new p. vavassori - magnetism.eumagnetism.eu/esm/2018/slides/vavassori-slides2.pdf · 2018. 9....

61
P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018 FT-2: Magneto-optics and Magneto-plasmonics Part 1 P. Vavassori -Ikerbasque, Basque Fundation for Science and CIC nanoGUNE Consolider, San Sebastian, Spain.

Upload: others

Post on 22-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    FT-2: Magneto-optics and Magneto-plasmonics Part 1

    P. Vavassori

    -Ikerbasque, Basque Fundation for Science and CIC nanoGUNE Consolider, San Sebastian, Spain.

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Outline

    Magneto-optics

    Brief overview of the Magneto-optical Kerr effects (MOKE)

    Advanced MOKE: vector magnetometry

    Magnetic nanostructures

    micro-MOKE

    Approach 1: focused beam

    Approach 2: microscopy

    MOKE from diffracted beams:

    simple theory of diffracted MOKE

    in conjunction with micromagnetics and MFM

    from magnetometry to magnetic imaging

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    John Kerr1824 - 1907

    Michael Faraday1791 - 1867

    s

    p

    s

    p

    s

    p

    Reflected Light

    z

    θ

    x

    Transmitted Light

    Polarization Plane

    Sample

    The MagnetoOptical Effect

    x

    z

    y

    p

    s

    ps

    θ θ

    x

    z

    y

    p

    s

    ps

    θ θ

    But, what happens if we applied a magnetic field??

    → →

    → →

    =

    s s p s

    s p p p

    r rR

    r r

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    The Magneto-Optical Effect

    → →

    → →

    =

    s s p s

    s p p p

    r rR

    r r

    xx xy xz

    yx yy yz

    zx zy zz

    x

    z

    yHy

    p

    s

    ps

    θ θ

    x

    z

    y

    Hx

    p

    s

    ps

    θ θ

    Hz

    Polar and Longitudinal Configuration Transverse Configuration

    Reflectivity matrixDielectric Tensor

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    MOKE

    The magneto-optic Kerr effect (MOKE) is widely

    used in studying technologically relevant

    magnetic materials.

    It relies on small, magnetization induced changes

    in the optical properties which modify the

    polarization or the intensity of the reflected light.

    Macroscopically, magneto-optic effects arise from

    the antisymmetric, off-diagonal elements in the

    dielectric tensor.

    sssp

    pspp

    rr

    rrSample

    rpp = r0

    pp+ rppM my

    rps - mx - mzrsp mx-mz

    Fresnell reflection coefficients

    iTM

    rTMpp

    E

    Er =

    iTE

    rTMps

    E

    Er =

    iTM

    rTEsp

    E

    Er =

    iTE

    rTEss

    E

    Er =

    =

    0

    0

    0

    ˆ

    xy

    xz

    yz

    ii

    ii

    ii

    =

    0

    0

    0

    00

    00

    00

    ˆ

    x = 0 Q mx; y = 0 Q my; z = 0 Q mz;

    • Non-destructive;

    • High sensitivity;

    • Finite penetration depth (~ 10 nm);

    • Fast (time resolved measurements);

    • Laterally resolved (microscopy);

    • Can be easily used in vacuum and

    cryogenic systems;

    J. Kerr, Philosophical Magazine 3 321 (1877)Z. Q. Qui and S. D. Bader, Rev. Sci. Instrum. 71, 1243 (2000) P. Vavassori, APL 77 1605 (2000)

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    MOKE origin: classical picture Lorentz force

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Here, x (r) is the spin-orbit parameter or coupling constant, which depends on the gradient of the electrostatic potential of the nuclear charges.

    Its values are of the order of 10-100meV and, thus, the spin-orbit interaction is much weaker than the exchange interaction (≈ 1eV).

    Electron theory of Magneto-Optics

    Microscopically, the coupling between the electric field of the propagating light and the

    electron spin in a magnetic medium occurs through the spin-orbit interaction splitting of

    optical absorption lines (Zeeman effect).

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Electron theory of Magneto-Optics

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Microscopic origin of Magneto-Optics

    s+ and s- Selection rules

    Optical transitions between the d-orbitals and the p-orbitals

    Only transition from m = 1 to m = 0 are considered for simplicity

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Microscopic origin of Magneto-Optics

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Microscopic origin of Magneto-Optics

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Microscopic origin of Magneto-Optics

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Microscopic origin of Magneto-Optics

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Microscopic origin of Magneto-Optics

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Electron theory of Magneto-Optics

    • Magnetization→Splitting of spin-states (Exchange)

    – No direct cause of difference of optical response between LCP and RCP

    • Spin-orbit interaction→Splitting of orbital states

    – Absorption of circular polarization→Induction of circular motion of electrons

    • Condition for large magneto-optical response

    – Presence of strong (allowed) transitions

    – Involving elements with large spin-orbit interaction

    – Not directly related with Magnetization

    MOKE results from a lifting of orbital degeneracy due to spin-orbit interaction (SOI) in the presence of spontaneous spin polarization.

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    −=

    xx

    xxxy

    xyxx

    00

    0

    0~ xy = i0 Q mz;

    ( )( )

    ( ) 0~

    2

    2

    2=

    + E

    tcErotrot

    0

    00

    0

    0

    2

    2

    =

    −−

    z

    y

    x

    zz

    xxxy

    xyxx

    E

    E

    E

    n

    n

    xyxx in =2

    Maxwell Equation

    Eigenequation

    Eigenvalue Eigenmodes:LCP and RCP

    Without off-diagonal terms:No difference between LCP & RCP

    ( ) ( )tznkieEE −= 00 ( ) 0ˆ2 =−− EEnnE n

    A simple case: M || z

    Different modes :different speed and attenuation

    Therefore, incidentlight becomeselliptically polarizedafter propagation in a MO activematerial

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Phenomenology of MO effect

    Linearly polarized light can be decomposed to LCP and RCP

    Difference in phase causes rotation ofthe direction of Linear polarization

    Difference in amplitudes makes Elliptically polarized light

    In general, elliptically polarized lightWith the principal axis rotated

    Different speed(phase lag)

    Different attenuation

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    1

    220

    212

    21

    20

    12

    1

    sinsin1sin1cos

    n

    nn

    n

    n

    −=−=−=

    rpp = r0

    pp+ rppM my

    rps - mx - mzrsp mx-mz

    xy = i1Q mz; xz = -i1Q my; yz = i1 Q mx; xy = -yx; zx = -xz; zy = -yz;

    sssp

    pspp

    rr

    rr

    General case: Oblique incidence and arbitrary direction of M

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Polarization conversion

    Summary of phenomenology

    Ei Er Ei Er

    M

    M = 0

    pxpx

    py( )0

    −=

    xx

    yx

    yppx

    py

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    ( )

    +=

    =

    = sincos

    11~

    ir

    re

    r

    rr

    rE

    pp

    spi

    pp

    sp

    sp

    pp

    r

    K K

    pp

    sp

    r

    rRe

    ss

    ps

    r

    rRe

    pp

    sp

    r

    rIm

    ss

    ps

    r

    rIm

    rsp

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    x

    y

    x’

    y’

    l/4plate

    h

    E0

    E0sinh

    E0cosh

    E E i i j= +0(cos sin )h h

    Opticaxis

    ( )

    E E i i e j

    E i j

    E i

    i

    ' (cos sin )

    cos sin

    '

    = +

    = +

    =

    02

    0

    0

    h h

    h h

    x

    y

    h

    E’

    E

    Measurement of ellipticity

    E0 Er

    E’rM

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    l/4

    l/2

    45°

    22.5°

    p

    sp

    s p

    s

    p

    s

    wollastone

    45°p

    s

    wollastone

    Measurement of ellipticity & rotation: high sensitivity

    +M

    -M

    +M

    -M

    =0

    +M

    -M

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Measurement of ellipticity & rotation: high sensitivity

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 201824

    Measuring K and K

    Modulation polarization technique for recording the longitudinal and polar Kerr effects, which are proportional to the magnetization components mx mz..

    POLARIZER Glan-Thompson

    PHOTOELASTIC MODULATOR (50kHz)

    ORIGINAL ELLIPTICTY

    MODULATED ELLIPTICTYPREAMPLIFIED PHOTODIODE

    POLARIZER

    HeNe LASER

    p-polarized beams-p polarized reflected

    beam (elliptical polarization)

    y

    x

    Lock-in

    Electromagnet

    E

    More details in: P. Vavassori, Appl. Phys. Lett. 77, 1605 (2000)

    K Kspol - mx – mzppol mx- mz

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Io

    Transverse Kerr effect

    Laser

    Polarizer

    Detector

    p-polarized light (TM)M

    Er = rpp Eo

    rpp = ro

    pp + rm

    ppmy

    Ir = Er (Er)*

    Ir = Io+ DIm DIm/Io a my

    The reflected beam is p-polarized.Variation of intensity and phase.

    y

    Y. Souche et al.JMMM 226-230, 1686 (2001);JMMM 242-245, 964 (2002).

    M fm

    Dfm a my

    E

    E

    Polarizer

    l/4

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Supplementary information

    Examples of application of MOKE for magnetic characterization of materials and nanosctructures

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Vector analysis of reversal

    H

    MMyMx

    x

    y

    My Mx-1.0

    -0.5

    0.0

    0.5

    1.0

    -1.0

    -0.5

    0.0

    0.5

    1.0

    -10000 -5000 0 5000 10000

    -1.0

    -0.5

    0.0

    0.5

    1.0

    my

    mx

    Fig. 2

    mz

    Field (Oe)

    MgO

    Fe(300 nm)

    NiO(1.4 nm)Fe(7 nm) 180-nm-thick CoNiO

    -10000 -5000 0 5000 10000

    0

    30

    60

    90

    120

    150

    180

    210

    240

    10000 5000 0 -5000 -10000

    180

    210

    240

    270

    300

    330

    360

    390

    420

    -10000 0 10000

    0.5

    1.0

    10000 0 -10000

    0.5

    1.0

    Branch up

    out

    in

    Ro

    tatio

    n a

    ng

    le (

    de

    g.)

    out

    in

    Branch down

    Ro

    tatio

    n a

    ng

    le (

    de

    g.)

    Field (Oe)

    m

    Field (Oe)

    m

    Field (Oe)

    - F. Carace, P. Vavassori, G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, and T. Okuno, Thin Solid Films 515/2, 727 (2006).- A. Brambilla, P. Biagioni, M. Portalupi, P. Vavassori, M. Zani, M. Finazzi, R. Bertacco, L. Duò, and F. Ciccacci, Phys. Rev. B. 72, 174402 (2005).- P. Vavassori, Appl. Phys. Lett. 77, 1605 (2000) .

    Reconstruction of the magnetization vector during the reversal

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Element sensitivity (and layer sensitivity)

    XMCD x-ray magnetic circular dichroism (FeL3 Py hysteresis loop and CoL3 thresholds), → chemical and magnetic sensitivity

    PyCuCo

    230 nm

    10 nm

    -1000 -500 0 500 1000

    0.1725

    0.1730

    0.1735

    0.1740

    0.1745

    0.1750

    Rotation

    MO

    KE

    sig

    nal (a

    rb. units)

    Field (Oe)

    -1000 -500 0 500 10000.065

    0.066

    0.067

    0.068

    0.069

    0.070

    0.071

    0.072

    0.073

    0.074

    0.075Ellipticity

    MO

    KE

    sig

    nal (a

    rb. units)

    Field (Oe)

    MOKE XMCD

    -1000 -500 0 500 1000-5.4

    -5.2

    -5.0

    -4.8

    -4.6

    -4.4

    -4.2

    -4.0

    Fe

    Sig

    na

    l

    Field (Oe)

    -1000 -500 0 500 1000-2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    Co

    Sig

    na

    l

    Field (Oe)

    Simulations

    -1000 -500 0 500 1000-0.006

    -0.004

    -0.002

    0.000

    0.002

    0.004

    0.006

    Permalloy

    MO

    KE

    sig

    nal (a

    rb. units)

    Field (Oe)

    -1000 -500 0 500 1000-0.004

    -0.003

    -0.002

    -0.001

    0.000

    0.001

    0.002

    0.003

    0.004

    Cobalt

    MO

    KE

    sig

    na

    l (a

    rb.

    un

    its)

    Field (Oe)

    JOURNAL OF PHYSICS D-APPLIED PHYSICS 41, 134014 (2008)

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    0 20 40 60 80 100

    -0,010

    -0,005

    0,000

    0,005

    0,010

    0,015 Py S Rotation P Rotation

    s Ellipticity

    P Ellipticity

    Radia

    nts

    Incidence Angle (degrees)

    0 20 40 60 80 100

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06 Co S Rotation P Rotation

    s Ellipticity

    P Ellipticity

    deg

    rees

    Incidence Angle (degrees)

    0 1 2 3 4 5 6

    -0,015

    -0,010

    -0,005

    0,000

    0,005

    0,010

    0,015

    0,020

    Py S Rotation

    P Rotation

    s Ellipticity

    P Ellipticity

    deg

    rees

    Photon energy (eV)

    0 1 2 3 4 5 6

    -0,030

    -0,025

    -0,020

    -0,015

    -0,010

    -0,005

    0,000

    0,005

    0,010

    0,015

    0,020

    0,025

    0,030

    0,035

    0,040

    0,045

    Co S Rotation

    P Rotation

    s Ellipticity

    P Ellipticity

    de

    gre

    es

    Photon energy (eV)

    Element sensitivity (thin layer regime)

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Layer sensitivity

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 201831

    Ht = Ht0 Sin(2ft)

    H

    Lock-in 1: Ref.

    freq. 50-100kHz

    Lock-in 2:Ref

    freq. f

    mx0 mx = mx0 Sin (2ft)

    MOKE transverse susceptibility: anisotropy

    The quantity measured with the Lock-in2 is proportional to the transverse

    suceptibility ct = D0 / Ht0.

    It can be shown that : 1/ct = (Eo''(eq)/ eq) where Eo(eq) is the total free energy and eq is the

    average magnetization, which makes an angle eq with the EA.

    H = 700 OeHt = 35 Oef = 156 Hz

    0.0

    0.4

    0.8

    1.2

    0

    30

    6090

    120

    150

    180

    210

    240270

    300

    330

    0.0

    0.4

    0.8

    1.2

    1/c

    M

    t (O

    e

    Vo

    lt-1)

    ea

    ea ea

    ea

    1/c

    Mt (

    arb

    . u

    nit

    s)

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 201832

    Configurational anisotropy

    Flower state: higher energy

    Leaf state: lower energy

    Even small perturbations from uniform magnetization which must exist in anynonellipsoidal magnet give rise to a (strong) angular dependence of magnetostaticdipolar energy in symmetric squared particles, which should be magnetically isotropicin the approximation of M uniform. This anisotropy is called configurational anisotropy

    Py squares 150 x 150 x 15 nm3

    H

    fourfold symmetry, at first order, eightfold symmetry at second order

    R. P. Cowburn et al. Phys. Rev. Lett. 81, 5414 (1998)

    H = 0

    P. Vavassori, et al., Phys. Rev. B 72, 054405 (2005)

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 201833

    Kerr microscopy: focused laser beam

    Laser

    Detector

    CCD

    PHYSICAL REVIEW 72, 224413 (2005)

    D. A. Allwood, et al., J. Phys. D: Appl. Phys. 36, 2175 (2003)

    Py wires 175 nm wideMicro-MOKE

    Py wire 200 nm wideSingle loop

    Py wire 100 nm wide1000 loops

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Polar

    Longitudinal and transverse

    Kerr microscopy: imaging

    M

    M

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Magnetometry of ultra-small nanostructure

    EBIDelectron beam induced deposition

    Scanning electron microscopy image of the set of EBID cobalt structures

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    APPLIED PHYSICS LETTERS 100, 142401 (2012)

    t = 20 nm

    single sweep measurement sensitivity of approximately 1 x10-15 Am2

    sensitivity of 10-12 to 10-13 Am2 for the latest generation of SQUID magnetometer

    t = 5 nm

    9 averagesSingle sweep

    Magnetometry of ultra-small nanostructure

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Diffraction of light by an array

    "Diffracted-MOKE: What does it tell you?",

    M. Grimsditch and P. Vavassori J. Phys.: Condensed Matter 16, R275 - R294 (2004).

    As is well known for optical gratings, when a beam of light is incident upon a sample that has a structure comparable to the wavelength of radiation, the beam is not only reflected but is also diffracted. If the material is magnetic, one may ask whether the diffracted beams also carry information about the magnetic structure.

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Examples of D-MOKE loops

    Peculiar structures due to- Collective properties- Interference effects

    P. Vavassori, et al., J Appl. Phys. 99, 053902 (2006)

    M. Grimsditch, P. Vavassori, et al., Phys. Rev. B 65, 172419 (2002)

    P. Vavassori, et al., Phys. Rev. B 67, 134429 (2003)

    P. Vavassori, et al., J. Appl. Phys. 101, 023902 (2007)

    P. Vavassori, et al.,Phys. Rev. B 59 6337 (1999)

    P. Vavassori, et al., Phys. Rev. B 69, 214404 (2004)

    P. Vavassori, et al., Phys. Rev. B 78, 174403 (2008)

    -2000 -1500 -1000 -500 0 500 1000 1500 2000

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    Rflected

    No

    rm.

    Sig

    na

    l-2000 -1500 -1000 -500 0 500 1000 1500 2000

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    1st order

    No

    rm.

    Sig

    na

    l

    -2000 -1500 -1000 -500 0 500 1000 1500 2000-3,0

    -2,5

    -2,0

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    Field (Oe) Field (Oe)

    Field (Oe)

    2nd

    order

    No

    rm.

    Sig

    na

    l

    -2000 -1500 -1000 -500 0 500 1000 1500 2000

    -2,5

    -2,0

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    No

    rm.

    Sig

    na

    l

    3rd order

    -2000 -1500 -1000 -500 0 500 1000 1500 2000-1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    No

    rm.

    Sig

    na

    l

    4th order

    -600 -400 -200 0 200 400 600

    -0.274

    -0.273

    -0.272

    -0.271

    -0.270

    -0.269

    -0.268

    Reflected

    D-M

    OK

    E I

    nte

    nsi

    ty (

    arb

    . u

    nits

    )

    Field (Oe)

    H

    -2000 -1500 -1000 -500 0 500 1000 1500 2000

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    Rflected

    No

    rm.

    Sig

    na

    l

    -2000 -1500 -1000 -500 0 500 1000 1500 2000

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    1st order

    No

    rm.

    Sig

    na

    l

    -2000 -1500 -1000 -500 0 500 1000 1500 2000-3,0

    -2,5

    -2,0

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    Field (Oe) Field (Oe)

    Field (Oe)

    2nd

    order

    No

    rm.

    Sig

    na

    l

    -2000 -1500 -1000 -500 0 500 1000 1500 2000

    -2,5

    -2,0

    -1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    No

    rm.

    Sig

    na

    l

    3rd order

    -2000 -1500 -1000 -500 0 500 1000 1500 2000-1,5

    -1,0

    -0,5

    0,0

    0,5

    1,0

    No

    rm.

    Sig

    na

    l

    4th order

    Inte

    nsity (

    norm

    . sig

    nal)

    -600 -400 -200 0 200 400 6000.838

    0.840

    0.842

    0.844

    0.846

    0.848

    0.850

    0.852

    0.854

    0.856

    Field (Oe)

    D-M

    OK

    E In

    tensi

    ty (

    arb

    . u

    nits

    )

    2nd

    order

    H

    Reflected

    Reflected

    2nd order

    2nd order

    -600 -400 -200 0 200 400 600 -600 -400 -200 0 200 400 600 Field (Oe) Field (Oe)

    3.0

    2.0

    1.0

    0.0

    -1.0

    -2.0

    -3.0

    1.0

    0.5

    0.0

    -0.5

    -1.0

    1.0

    0.5

    0.0

    -0.5

    -1.0

    1.0

    0.5

    0.0

    -0.5

    -1.0

    -2000 -1000 0 1000 2000

    Inte

    nsity (

    norm

    . sig

    nal)

    -2000 -1000 0 1000 2000

    IncidencePlane (xz)

    H

    Laser532 nm50 mW

    E

    Diffraction

    pattern

    coil

    coil

    Photo

    dete

    cto

    r

    IncidencePlane (xz)

    H

    Laser532 nm50 mW

    E

    IncidencePlane (xz)

    H

    Laser532 nm50 mW

    IncidencePlane (xz)

    H

    Laser532 nm50 mW

    E

    Diffraction

    pattern

    coil

    coil

    Photo

    dete

    cto

    r

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Intuitive explanation of D-MOKE loops

    Peculiar structures due to- Interference effects- Collective propertiesO. Geoffroy et al., J. Magn. Magn. Mat. 121 (1993) 516

    Y. Souche et al., J. Magn. Magn. Mat., 140-144 (1995) 2179

    H

    rpp = ro

    pp + rm

    ppmy(x,y)

    M M

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Physical-optics approximation provides a very simple and physically transparent

    description.

    The electric field in the nth order diffracted beam, due to the periodic modulation of

    the “effective” reflectivity r’pp is:

    End = Eo fnfn = S r’pp exp{i n G•r} dS where n integer, G reciprocal lattice vector

    and S is the unit cell.

    r’pp = ropp + rmpp my(x,y,H)

    End = Eo (r

    opp fn

    nm + rmpp fnm ) with ropp(i, n, dots, subst), rmpp(i, n, dots, Q)

    fnnm = S exp{i n G•r} dxdy non-magnetic form factor

    fnm (H)= Dot my(x,y,H) exp{i n G•r}dxdy magnetic form factor

    Ind = En

    d (End)* DIn

    m (my) = AnRe[fnm]+Bn Im[fnm]

    Simple theory of diffracted-MOKE

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    DInm a An Re[fn

    m] + Bn Im[fnm]

    Re[fnm]= Dot my cos(n Gx x) dS

    Im[fnm]= Dot my sin(n Gx x) dS

    Im[f1m] = 0

    Saturated state Re[f1

    m] > 0

    What are the differences due to?

    y

    x

    period L

    Unit cell

    Gx = 2/L reciprocal lattice vector

    Diffracted spots in the scattering planey

    x

    y

    x

    1st order

    Im[f1m] < 0

    Re[f1m] = 0

    Im[f1m] > 0

    Re[f1m] = 0

    2nd order

    Im[f2m] < 0 large

    Re[f2m] = 0

    y

    x

    y

    x

    3rd order

    Im[f2m] < 0 very large

    Re[f2m] = 0

    Two-domain state: asymmetric M distribution

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    y

    x

    Tuning the sensitivity to selected portions of the dot!

    Immaginary contribution:highlight any asymmetric (y-mirror symmetry breaking) magnetic (my) behaviour

    Real contribution:y-mirror symmetry my

    y

    x

    period L

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Asymmetry to induce the desired vortex rotation

    Narrow channel pins

    the magnetization2 m

    -600 -400 -200 0 200 400 600

    -0.274

    -0.273

    -0.272

    -0.271

    -0.270

    -0.269

    -0.268

    Reflected

    D-M

    OK

    E Inte

    nsity (

    arb

    . units)

    Field (Oe)

    3

    1

    2

    -600 -400 -200 0 200 400 6000.838

    0.840

    0.842

    0.844

    0.846

    0.848

    0.850

    0.852

    0.854

    0.856

    Field (Oe)

    D-M

    OK

    E In

    tensity (

    arb

    . u

    nits)

    2nd

    order

    -600 -400 -200 0 200 400 600-0.46

    -0.44

    -0.42

    -0.40

    -0.38

    -0.36

    -0.34

    1st order

    D-M

    OK

    E Inte

    nsity (

    arb

    . units)

    -600 -400 -200 0 200 400 600-0.285

    -0.280

    -0.275

    -0.270

    -0.265

    -0.260

    -0.255

    1st order

    -600 -400 -200 0 200 400 600-0.231

    -0.230

    -0.229

    -0.228

    -0.227

    -0.226

    -0.225

    -0.224

    Field (Oe)

    2nd

    order

    H

    H

    H

    H

    H

    -600 -400 -200 0 200 400 600

    -3

    -2

    -1

    0

    1

    2

    3

    Field (Oe)

    2nd

    order (Re[fd

    m] + 0.65 * Im[f

    d

    m])

    -600 -400 -200 0 200 400 600-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    No

    rma

    lize

    d D

    -MO

    KE

    sig

    na

    l

    Reflected

    Field (Oe)

    H

    H H

    H H

    -600 -400 -200 0 200 400 600-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    1st order (Re[f

    d

    m] + 0.8 * Im[f

    d

    m])

    No

    rma

    lize

    d D

    -MO

    KE

    sig

    na

    l

    -600 -400 -200 0 200 400 600-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    1st order (Re[f

    d

    m] + 0.8 * Im[f

    d

    m])

    -600 -400 -200 0 200 400 600-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    No

    rma

    lize

    d D

    -MO

    KE

    sig

    na

    l

    Field (Oe)

    2nd

    order (Re[fd

    m] + 0.65 * Im[f

    d

    m])

    P. Vavassori, R. Bovolenta, V. Metlushko, and B. Ilic, J Appl. Phys. 99, 053902 (2006)

    Measured Calculated

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Measured D-MOKE loops from square rings

    -2000 -1000 0 1000 2000

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Norm

    alize

    d Kerr

    sign

    al

    0th order

    -2000 -1000 0 1000 2000

    -1.0

    -0.5

    0.0

    0.5

    1.00

    th order

    -2000 -1000 0 1000 2000

    -15

    -10

    -5

    0

    5

    10

    15

    1st order

    Field (Oe)

    -2000 -1000 0 1000 2000

    -3

    -2

    -1

    0

    1

    2

    3

    1st order

    Norm

    alize

    d Kerr

    sign

    al

    Field (Oe)

    (a) (b)

    Reflected

    1st order 1st order

    Reflected

    H H

    Square lattice (4.1x4.1 m2) of

    Permalloy square rings (2.1 m

    side). Nominal width 250 nm.

    Thickness 30 nm.

    Note intense peaks in the diffracted loopsP. Vavassori, et al., Phys. Rev. B 67, 134429 (2003)

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Square ring structures

    1 saturated state

    2 onion state 4 reversed onion state 5 saturated state

    1 saturated state 4 reversed onion state 5 saturated state

    2 onion state

    -2000 -1000 0 1000 2000

    -8

    -4

    0

    4

    8

    Norm

    alize

    d sign

    al 1st order

    Field (Oe)

    -2000 -1000 0 1000 2000-2

    -1

    0

    1

    2

    Field (Oe)

    1st order

    Norm

    alize

    d sign

    al

    3 horseshoe state

    3 vortex state

    H

    H

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Quenching structures in intermediate states

    and image them with MFM

    -1000 -500 0 500 1000-3

    -2

    -1

    0

    1

    2

    3

    Norm

    alize

    d Kerr

    sign

    al

    Field (Oe)

    H

    -1000 -500 0 500 1000

    -15

    -10

    -5

    0

    5

    10

    15

    Norm

    alize

    d Kerr

    sign

    al

    Field (Oe)

    H

    (c)

    (b)

    P. Vavassori, M. Grimsditch, V. Novosad, V. Metlushko, B. Ilic, P. Neuzil, and R. Kumar, Phys. Rev. B 67, 134429 (2003)

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Y. Suzuki, C. Chappert, P. Bruno, and P. Veillet, J. Magn. Magn. Mater. 165 516 (1997) only for size >> l

    “effective” reflectivity

    An = Re[ro

    pp* rmpp]

    Bn = Im[ro

    pp* rmpp]

    An and Bn (i, n, dots, sub, Q)

    r’pp = ropp + rmpp

    For inhomogeneous gratings ropp = ropp, dot + ropp, sub

    DInm (my) = 2 fn

    nm { AnRe[fnm]+Bn Im[fn

    m] }

    About An and Bn

    An interesting characteristic of D-MOKE related to this : the absolute value of (DI/Io)n is increased up to several times the specular value. Effect due to the compensation of the non-magnetic component of the light diffracted by the magnetic dots and the light diffracted by the (non-magnetic) complementary part of the substrate.

    Io,n = |ro

    pp, dot|2 fnnm + | ropp, sub |2 f’n

    nm = ( |ropp, dot|2 - | ropp, sub |2 )fnnm

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    532 n

    m la

    ser

    Different approach: towards Fourier imaging? 1st step

    H(1,0)(-1,0)

    (0,1)

    (0,-1)(-1,-1) (1,-1)

    (1,1)(-1,1)

    Normal incidence: the scattering plane is defined by the selected spot

    y

    x

    Sensitivity to (mx , my)

    Sensitivity to mx

    -2000 -1000 0 1000 2000

    -0.0465

    -0.0460

    -0.0455

    -0.0450

    -0.0445

    -0.0440

    -0.0435

    -0.0430

    -0.04252

    nd order m

    x

    MO

    KE

    in

    ten

    sity (

    arb

    . u

    nits)

    Field (Oe)

    Vectorial D-MOKE

    (DInm)norm = An Re[fn

    m]- Bn Im[fnm]

    (DI-nm)norm = −An Re[fn

    m]- Bn Im[fnm]

    Sensitivity to my

    -2000 -1000 0 1000 2000-16.55

    -16.50

    -16.45

    -16.40

    -16.35

    -16.30 2nd

    order my

    MO

    KE

    in

    ten

    sity (

    arb

    . u

    nits)

    Field (Oe)

    -2000 -1000 0 1000 2000

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Norm

    alize

    d Kerr

    sign

    al

    0th order

    -2000 -1000 0 1000 2000

    -1.0

    -0.5

    0.0

    0.5

    1.00

    th order

    -2000 -1000 0 1000 2000

    -15

    -10

    -5

    0

    5

    10

    15

    1st order

    Field (Oe)

    -2000 -1000 0 1000 2000

    -3

    -2

    -1

    0

    1

    2

    3

    1st order

    Norm

    alize

    d Kerr

    sign

    al

    Field (Oe)

    (a) (b)

    -2000 -1000 0 1000 2000

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Norm

    alize

    d Kerr

    sign

    al

    0th order

    -2000 -1000 0 1000 2000

    -1.0

    -0.5

    0.0

    0.5

    1.00

    th order

    -2000 -1000 0 1000 2000

    -15

    -10

    -5

    0

    5

    10

    15

    1st order

    Field (Oe)

    -2000 -1000 0 1000 2000

    -3

    -2

    -1

    0

    1

    2

    3

    1st order

    Norm

    alize

    d Kerr

    sign

    al

    Field (Oe)

    (a) (b)

    Im

    Re

    Mz

    x

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    K. Postava et al. “Null ellipsometer with phase modulation,” Opt. Express 12, 6040 (2004)

    compensator

    analyzer

    photodetector

    photoelasticmodulator

    polarizer

    laserrLock-inI

    I2Lock-in Re[Drm/r0] = DIm/I0

    Im[Drm/r0] = Dfm/f0

    Dfnm/fn

    o = Bn Re[fnm]−An Im[fn

    m]

    DInm/In

    o = An Re[fnm]−Bn Im[fn

    m] DI−nm/I−n

    o = −An Re[fnm] − Bn Im[fn

    m]

    Df−nm/f−n

    o = −Bn Re[fnm] − An Im[fn

    m]

    Re[fnm]

    Im[fnm]

    D-MOKE problem fully solved

    M fm

    Dfm a my

    E

    E

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Samples: arrays of NiFe triangular rings

    Triangular rings (2.1 m side).

    Nominal width 250 nm.

    Nominal thickness 30 nm.

    ZEP 520 Resist (0.3 m)

    PMGI Resist (0.3 m)

    Exposed Areas

    Double Layer Resist Spin-coating

    EB Patterning Si substrate

    Resist Development

    EB Deposition

    (FeNi target)

    Lift-off process nanoelement

    Electron beam lithography

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    +1

    -1

    -2000 -1000 0 1000 2000

    -0,002

    -0,001

    0,000

    0,001

    0,002

    -2000 -1000 0 1000 2000

    -0,003

    -0,002

    -0,001

    0,000

    0,001

    0,002

    0,003

    Am

    plit

    ude(m

    V)

    Field(Oe)

    -1 order Re(Drpp/rpp)

    -1 order Im(Drpp/rpp)

    Am

    plit

    ude(m

    V)

    Field(Oe)

    -2000 -1000 0 1000 2000

    -0,001

    0,000

    0,001

    -2000 -1000 0 1000 2000

    -0,002

    -0,001

    0,000

    0,001

    0,002

    Am

    plit

    ude(m

    V)

    Field(Oe)

    +1 order Re(Drpp/rpp)

    Am

    plit

    ude(m

    V)

    Field(Oe)

    +1 order Im(Drpp/rpp)

    Normal incidence: extraction of magnetic form factors

    Dfnm/fn

    o = Bn Re[fnm]−An Im[fn

    m]

    DInm/In

    o = An Re[fnm]−Bn Im[fn

    m] DI−nm/I−n

    o = −An Re[fnm] − Bn Im[fn

    m]

    Df−nm/f−n

    o = −Bn Re[fnm] −An Im[fn

    m]

    Re[fnm]

    Im[fnm]

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Fig. 2

    nmf nmf

    -0.10

    -0.05

    0.00

    0.05

    -0.02

    0.00

    0.02

    -2 -1 0 1 2

    -0.12

    -0.06

    0.00

    0.06

    -2 -1 0 1 2

    -0.08

    -0.04

    0.00

    0.04

    -0.05

    0.00

    0.05

    0.10

    -0.03

    0.00

    0.03

    2nd

    order horizontal

    2nd

    order vertical

    3rd

    order horizontal

    CalculatedExperimental

    1st

    order horizontal

    Form

    fact

    orField (kOe)

    3rd

    order vertical

    1st

    order vertical

    Exp and calculated Re[fm] and Im[fm] – horizontal and vertical plane

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    -2000 -1000 0 1000 2000-0,14

    -0,12

    -0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    0,08

    0,10

    Re

    Im

    Am

    plit

    ud

    e

    Field (Oe)

    -2000 -1000 0 1000 2000-0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    Re

    Im

    Am

    plit

    ud

    e

    Field (Oe)-2000 -1000 0 1000 2000

    -0,020

    -0,015

    -0,010

    -0,005

    0,000

    0,005

    0,010

    0,015

    0,020 Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000

    -0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06 Re

    Im

    Am

    plit

    ud

    e

    Field (Oe)

    -2000 -1000 0 1000 2000-0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04 Re

    Im

    Am

    plit

    ud

    e

    Field (Oe)

    -2000 -1000 0 1000 2000

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    0,08

    0,10

    0,12

    Re

    Im

    Am

    plit

    ude

    Field (Oe)

    1st - h 2nd - h 3rd - h

    1st - v 2nd - v 3rd - v

    Re and Im parts of the magnetic form factors

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    Saturated state

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    “Peak” state

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    After “peak”

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    0 50 100 150 200

    0

    50

    100

    150

    200

    Towards negative saturation

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    -2000 -1000 0 1000 2000

    -0,12

    -0,09

    -0,06

    -0,03

    0,00

    0,03

    0,06

    0,09 Re

    Im

    Am

    plit

    ud

    e

    Field (Oe)

    -2000 -1000 0 1000 2000-0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000

    -0,020

    -0,015

    -0,010

    -0,005

    0,000

    0,005

    0,010

    0,015

    0,020

    Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000-0,14

    -0,12

    -0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    0,08

    0,10

    Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000-0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000

    -0,020

    -0,015

    -0,010

    -0,005

    0,000

    0,005

    0,010

    0,015

    0,020 Re

    Im

    Am

    plit

    ud

    e

    Field (Oe)

    Exp and calculated Re[fm] and Im[fm] – horizontal plane

    1st - h 2nd - h 3rd - h

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    -2000 -1000 0 1000 2000-0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    0,08

    0,10

    0,12 Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000-0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    0,08

    Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06 Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000

    -0,10

    -0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06 Re

    Im

    Am

    plit

    ud

    e

    Field (Oe)

    -2000 -1000 0 1000 2000-0,08

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04 Re

    Im

    Am

    plit

    ude

    Field (Oe)

    -2000 -1000 0 1000 2000

    -0,06

    -0,04

    -0,02

    0,00

    0,02

    0,04

    0,06

    0,08

    0,10

    0,12

    Re

    Im

    Am

    plit

    ude

    Field (Oe)

    1st - v 2nd - v 3rd - v

    Exp and calculated Re[fm] and Im[fm] – vertical plane

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    Micromagneticsimulations

    D-MOKE

    MFM(quenchedTo 0 field)

    Magnetic imaging proved

    APPLIED PHYSICS LETTERS 99, 092501 (2011)

  • P. VAVASSORI European School on Magnetism (ESM-2018), Krakow 17-28 September 2018

    MOKE is a powerful technique for studying technologically relevant magneticmaterials.

    MOKE magnetometry based on microscopy provides a noninvasive probeof magnetization reversal for individual ultra-small nano-structures.

    Concluding remarks

    Next lecture:

    Interplay between plasma excitations and MO-activity (magnetoplasmonics).

    D-MOKE is a powerful technique to investigate the collective behavior of

    magnetic nano-arrays.