    

The  field  study  site  is  in  the  Hyner  Run  State  Park  area  of  Sproul  State  Forest  in  Clinton  County  Pennsylvania.  Sproul  State  Forest  occupies  305,450  acres  of  northern  central  Pennsylvania,  in  Cameron,  Centre,  Clearfield,  Clinton,  Lycoming,  and  Potter  Counties  (PADCNR  2012)  (Fig.  1).  Within  Sproul,  the  Hyner  Run  area  is  a  74.7  km2  HUC12  subwatershed  (USDA-­‐NRCS  2012)  with  more  than  99%  forest  cover,  no  known  water  contamination  sources,  extremely  limited  road  construction  and  virtually  no  land  clearing  for  agriculture  or  other  development,  making  it  a  suitable  ecological  ‘control’  environment  prior  to  hydraulic  fracturing  expansion.  Hyner  Run  itself  is  a  forked  third  order  coldwater  creek  that  flows  into  the  West  Branch  of  the  Susquehanna  River,  with  second  order  West  and  East  Branches  that  converge  into  the  main  branch  approximately  six  kilometers  north  of  the  mouth.  The  system  has  several  contributing  headwaters,  all  expressing  suitable  brook  trout  habitat.    One  of  the  two  main  branches,  East  Branch  Hyner  Run,  is  classified  as  a  Class  A  Trout  Stream  (PAFBC  2012).  (Fig.  3)    

Hyner   Run   is   a   unique   research   opportunity   because   the   subwatershed   contains   headwater   catchments  featuring   three   distinct   drilling   treatments   (active   hydraulic   fracturing,   pre-­‐hydraulic   fracturing   land   clearing   and  control/no   hydraulic   fracturing   activity   planned)   (Table   1)   at   the   inception   of   the   project.   The   eastern   portion   of   the  Hyner   Run   subwatershed   study   area   has   three   headwater   catchments   with   active   hydraulic   fracturing   activity  (Treatment   ‘A’   –   Fig.   3:   sites   A1,   A2,   A3).     In   the  western   portion   of   the   area,   two   headwater   tributaries   flow   from  

Page 3: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

catchments  where   land  clearing  for  several  well  pads  has  occurred,  and  vertical   test  wells  have  been   initiated,  but  no  hydraulic  fracturing  activity  had  yet  begun  at  the  time  of  data  collection  in  2012  (Treatment  ‘B’  –  Fig.  3:  sites  B1,  B2).  Of  the  three  sites  with  drilling  Treatment  A,   two  sites   (A1,  A2)   represent   low  density  drilling   (≤1.5  wells/km2),  while  one  (A3)  is  a  higher  drilling  density  catchment  (>1.5  wells/km2)  (Table  1).  Treatment  B  includes  a  high  density  (B2)  and  a  low  density   site   (B1)   (Table   1).   Of   five   originally   identified   potential   control   locations   in   the   central   portion   of   the  subwatershed,  three  streams  were  actively  flowing  at  the  time  of  initial  data  collection  (Fig.  3:  C1,  C2,  C3).      

New  York  Study  The  Pennsylvania  field  study  will  inform  a  predictive,  modeling-­‐based  approach  for  New  York  State,  where  

hydraulic  fracturing  has  not  yet  commenced  (Figure  1),  pending  an  environmental  safety  review  and  a  decision  by  New  York  State  Governor  Andrew  Cuomo  (NYDEC  2011).  In  New  York,  future  drilling  locations  and  associated  land  clearing  requirements,  rather  than  being  known,  must  be  predicted  or  interpreted  based  on  available  relevant  data.    The  model  currently  in  progress  seeks  to  predict  hydraulic  fracturing  development  scenarios  of  different  intensities  (with  well  pad,  pipeline,  and  roadway  locations  and  estimated  footprints)  for  the  northern  Marcellus  Shale  region  (southern  tier  of  New  York)  using  Pennsylvania  hydraulic  fracturing  expansion/development  as  the  basis  for  predictive  modelling,  and  to  model  the  possible  impacts  of  sediment  mobilization  from  land  clearing  for  the  hydraulic  fracturing  method  of  natural  gas  extraction  in  the  Marcellus  Shale  on  a  brook  trout  population.    Toward  this  end,  a  process-­‐based  model  of  brook  trout  at  various  life  cycle  phases  will  be  used  in  concert  with  a  spatial  statistical  model  that  predicts  sediment  release  from  the  land  clearing  associated  with  predicted  well  pad  densities/locations.    The  output  from  spatial  statistical  model  will  be  used  to  add  a  sediment  influx  (in  tons  per  land  area)  to  the  brook  trout  model,  which  will  influence  the  egg  survival  rate.       Methods  

Pennsylvania  Study  Field  data  collections  have  occurred  seasonally  (excluding  winter  season)  for  three  years  (2012-­‐2014:  2014  is  currently  underway).  Field  data  collection/processing  methods  are  generally  conducted  according  to  the  accepted  United  States  Geological  Society  (USGS)  National  Water  Quality  Assessment  (NAWQA)  Protocols  as  follows:  1) Riparian  land-­‐use/land-­‐cover:  qualitative  notes  on  the  condition  of  the  reach,  including  any  obvious  alteration  to  the  

channel  and  riparian  land  use/vegetation  types  (Fitzpatrick  et  al  1998;  Johnson  and  Zelt  2005).  2) Discharge  transects  with  USGS  standard  flow  meter:  measurement  interval  between  wetted  width/10  and  wetted  

width/15;  flow  measured  at  60%  of  depth  (Bain  and  Stevenson  1999,  Rantz  and  others  1982a,b,  Fitzpatrick  et  al  1998).    

3) Chemical  sampling  with  YSI  sonde  in  field  and  using  ion  chromatography  in  lab:    a. Water  samples  for  lab  analysis  (Wilde  2006a,  USGS  2006)  b. In-­‐field  measurements:    

1. Turbidity  (Wilde  2006a,  Anderson  2005)  2. pH  (Wilde  2006a,  Ritz  and  Collins  2005)  3. Conductivity  (Wilde  2006a,  Radtke  et  al  2005)  4. Dissolved  Oxygen  (Wilde  2006a,  Lewis  2006)  5. Temperature  (Wilde  2006a,b)  

4) Biological  sampling:    a. Electrofishing  fish  sampling  with  a  backpack  electroshocker:  species  identified  visually,  weighed,  and  

measured  in  the  field  (Moulton  et  al.  2002).  Any  unknown  species  brought  in  for  verification  in  lab.    

Page 4: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

b. Kick-­‐net  macroinvertebrate  sampling  with  500-­‐micron  D-­‐frame  kick  nets:  three  samples  per  site,  sorted  and  identified  in  laboratory  (Moulton  et  al.  2002).  

New  York  Study  The  New  York  modeling  effort  is  a  two-­‐part  process:    

Part  1:  A  probabilistic  model  using  spatial  statistics  techniques  to  infer  likely  drilling  locations  based  on  a  suite  of  landscape  characteristics  is  being  designed.  The  landscape  and  shale  characteristic  predictor  variables  (Table  1)  were  aggregated  over  the  HUC12  watersheds  (USDA-­‐NRCS  2012)  overlying  the  Pennsylvania  and  New  York  portions  of  the  Marcellus  Shale  deposit.    Various  spatial  statistics  modeling  approaches  have  been  compared  (including  Generalized  Linear  Modeling  (GLM),  Generalized  Additive  Modeling  (GAM),  and  Kriging/Cokriging)  to  determine  how  to  best  quantify  the  relationship  between  the  hydraulic  fracturing  drilling  locations  in  the  Pennsylvania  Marcellus  Shale  and  characteristics  of  the  Marcellus  Shale  deposit.  A  number  of  different  versions  of  each  of  the  three  model  types  were  compared  in  attempt  to  find  the  best  model  of  that  type.    The  best  models  were  then  applied  to  the  same  predictor  variables  in  New  York  State  to  predict  the  probability  of  future  well  presence  in  a  given  watershed.       Part  2:  The  dynamic,  process  based  model  simulates  brook  trout  populations  in  discrete  time  with  an  annual  timestep,  representing  three  state  variables  which  are  phases  of  the  brook  trout  life  cycle:  fry-­‐fingerlings  (year  zero  fish  that  emerged  in  the  spring  from  eggs  laid  in  the  fall  [F]),  juveniles  (year  one  or  two  fish  who  are  not  yet  reproductive  adults  [J]),  and  adults  (year  three  or  older  fish  who  are  reproductive  adults  [A]).    The  model  takes  an  annual  snapshot  of  the  populations  of  each  type  of  fish  in  the  late  summer,  at  the  time  immediately  before  the  reproductive  cycle  begins,  such  that  each  living  adult  is  considered  a  spawner,  each  living  one  or  two  year  old  fish  is  considered  a  juvenile,  and  each  living  fry/fingerling  is  considered  a  surviving  year  zero  fish.  The  dynamics  of  the  population  are  described  by  a  set  of  four  equations,  one  for  each  of  the  state  variables,  and  a  fourth  calculating  the  number  of  eggs  (E)  at  the  start  of  the  reproductive  cycle.    The  majority  of  the  parameters  were  set  to  numerical  values  based  on  previous  published  studies.        Preliminary  Results    

The  dataset  collected  in  the  Pennsylvania  sites  contains  a  broad  suite  of  data,  including  water  chemistry,  macroinvertebrate  samples,  and  fish  community  samples.    The  vast  majority  of  the  data  is  still  being  processed,  but  initial  statistical  analysis  of  brook  trout  length  and  weight  data  collected  in  Summer  2012  reveals  statistically  significant  differences  in  both  the  length  and  weight  distributions  of  brook  trout  by  treatment  (Fig.  4).    Much  more  data  analysis  and  collection  with  be  required  to  attempt  to  form  any  conclusions  about  the  cause  of  this  discrepancy  in  brook  trout  size  between  treatments.    Future  Directions  

1) Laboratory  analysis  (in  progress):  a) Analysis  of  water  samples  for  concentrations  of  particular  additives  known  to  be  associated  with  hydraulic  

fracturing,  including  but  not  limited  to:  total  dissolved  solids  (TDS),  total  suspended  solids  (TSS),  metals,  pH,  carbon  (organic  and  inorganic),  cations,  anions  (nitrates,  etcs.),  methane.  

b) Analysis  of  macroinvertebrate  samples  for:  overall  abundance,  relative  abundance,  diversity/species  richness,  community  structure.    

2) Statistical  analysis  of  field  data  (in  progress)  3) Seasonal  replication  of  field  data  collection  (in  progress  –  third  collection  year:  spring/summer/fall  2014)  4) Model  development  (in  progress)  

 Student  Training  Undergraduate  and  graduate  research  assistants  have  supported  this  project  in  the  field  and  in  the  lab.    Nine  individuals  have  participated  directly  in  field  data  collection  (5  undergraduates,  3  graduate  students,  one  post-­‐doctoral  researcher)  including  macroinvertebrate  and  fish  collection  and  water  chemistry  assessment.    Nine  individuals  have  supported  

Page 5: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

laboratory  activities  (7  undergraduates  and  2  graduate  students)  including  ion  chromatography  and  macroinvertebrate  identification.    Policy  Implications  This  research  could  be  used  by  policymakers  to  help  provide  a  foundational  scientific  understanding  of  the  likely  impacts  of  natural  gas  drilling,  using  the  high-­‐volume  hydraulic  fracturing  method,  on  stream-­‐dwelling  biota.    Figures  Figure  1  –  Overlay  of  the  Marcellus  Shale  region  of  the  eastern  United  States  (USGS  2011)  and  the  historic  distribution  of  eastern  brook  trout  (Hudy  et  al.  2008)  with  permitted  Marcellus  Shale  well  locations,  2001-­‐2011  (ODNR  2011,  PADEP  2012b,  WVGES  2011)  

Page 6: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

 Figure  2 – Conceptual model of relationships between hydraulic fracturing drilling activities and the life cycle of eastern brook trout (modified from conceptual models based on Entrekin et al. (2011) and Rahm and Riha (2012)).

Page 7: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

   

Page 8: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

Figure  3  –  Study  area  map  depicting  key  elements  of  the  area  and  sampling  locations  (inset:  Pennsylvania  context  map)  

Page 9: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

Figure  4  –  Boxplot  of  the  length  distribution  of  the  fingerling  brook  trout,  divided  by  site  treatment,  in  Summer  2012  

 Tables  Table  1  –  Known  initial  characteristics  of  study  site  locations  (status  pre-­‐Summer  2012  data  collection)    

Site ID Catchment area (km2)

Drilling intensity

Hydraulic fracturing

status

# well pads # wells Well density

(wells/km2) Treatment

category code

A1 6.885 Low Active 1 4 0.581 A-low

A2 4.205 Low Active 2 6 1.427 A-low

A3 8.854 High Active 3 18 2.033 A-high

B1 2.922 Low Pre-drilling 1 4 (planned) 1.369 B-low

B2 3.4 High Pre-drilling 1 7 (planned) 2.059 B-high

C1 4.239 None Control 0 0 0 C

C2 4.115 None Control 0 0 0 C

C3 3.539 None Control 0 0 0 C

     

Page 10: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

Table  2  –  Known  initial  characteristics  of  study  site  locations  (status  pre-­‐Summer  2012  data  collection)    Type Description Source

Mar

cellu

s Sha

le

Cha

ract

eris

tics

Depth (minimum, maximum, and

average in HUC12 watershed)

Penn State Marcellus Center for Outreach and Research (PSMCOR 2013a)

Thickness (minimum, maximum, and

average in HUC12 watershed)

Penn State Marcellus Center for Outreach and Research (PSMCOR 2013b)

Extent United Sates Geological Survey (USGS 2011)

Wat

ersh

ed c

hara

cter

istic

s

Watershed boundaries United Stated Department of Agriculture Natural Resources Conservation Service (USDA-NRCS 2012)

Soil types United Stated Department of Agriculture Natural Resources Conservation Service (USDA-NRCS variously dated)

Stream locations, habitat characteristics

(size, gradient, temperature, buffering/pH)

The Nature Conservancy and Northeast Association of Fish and Wildlife Agencies (Olivero and Anderson 2008)

Adm

in B

ound

s States United States Census Bureau (USCB 2013a)

Counties United States Census Bureau (USCB 2013b)

Tax parcels United States Census Bureau (USCB 2013c)

Road density United States Census Bureau (USCB 2013d)

Lan

dcov

er Forest

(% within HUC12 watershed) National Landcover dataset

(NLCD 2006; Fry et al 2011)

Agriculture (% within HUC12 watershed)

National Landcover dataset (NLCD 2006; Fry et al 2011)

Stat

e

Fore

sts Pennsylvania State

forest extents and development Pennsylvania Department of Natural Resources

(PADCNR 1999,2010,2014)

New York State forest extents New York Department of Environmental Conservation (NYDEC 2012)

Dri

lling

/Lea

sing

/ Pe

rmitt

ing

loca

tions

Pennsylvania active hydraulic fracturing wells

Pennsylvania Department of Environmental Preservation (PADEP 2012a)

Pennsylvania hydraulic fracturing well permits

Pennsylvania Department of Environmental Preservation (PADEP 2012b)

New York parcels leased for hydraulic fracturing

Broome County (BCGIS 2012)

Tompkins County (MAPTC 2010)

Tioga County (TING 2012)

Page 11: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

References  Anderson,  C.  W.  2005.  Turbidity  (ver.  2.1):  U.S.  Geological  Survey  Techniques  of  Water-­‐Resources  Investigations,  book  9,  chap.  A6.,  sec.  6.7.  Available  at:  http://water.usgs.gov/owq/FieldManual/Chapter6/Section6.7_v2.1.pdf.    Bain,  M.  B.,  and  N.  J.  Stevenson.  1999.  Aquatic  habitat  assessment  :  common  methods.  American  Fisheries  Society,  Bethesda,  MD.    BCGIS  (Broome  County  New  York  GIS).  2012.  Broome  County  Existing  Leased  Parcels  As  of  9/30/12.  Broome  County  Department  of  Planning  GIS  and  Mapping  Services.  Available  at:  http://www.bcgis.com/website/gisweb/maps/nat_gas/12_10_br_current_gas_leases.pdf    Entrekin,  S.,  M.  Evans-­‐White,  B.  Johnson,  and  E.  Hagenbuch.  2011.  Rapid  expansion  of  natural  gas  development  poses  a  threat  to  surface  waters.  Frontiers  in  Ecology  and  the  Environment  9(9):503-­‐511.    EPA  (Energy  Policy  Act).  2005.  Public  Law  No.  109-­‐58,  §  321,  119  Stat.  694.    Available  at:  http://www1.eere.energy.gov/femp/pdfs/epact_2005.pdf    Fitzpatrick,  F.  A.,  I.    R.  Waite,  P.  J.  D’Arconte,  M.  R.  Meador,  M.  A.  Maupin,  and  M.  E.  Gurtz.  1998.    Revised  Methods  for  Characterizing  Stream  Habitat  in  the  National  Water-­‐Quality  Assessment  Program.  US  Geological  Survey  Water-­‐Resources  Investigations  Report  98-­‐4052.  Available  at:  http://pubs.usgs.gov/wri/wri984052/pdf/wri98-­‐4052.pdf.    Fry,  J.,  Xian,  G.,  Jin,  S.,  Dewitz,  J.,  Homer,  C.,  Yang,  L.,  Barnes,  C.,  Herold,  N.,  and  Wickham,  J.  2011.  Completion  of  the  2006  National  Land  Cover  Database  for  the  Conterminous  United  States,  Photogrammetric  Engineering  and  Remote  Sensing  77(9):858-­‐864.    Hudy,  M.,  T.  M.  Thieling,  N.  Gillespie,  and  E.  P.  Smith.  2008.  Distribution,  Status,  and  Land  Use  Characteristics  of  Watersheds  within  the  Native  Range  of  Brook  Trout  in  the  Eastern  United  States.  North  American  Journal  of  Fisheries  Management  28(4):1069-­‐1085.    Johnson,  M.  R.  and  R.  B.  Zelt.  2005.  Protocols  for  Mapping  and  Characterizing  Land  Use/Land  Cover  in  Riparian  Zones  as  Part  of  the  National  Water-­‐Quality  Assessment  Program.  US  Geological  Survey  Open-­‐File  Report  2005-­‐1302.  Available  at:  http://pubs.usgs.gov/of/2005/1302/pdf/ofr2005-­‐1302.pdf.    Lewis,  M.  E.  2006.  Dissolved  Oxygen  (ver.  2.1).  U.S.  Geological  Survey  Techniques  of  Water-­‐Resources  Investigations,  book  9,  chap.  A6.,  sec.  6.2.  Available  at:    http://water.usgs.gov/owq/FieldManual/Chapter6/6.1_ver2.pdf.    MacCrimmon,  H.  R.,  and  J.  S.  Campbell.  1969.  World  Distribution  of  Brook  Trout,  Salvelinus  fontinalis.  Journal  of  the  Fisheries  Research  Board  of  Canada  26(7):1699-­‐1725.    MAPTC  (Marcellus  Accounability  Project  for  Tompkins  County.  2010.  Tompkins  County  Gas  Lease  Map.  Available  at:  http://www.tcgasmap.org/tompkins/    Moulton,  S.  R.  II,  J.  G.  Kennen,  R.  M.  Goldstein,  and  J.  A.  Hambrook.  2002.  Revised  Protocols  for  Sampling  Algal,  Invertebrate,  and  Fish  Communities  as  Part  of  the  National  Water-­‐Quality  Assessment  Program.  US  Geological  Survey  Open-­‐File  Report  02-­‐150.  Available  at:  http://pubs.usgs.gov/of/2002/ofr-­‐02-­‐150/pdf/ofr02-­‐150.pdf.    NLCD  (National  Land  Cover  Database).  2006.  NLCD2006  Land  Cover.  Available  at:  http://www.mrlc.gov/nlcd06_data.php  

Page 12: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

NYDEC  (New  York  State  Department  of  Environmental  Conservation).  2011.  Revised  Draft  Supplemental  Environmental  Impact  Statement  (SGEIS).  Chapter  2:  Description  of  Proposed  Action.  Available:  http://www.dec.ny.gov/docs/materials_minerals_pdf/rdsgeisch2a0911.pdf.    NYDEC  (New  York  State  Department  of  Environmental  Conservation).  2012.  DEC  Lands  –  New  York  State  Shapefile.  (via  NYSGIS  Clearinghouse.  Available  at:http://gis.ny.gov/gisdata/inventories/details.cfm?DSID=1114    Olivero,  A.  P.,  and  Anderson,  M.  G.  2008.  Northeast  Aquatic  Habitat  Classification  System.  The  Nature  Conservancy  and  Northeast  Association  of  Fish  and  Wildlife  Agencies,  Boston  MA.  Available  at:  http://sifn.bse.vt.edu/sifnwiki/images/b/b5/Eastern_Region_Stream_Classification.pdf    PADCNR  (Pennsylvania  Department  of  Conservation  and  Natural  Resources).  1999.    Rules  and  Regulations.  Title  17.  Pennsylvania  Code,  Part  1.  Department  of  Conservation  and  Natural  Resources  Subpart  C.  State  Forests.  Chapter  21.  General  Provisions.  8130-­‐FM-­‐FR0092  1/99.  Available  at:  http://www.dcnr.state.pa.us/ucmprd2/groups/public/documents/document/dcnr_008795.pdf    PADCNR  (Pennsylvania  Department  of  Conservation  and  Natural  Resources).  2010.  DCNR  –  State  Forest  Lands  2010.  Available  (through  PASDA  (Pennsylvania  Spatial  Data  Access))  at:  http://www.pasda.psu.edu/uci/MetadataDisplay.aspx?entry=PASDA&file=dcnr_stateforestlands_2010.xml&dataset=263    PADCNR  (Pennsylvania  Department  of  Conservation  and  Natural  Resources).  2012.  Sproul  State  Forest.  Available  at:  http://www.dcnr.state.pa.us/forestry/stateforests/sproul/index.htm    PADCNR  (Pennsylvania  Department  of  Conservation  and  Natural  Resources).  2014.  Natural  Gas  Development  and  State  Forests  Shale  Gas  Leasing  Statistics.  Available  at:  http://www.dcnr.state.pa.us/forestry/NaturalGas/index.htm    PADEP  (Pennsylvania  Department  of  Environmental  Protection).  2012a.  Oil  and  Gas  Reports:  SPUD  Data  Report.  Pennsylvania  Department  of  Environmental  Protection,  Harrisburg,  PA.  Available  at:  http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/Spud_External_Data    PADEP  (Pennsylvania  Department  of  Environmental  Protection).  2012b.  Oil  and  Gas  Reports:  Permits  Issued  Detail  Report.  Pennsylvania  Department  of  Environmental  Protection,  Harrisburg,  PA.  Available  at:  http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/Permits_Issued_Detail    PAFBC  (Pennsylvania  Fish  and  Boat  Commission).  2012.  Class  A  Wild  Trout  Streams.  Available  (through  PASDA  (Pennsylvania  Spatial  Data  Access))  at:  http://www.pasda.psu.edu/uci/MetadataDisplay.aspx?entry=PASDA&file=ClassA_Streams201204.xml&dataset=986    PSMCOR  (Penn  State  Marcellus  Center  for  Outreach  and  Research)  2013a.  Depth  to  Marcellus  Shale  Base.  Available:  http://www.marcellus.psu.edu/images/Marcellus_Depth.gif    PSMCOR  (Penn  State  Marcellus  Center  for  Outreach  and  Research)  2013b.  Extent  and  Thickness  of  Marcellus  Shale.  Available:  http://www.marcellus.psu.edu/images/Marcellus_thickness.gif    Rahm,  B.  G.,  and  S.  J.  Riha.  2012.  Toward  strategic  management  of  shale  gas  development:  Regional,  collective  impacts  on  water  resources.  Environmental  Science  &  Policy  17:12-­‐23.  

Page 13: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

 Radtke,  D.  B.,  J.  V.  Davis,  and  F.  D.  Wilde.  2005.  Specific  Electrical  Conductance  (ver.  1.2):  U.S.  Geological  Survey  Techniques  of  Water-­‐Resources  Investigations,  book  9,  chap.  A6.,  sec.  6.3.  Available  at:    http://water.usgs.gov/owq/FieldManual/Chapter6/Final508Chapter6.3.pdf    Rantz,  S.  E.  and  others.  1982a.  Measurement  and  Computation  of  Streamflow:  Volume  1.  Measurement  of  Stage  and  Discharge.  United  States  Geological  Survey  Water-­‐Supply  Paper  2175.  Available  at:  http://pubs.usgs.gov/wsp/wsp2175/pdf/WSP2175_vol1a.pdf.    Rantz,  S.  E.  and  others.  198b2.  Measurement  and  Computation  of  Streamflow:  Volume  2.  Computation  of  Discharge.  United  States  Geological  Survey  Water-­‐Supply  Paper  2175.  Available  at:  http://pubs.usgs.gov/wsp/wsp2175/pdf/WSP2175_vol2a.pdf.    Ritz,  G.  F.  and  J.  A.  Collins.  2005.  pH  (ver.  2.0):  U.S.  Geological  Survey  Techniques  of  Water-­‐Resources  Investigations,  book  9,  chap.  A6.,  sec.  6.4.  Available  at:  http://water.usgs.gov/owq/FieldManual/Chapter6/6.4_ver2.0.pdf.    TING  (Tioga  Investigates  Natural  Gas).  2012.  Parcels  with  Natural  Gas  or  Oil  Leases  Past  and  Present.  Tioga  County  GIS  Department.  Available  at:  http://www.tiogacountyny.com/images/stories/PDFs/government/TING/TiogaCoNYLeases.pdf    USCB  (United  States  Census  Bureau)  2013a.  Tiger/Line  Shapefiles:  States  (and  equivant).  Available:  http://www.census.gov/cgi-­‐bin/geo/shapefiles2013/main      USCB  (United  States  Census  Bureau)  2013b.  Tiger/Line  Shapefiles:  Counties  (and  equivalent).  Available:  http://www.census.gov/cgi-­‐bin/geo/shapefiles2013/main    USCB  (United  States  Census  Bureau)  2013c.  Tiger/Line  Shapefiles:  Census  Tracts.  Available:  http://www.census.gov/cgi-­‐bin/geo/shapefiles2013/main      USCB  (United  States  Census  Bureau)  2013c.  Tiger/Line  Shapefiles:  Roads.  Available:  http://www.census.gov/cgi-­‐bin/geo/shapefiles2013/main      USDA-­‐NRCS  (United  States  Department  of  Agriculture  –  Natural  Resource  Conservation  Service).  2012.  Watersheds,  Hydrologic  Units,  Hydrologic  Unit  Codes,  Watershed  Approach,  and  Rapid  Watershed  Assessments.  United  States  Department  of  Agriculture  -­‐  Natural  Resource  Conservation  Service,  Washington  DC.  Available  at:  http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1042207.pdf    USDA-­‐NRCS  (United  States  Department  of  Agriculture  –  Natural  Resource  Conservation  Service).  Variously  dated.    Soil  Survey  Geographic  (SSURGO)  Database.  United  States  Department  of  Agriculture  -­‐  Natural  Resource  Conservation  Service,  Washington  DC.  Available  at:  http://soildatamart.nrcs.usda.gov.    USEIA  (United  States  Energy  Information  Administration).  2011.  Annual  Energy  Outlook  2011  with  Projections  to  2035.  DOE/EIA-­‐0383(2011)  U.S.  Energy  Information  Administration,  Washington,  DC.  235  pp.  Available  at:  http://www.eia.gov/forecasts/aeo/pdf/0383(2011).pdf      USGS  (United  States  Geological  Survey).  2006.  Collection  of  water  samples  (ver.  2.0):  U.S.  Geological  Survey  Techniques  of  Water-­‐Resources  Investigations,  Book  9,  Chapter  A4.  Available  at:  http://pubs.water.usgs.gov/twri9A4/.  

Page 14: New ImpactsofHydraulicFracturingInfrastructureDevelopment ! … · 2015. 3. 9. · Impactsof!hydraulicfracturing!infrastructuredevelopment!onvalued!fish(brook!trout)!habitat! This

Impacts  of  hydraulic  fracturing  infrastructure  development  on  valued  fish  (brook  trout)  habitat  

This report was prepared for the New York State Water Resources Institute (WRI) and the Hudson River Estuary program of the New York State Department of Environmental Conservation, with support from the

NYS Environmental Protection Fund.

USGS  (United  States  Geological  Survey).  2011.  Marcellus  Shale  Assessment  Unit  GIS  Shapefile.  U.S.  Geological  Survey,  Reston,  VA.  Available  at:  http://certmapper.cr.usgs.gov/noga/servlet/NogaNewGISResultsSubServ?page=gis&tps=506704    Wilde,  F.  D.  2006a.  Guidelines  for  Field-­‐Measured  Water-­‐Quality  Properties  (ver.  2.0):  U.S.  Geological  Survey  Techniques  of  Water-­‐Resources  Investigations,  book  9,  chap.  A6.,  sec.  6.0.  Available  at:    http://water.usgs.gov/owq/FieldManual/Chapter6/Chapter6.0v2.pdf.    Wilde,  F.  D..  2006b.  Temperature  (ver.  2):  U.S.  Geological  Survey  Techniques  of  Water-­‐Resources  Investigations,  book  9,  chap.  A6.,  sec.  6.1.  Available  at:    http://water.usgs.gov/owq/FieldManual/Chapter6/6.1_ver2.pdf.    Williams,  P.  2008.  Appalacian  Shales.  Oil  &  Gas  Investor  28(6):46-­‐58.