new materials for radiation protection buildings monte carlo-simulations and measurement for

32
Strahlenklinik Erlangen SATIF 2010 CERN New materials for radiation protection buildings Monte Carlo-simulations and measurement for X-rays, Protons, and Carbon ions Reinhold G. Müller, Nils Achterberg, Jürgen Karg Inst. Med. Physik, Strahlenklinik Universität Erlangen Jan Forster, Renate Forster Ingenieurgesellsc haft Ingolstadt a cooperation between university and industry Otto Pravida, Pravida Bau GmbH Pressath

Upload: tavi

Post on 15-Jan-2016

34 views

Category:

Documents


0 download

DESCRIPTION

New materials for radiation protection buildings Monte Carlo-simulations and measurement for X-rays, Protons, and Carbon ions. a cooperation between university and industry. Reinhold G. Müller, Nils Achterberg, Jürgen Karg Inst. Med. Physik, Strahlenklinik Universität Erlangen. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

New materials for radiation protection buildings

Monte Carlo-simulations and measurement for

X-rays, Protons, and Carbon ions

Reinhold G. Müller,Nils Achterberg,Jürgen KargInst. Med. Physik,StrahlenklinikUniversität Erlangen

Jan Forster,Renate ForsterIngenieurgesellschaftIngolstadt

a cooperation between university and industry

Otto Pravida,Pravida Bau GmbHPressath

Page 2: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

wall structure of Sandwich

30 - 40 30 - 4060 - >900 cm

variablevariablefilling materials and mixturesfilling materials and mixtures

double wall shellfilled with concrete

Page 3: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

concrete of appropriate thickness is widely used forshielding walls:

advantage: concrete is available everywhere and not too expensive;

dis- - concrete needs shuttering and reinforcement;advantage: - long dry out time; - cracking in spite of reinforcement; - for enhancing density aggregates like Baryt are necessary, which increase the costs, up to a factor of 10; - shielding structures of more than 6 m thickness (high energy physics) make cooling necessary because of the process heat during hardening; - dismantling of these structures is very expensive.

state of the art

Page 4: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

There is no need for such heavy constructions because of statics. Radiation protection can be reached more efficient and for significant reduced prices using adequate filling.That‘s why the Sandwich construction has been developed.

advantage: - precast technology, nearly dry;

- shielding by natural minerals like gypsum or limestone (low costs);

- ceiling construction in same manner;

- erection time less than 1/3 in relation to concrete;

- for density enhancement natural minerals like iron-ore,

Magnetit, Baryt, iron-slag, etc. can be aggregated (low costs);

- optimal combinations are possible for nearly all problems;

- the high content of crystal water qualifies gypsum for the

attenuation of primary and secondary neutrons;

- dismantling of the construction and reinstatement can easily

be done with simple techniques;

disadvantage: - none -

the technical innovation: Sandwich Construction

Page 5: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

6, 10 u. 15MV; KD + ONCOR05.-06.08. 2005

1,E-03

1,E-02

1,E-01

1,E+00

0 50 100 150 200 250

Area density [ g/cm² ]

Tra

ns

mis

sio

n

slag 6MV KD

slag 10 MV KD

slag 6MV ONCOR

slag 15 MV ONCOR

measurement and results

suitable for DIN 6847-2 (German regulations, Sept. 2008)

and NCRP 144, 153 (American regulations)

Page 6: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

Tenth value layer [ g/cm² ]

20

40

60

80

100

120

1 10 100

Maximum energy [MeV ]

Te

nth

va

lue

lay

er

[ g

/cm

² ]

Concrete DIN (~2,3)

Concrete + MD2 (~3,5-3,8)

EOS-MC + Measurement (~2,5)

Barytbeton (~3,5-3,8)

tenth value layers tvl

DIN 6847-2, NCRP

Page 7: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

materials under investigation

1. 3 kinds of normal concrete < 2.3 t/m³ (limestone concrete, mixed, silicate concrete)

2. magnetite concrete 3.5-3,8 t/m³

3. magnetite concrete with iron gravel 5.0 t/m³

4. natural gypsum 1.8 t/m³

5. limestone 1.9 t/m³

6. screen glass - - -

7. iron processing waste (Electric Arc Funrace Slag) 2.4 t/m³

8. magnetite pure (iron ore) 2.5 t/m³

Page 8: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

Datum: 2008 September

German Regulations: DIN 6847-2

Page 9: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

erection of a double wall shellsfor 8 vaults at once

closing of the bunkers&

filling the walls

Page 10: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

planning a huge vault

Page 11: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

erection of a huge vault

Page 12: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

filling optimised material mixtures

Page 13: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

closing the ceiling

Page 14: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

Datum: 2008 Januar

vaults for particle therapy

Page 15: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

walls made with concreteconcrete

MC-simulations for protons 220 MeV

neutron“volume dose”

E/V[ J/cm³ ]

GEANT4 7.1 S. Agostinelli et al. 2003, Nucl.Instrum.Methods A 506 250-303

Page 16: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

protons 220 MeV

neutron“volume dose”

E/V[ J/cm³ ]

walls in Sandwich TechnologySandwich Technology

Page 17: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

550 cm 600 cm 550 cm

carbon ions 430 MeV/u

walls with concreteconcrete

Page 18: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

550 cm 600 cm 550 cmwalls in Sandwich TechnologySandwich Technology

carbon ions 430 MeV/u

Page 19: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

deuterons 45 MeV

walls in Sandwich TechnologySandwich Technology

graphite target

Page 20: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

n(E) of carbon ions 430 MeV/uneutron spectra

neutron spectra

direction 0°

concreteconcrete

Page 21: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

Sandwich TechnologySandwich Technology

neutron spectra

direction 0°

n(E) of carbon ions 430 MeV/uneutron spectra

Page 22: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

convolution with RBE for calculation of H*(10) for neutrons

Page 23: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

effective dose H*(10) behind the wall of Sandwich TechnologySandwich Technology

protons 220 MeV

effective Dose H*(10)

direction 0°;same for mixture or concrete

TVL: 109 cm resp. 251 g/cm²

Page 24: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

attenuation measurement at GSI

igloo

beam line

targets

45°

90°

windows

filling material

3 different at once

6 different in total

3 wendi2 detectors

neutron dose H*(10)

p+

carbon ions

Page 25: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

igloo installed at GSI

0°45°

Page 26: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

Sandwich TechnologySandwich Technology

protons 220 MeV

effective dose H*(10) per 109 protons behind (inside) the wall depending on energy and angle

measurement

MC-simulation angle °

Page 27: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

normalized to the entrance value, depending on energy and angle

effective neutron dose H*(10) for protons behind (inside) the wall

MC-simulation

angle °

Page 28: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

MC-simulation

effective neutron dose H*(10) for protons behind (inside) the wall

normalized to the entrance value,

E = 220 MeV; angle = 0°

Page 29: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

430 MeV/u Carbon 0°

y = 273035e-0,005x

R2 = 0,9957

y = 471441e-0,0074x

R2 = 0,9885

y = 372908e-0,0063x

R2 = 0,9941

y = 492832e-0,0076x

R2 = 0,9902

y = 459420e-0,0073x

R2 = 0,9908

y = 496779e-0,0076x

R2 = 0,9934

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

0 200 400 600 800 1000

Areal Density / g/cm²

H*(

10

) / n

Sv

/10

^6

Ion

s

Concrete 2

EAS

Gypsum

Magnetite

Limestone

Asphalt

Borax

300 MeV/u Carbon 0°

y = 57886e-0,005x

R2 = 0,9998

y = 95801e-0,0073x

R2 = 0,9958

y = 78056e-0,0063x

R2 = 0,9996

y = 99219e-0,0074x

R2 = 0,9976

y = 94803e-0,0073x

R2 = 0,9969

y = 98035e-0,0073x

R2 = 0,9932

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

0 200 400 600 800 1000

Areal Density / g/cm²

H*(

10) /

nS

v/10

^6 Io

ns

Concrete 2

EAS

Gypsum

Magnetite

Limestone

Asphalt

Borax

200 MeV/u Carbon 0°

y = 11255e-0,0054x

R2 = 0,9997

y = 20155e-0,0082x

R2 = 0,9947

y = 15599e-0,0068x

R2 = 0,9996

y = 21045e-0,0083x

R2 = 0,9971

y = 20034e-0,0082x

R2 = 0,9976

y = 23174e-0,0087x

R2 = 0,9901

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

0 200 400 600 800 1000

H*(

10

) / n

Sv

/10

^6

Ion

s

Concrete 2

EAS

Gypsum

Magnetite

Limestone

Asphalt

Borax

Areal Density / g/cm³

150 MeV/u Carbon 0°

y = 2676,9e-0,0062x

R2 = 0,9912

y = 3651,5e-0,0076x

R2 = 0,999

y = 5244,5e-0,0091x

R2 = 0,9987

y = 5239,3e-0,0094x

R2 = 0,9992

y = 5725,6e-0,0095x

R2 = 0,9984

y = 4320,6e-0,0084x

R2 = 0,9974

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

0 200 400 600 800 1000

Areal Density / g/cm³

H*(

10

) / n

Sv/

10

^6 Io

ns

Concrete 2

EAS

Gypsum

Magnetite

Limestone

Asphalt

Borax

effective neutron dose H*(10) for carbon ionsbehind the wall; measurement

5 cm Borax

Page 30: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

0° TVL for Carbon Ions

200

300

400

500

600

100 150 200 250 300 350 400 450 500

Energy Carbon Ion / MeV/u

TV

L /

g/c

0° Concrete

0° EAS

0° Gypsum

0° Magnetite

0° Limestone

0° Asphalt

tenth value layers TVL for neutron dose H*(10) for carbon ions behind the wall

Page 31: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

the Sandwich Constructionis suitable for all radiation sources,

and satisfies all requirements with a variety of advantages

as for example:

1. cost reduction;

2. reduced erection time;

3. flexible adjustment to the aspired wall thickness

because of the free option of filling material;

4. feasibility of building alterations;

5. simple and cheap dismantling and reinstatement;

conclusion

Page 32: New materials for radiation protection buildings Monte Carlo-simulations and measurement for

Strahlenklinik ErlangenSATIF 2010 CERN

the

end

thank you for your attention