new understanding of clay minerals - esdmpsdg.bgl.esdm.go.id/makalah/s.m.koh(presentation).pdf ·...

52
New Understanding of Clay Minerals Sang-Mo Koh Geology and Geoinformation Division, KIGAM 2006. 11. 27

Upload: buitram

Post on 27-Feb-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

  • New Understanding of Clay MineralsNew Understanding of Clay Minerals

    Sang-Mo KohGeology and Geoinformation Division, KIGAM

    2006. 11. 27

  • Clay & Clay MineralsClay & Clay Minerals

  • ContentsContents

    Introduction Definition of clay and clay minerals

    Classification of clay minerals

    Structure of clay minerals

    Properties of clay minerals

    Utilization of clay minerals

    New field of clay minerals

    Organo-c

    lay : Mod

    ified

    clay

    Nano-com

    posite cl

    ay

  • Introduction

  • Field of Clay Mineralogy Field of Clay Mineralogy

    Clay Mineralogy

    Mineralogy

    Crystallography

    Quantitative chemistry

    Geology

    Soil science

    Physical chemistry

  • All the materials with size less than 2m in soils (ISSS)

    ISSS: International Society of Soil Science

    What is clay ? What is clay ?

    Ceramics

    Definition

    A very fine grained soil that is plastic when moist but

    hard when fired.

    Civil engineering

    Decomposed fine materials with the size less than 5m

    in weathered rocks and soils

    Geology Sediments with the size less than 1/256mm (4m)

    Pedology

    Size terminologySize terminology

  • What is clay mineral ? What is clay mineral ?

    Definition in Clay Mineralogy (Bailey, 1980)

    Clay minerals belong to the family of phyllosilicates and contain

    continuous two-dimensional tetrahedral sheets of composition T2O5(T=Si, Al, Be etc.) with tetrahedral linked by sharing three corners

    of each, and with the four corners pointing in any direction. The

    tetrahedral sheets are linked in the unit structure to

    octahedral sheets, or to groups of coordinating cations, or individual

    cations

  • Classification of clay minerals Classification of clay minerals

    Definition in Clay Mineralogy (Bailey, 1980)

    Layertype

    Group(x=charge per formula unit)

    Subgroup Species

    Kaolin Kaolinite, dickite, halloysite, nacrite

    Serpentine Chrysotile, lizardite, amesite

    Pyrophyllite Pyrophyllite

    Talc Talc

    Montmorillonite(dioctaheral smectite) Montmorillonite, beidellite, nontronite

    Saponite(trioctahedral smectite) Saponite, hectorite,

    Dioctaheral vermiculite Dioctaheral vermiculite

    Trioctaheral vermiculite Trioctaheral vermiculite

    Dioctaheral mica Muscovite, illite, glauconite, paragonite

    Trioctaheral mica Phlogopite, biotite, lepidolite

    Dioctaheral brittle mica Margarite

    Trioctaheral brittle mica Clintonite, anandite

    Dioctaheral chlorite donbassite

    Di,trioctaheral chlorite Cookeite, sudoite

    Trioctaheral chlorite Chlinochlore, chamosite, nimite

    Sepiolite Sepiolite

    Palygorskite palygorskite

    Palygorskite~sepiolite

    x=variable

    Chloritex=variable

    Brittle micax=2.0

    Micax=0.5-1.0

    Vermiculitex=0.6-0.9

    Smectitex=0.2-0.6

    Pyrophyllite~talcx=0

    2:1

    1:1Kaolin~

    serpentinex=0

  • Structure of clay minerals Structure of clay minerals

    Definition in Clay Mineralogy (Bailey, 1980)

    Tetrahedron structure

  • Structure of clay minerals Structure of clay minerals

    Definition in Clay Mineralogy (Bailey, 1980)

    Three ways of tetrahedral sheet

  • Structure of clay minerals Structure of clay minerals

    Definition in Clay Mineralogy (Bailey, 1980)

    Octahedron structure

  • Structure of clay minerals Structure of clay minerals

    Octahedral sheet Six coordination number

    Divalent cations (Mg2+) : Three of every octahedral sites are occupied

    : Trioctahedral

    Trivalent cations (Al3+) : Two of every octahedral sites are occupied

    : Dioctahedral

    Trioctahedral & dioctahedral sheet

  • Structure of 1:1 type clay minerals Structure of 1:1 type clay minerals

    1:1 layer structure consists of a unit made up of one octahedral &

    one tetrahedral sheet, with the apical O2- ions of the tetrahedral

    sheets being shared with the octahedral sheet.

    Kaolin and serpentine group

  • Structure of 2:1 type clay minerals Structure of 2:1 type clay minerals

    Octahedral sheet

    2:1 layer structure consists of two tetrahedral sheet with one bound to

    each side of an octahedral sheet.

    Smectite, micas, pyrophyllite, and vermiculite etc.

  • Equipment for research of clay mineralsEquipment for research of clay minerals

    X-ray Diffractometer

    Thermal Analyser

    FTIR

    SEM

    TEM

    EPMA

    Qualitative and quantitative analysis of clay minerals

    Study on the crystal structure

    Study on the mineral chemistry

    Study for the utilization of clay minerals

  • Properties of clay mineralsProperties of clay minerals

    Permanent negative charge ( 2:1 clay minerals)

    - By isomorphic substitution in octahedral and tetrahedral site [ octahedral site: Al 3+ (Fe 3+)Fe 2+, Ca 2+, Mg 2+ ][ tertrahedral site: Si 4+ Al 3+ , Fe 3+ ]

    pH dependent charge or edge charge (1:1 clay minerals)

    - Broken, structural defect (terraces, kinks, holes)

    - react with water molecules to form surface hydroxyl group

    aluminol and silanol functional group

  • Properties of clay mineralsProperties of clay minerals

    Negative Charge : Cation Exchange Capacity (CEC)

    : High Adsorption Capacity of Heavy Metals

    & Cationic nuclides

    Mineral type CEC (cmol/kg)

    Kaolinite 3-15 Halloysite (2H2O)

    5-10

    Halloysite (4H2O)

    40-50

    Zeolite 100-300 Diocahedral vermiculite 10-150 Trioctahedral vermiculite 100-200 Chlorite 10-40 Biotite 10-40 Smectite 80-150

  • Properties of clay mineralsProperties of clay minerals

    High Surface Area : high adsorption capacity

    Surface area(cm2/g) Mineral type BET EGME

    Montmorillonite 35 ~ 48 810 Kaolinite 5 ~ 9 48 Halloysite 76-173 Atapulgite 50 ~ 83 Illite 89 ~ 112 193 Talc 2.4 ~ 5.8 7 Vermiculite 350 Hectorite 461

    EGME

    Ethylene Glycol

    Monoethyl Ether

    High Refractoriness : SK

  • Properties of clay mineralsProperties of clay minerals

    High Viscosity

    Mineral type Viscosity (cP) : 10% solution

    Bentonite 10-30 Pyrophyllite 1-1.5 Kaolin 1-1.2 Sericite 1-1.2

    High Expansion & Swelling

    Colloidal property

    Hydrophyllic property : well dispersed in the water solution

    Very easily hydrated and dehydrated

    High plastic property : important property of ceramic materials

  • Classic UtilizationClassic Utilization

    Ceramics : pottery, sanitary ware, refractory brick, tile etc.

    : kaolin, pyrophyllite, illite(sericite)

    PlasticPlasticMaterialsMaterials

    RefractoryRefractoryMaterialsMaterials Flux MaterialFlux Material

    Mixing, Mixing, Molding,Molding,Drying, SinteringDrying, Sintering

  • Classic UtilizationClassic Utilization

    Filler : paper, plastic and rubber (kaolinite, pyrophyllite)

    Cosmetics : kaolinite, smectite, illite, talc

    Glass fiber : pyrophyllite, dickite

    Civil engineering (water barrier & stablizer) : bentonite

    (smectite)Foundry : bentonite (smectite)

    Agricultural fertilizer : pyrophyllite, kaolinite etc.

    Environmental barrier : backfill material of waste disposal site

    : artificial barrier of nuclear disposal site

  • Classic UtilizationClassic Utilization

    Best Clay MineralsBest Clay Minerals ? ? for Environmental Remediation or Treatment for Environmental Remediation or Treatment

  • BentoniteBentonite

    Industrial ore composed of smectite (mainly montmorillonite)

    MontmorilloniteR+0.33 (Al1.67Mg0.33)Si4O10(OH)2Expandable interlayer Exchangeable cations in interlayer high adsorption capacity

    Pre-purification Post-purification

    Waste water purification

    - precipitation of phosphates- sorption of heavy metals- purification of sewage plants: nitrogen and ammonium

    gases

  • BentoniteBentonite

    Liner of Waste Disposal Site ( Prevention of leachate)

  • BentoniteBentonite

    Nuclear Waste Disposal Site

    Radionuclide transport barrier : adsorption of nuclides

  • New Field of Clay Minerals

  • Recent New Field of Clay Minerals ?Recent New Field of Clay Minerals ?

    Modification of Clay Minerals

    Pillared ClayOrganoclay

    Organo-modified clay

    Purified clay(Ca-type clay)

    + + ++

    + + +

    - - - -

    - - -

    H2O

    Na+Organic

    substances

    H2O

    CaOH OH

    -

    CaOH OH

    -

    --Na

    Na

    OH

    OHOH

    OH

    OH

    OH

    -

    --

    -

    Preparation ofNano-composite

  • What is Organoclay ?What is Organoclay ?

    Modification of Clay Minerals

    Pillared Clay

    Organic chemicals can be adsorbed on the clay

    surface and interlayer.

    Compound of clay mineral and organic chemicals

    It is manufactured by the reaction between clay and chemicals.

  • OrganoclayOrganoclay

    Modification of Clay Minerals Commonly used clay mineral : smectite

    Expandable Interlayer & high charge

  • Organo-modified mineralsOrgano-sericiteOrgano-zeolite

    Organo-montmorillonite

    Different mineral types

    Different surfactants (chemicals)

    Characteristics of organo-modified minerals manufactured by different minerals and chemicals

  • Organo-modified mineralOrgano-modified mineral

    2 12 22 32 42

    2 Theta

    0

    2000

    4000

    6000

    8000

    Inte

    nsity

    (cou

    nts

    / sec

    ond)

    S10.05 (001)

    S5.03(002)

    M

    M M M

    M M

    Mo12.5(001)

    S : Sericite C : Clinoptilolite M : Mordenite Mo : MontmorilloniteCT : Opal-CT

    C

    Mo(002)

    Mo(020)

    CT

    Mo(005)

    Mo(006)

    S S

    S

    S

    S S

    S S

    S

    S S

    C

    C

    C

    C C C C C

    C

    Hyamine 1622R

    Benzyldimethyltetradecylammonium (BDTDA)

    Benzyltrimethylammonium (BTMA)

    5

    Three minerals Three

    Chemicals

  • Organo-montmorilloniteOrgano-montmorillonite

    Hyamine

    NO

    O

    N

    N

    BDTDA (Benzyldimethyltetradecylammonium)

    BTMA (Benzyltrimethylammonium)

    0 50 100 150 200 250 300 350 400 450

    Exchanging amount compared to CEC (%)

    0

    50

    100

    150

    200

    250

    300

    Actu

    al e

    xcha

    nged

    am

    ount

    com

    pare

    d to

    CEC

    (%)

    12.5

    22.9

    103%

    27.314.1

    27.5

    14.0

    14.1

    191%

    213%

    239%

    2 2 4 6 8 4 6 8 2 4 6 8 10

    Na-montmorillonite

    10 10

    27.9

    19.19

    15.9429.51

    16.02

    30.68

    16.27 14.9

    HYAMINE-MONTMORILLONITE

    BDTDA-MONTMORILLONITE

    BTMA-MONTMORILLONITE

    199%

    238%

    262%

    40%

    60%

    78%

    89%

    93%

    96%

    97%

    Non-treated

    103%

    Non-treated

    30.84

    2 THETA

    0

    4000

    8000

    12000

    16000

    20000

    INTE

    NSI

    TY (C

    OU

    NTS

    / S

    ECO

    ND

    )

    XRD pattern of Hyamine-. BDTDA, and BTMA-montmrorillonite with increasing chemicals : the interlayer(d001) is gradually expanded to 27.9, 30.8 and 14.9.

    Adsorption capacity of three chemicals into montmorilloniteBDTDA and Hyamine show the strong interlayer expansion and the excellent

    adsorption into montmorillonite.

  • Adsorption behaviors Adsorption behaviors

    BDTDA-MONT

    HYAMINE-MONT

    BTMA-MONT

    mmol Surfactant / L

    Am

    ount

    ads

    orbe

    d (

    cmol

    / kg

    )

    BDTDA-Zeolite

    BDTDA -Sericite

    Hyamine-Zeolite

    Hyamine-Sericite

    BTMA-Zeolite

    BTMA-Sericite

    0.0 0.5 1.0 1.5 2.0 2.5

    Equilibrium concentration (mmol / L)

    0

    5

    10

    15

    20

    25

    Amou

    nt a

    dsor

    bed

    (cm

    ol /

    kg)

    Adsorption isotherm curves of several organomodified minerals Of them, BDTDA and Hyamine-montmorillonite show the strong and stable adsorption into montmorilloniteSo, montmorillonite is the best mineral & BDTDA is the one of the best chemicals for the manufacturing the organo-minerals.

  • Organo-modified montmorillonite

    Most economic chemicals

    BDTDA (160 US$ / 50g)

    HDTMA (286 US$ / 50g)

    CP (77 US$ / 500g)

    To investigate the adsorption capacity and

    behavior of CP exchanged smectite

  • Organic chemicals Organic chemicals

    Modification of Clay Minerals Organic cations : Quaternary ammonium cations

    II . N a m e A b b rev ia tion S tru ctu re M r (ch lo r id e sa lt)

    H ex ad ecy l- tr im eth y l-

    am m on iu m H D T M A +

    3 2 0 .0 1

    C ety lp y r i- d in iu m (H ex ad ecy lp -r id in iu m )

    C P +

    3 5 8 .0 1

    B en zy ld im et-h y lte tra d ecy l- am m o n iu m

    B D T D A +

    3 6 8 .0 5

    CP is firstly studied in my research

    Journal of Clay Minerals (2005)

  • 0 4 8 12 16 20

    mmol CP / l

    0

    50

    100

    150

    200

    250

    300C

    P ( c

    mol

    / kg

    )

    0 4 8 12 16 20

    mmol CP / l

    0

    50

    100

    150

    200

    250

    300

    CP

    ( cm

    ol /

    kg )

    CP Na smectite CP Ca smectite

    Adsorption isotherm curves of CP-smectite.CP shows the excellent adsorption into smectite like HDTMA

    and BDTDA-smectite : L type isotherm

    Adsorption BehaviorAdsorption Behavior

  • HDTMA - Ca smectite

    2 4 6 8 10

    2Theta (degree)

    0

    2000

    4000

    6000

    8000In

    tens

    ity (c

    ount

    s/se

    cond

    )

    20%40%60%80%

    100%150%200%

    250%300%350%

    400%

    Non-treated15.02

    16.2915.25

    21.42

    22.4622.46

    31.64 20.06

    37.09 19.66

    38.38 19.75

    38.5419.70

    12.93

    19.57

    20.06

    13.06

    12.78

    38.88

    39.58

    20%

    40%

    60%

    Non-treated

    80%100%150%200%250%

    300%

    350%400%

    19.7919.93

    13.20

    40.12

    2 4 6 8 10

    2Theta (degree)

    0

    4000

    8000

    12000

    16000

    Inte

    nsity

    (cou

    nts

    / sec

    ond)

    HDTMA - Na smectite

    39.06

    19.79

    19.79

    12.76

    13.40

    12.74

    15.5416.94

    20.8223.11

    29.52 20.11 12.51

    38.14

    12.85

    38.38

    12.95

    19.97

    39.40

    XRD patterns of HDTMA-smectite exchanged with different HDTMA concentration to check the change of smectite interlayer.

    With increasing of HDTMA amount, the interlayer is expanded to39-40 . Excellent adsorption and sequential adsorption in the smectite interlayer

    d(001) d(002) d(003)..

    Interlayer expansion of HDTMA-smectiteInterlayer expansion of HDTMA-smectite

  • 2 4 6 8 102 Theta ( degree )

    0

    4000

    8000

    12000

    16000

    Inte

    nsity

    ( co

    unts

    / se

    cond

    )

    Nontreated

    20%(18.8%)

    40%(39.2%)

    60%(58.6%)

    80%(79.9%)100%(99.7%)140%(138.3%)

    189%(170.2%)220%(183.9%)260%(194.7%)300%(198.3%)

    340%(202.4%)

    380%(216.5%)

    420%(222.2%)

    12.7

    15.3

    16.1

    16.122.422.6

    23.221.940.4

    40.521

    40.721

    40.7

    40.7

    40.7

    40.9

    40.9

    20.7

    20.7

    20.6

    20.820.8

    CP-Na smectite

    2 4 6 8 102 Theta (degree)

    0

    2000

    4000

    6000

    8000

    Inte

    nsity

    (cou

    nts

    / sec

    ond)

    Nontreated 20%(18.8%)

    40%(39.2%)

    60%(58.6%)

    80%(79.9%)

    100%(99.7%)

    140%(138.3%)

    180%(170.2%)220%(183.9%) 260%(194.7%)

    300%(198.3%)

    340%(202.4%)380%(216.5%)

    420%(222.2%)

    15.02

    16.08

    15.40

    21.12

    22.1822.21

    20.8240.30

    20.5839.76

    39.7639.09

    40.6739.58

    40.6740.15

    20.29

    20.75

    20.29

    20.67

    20.2820.48

    CP - Ca smectite

    Interlayer expansion of CP-smectiteInterlayer expansion of CP-smectite

    XRD patterns of CP-smectite exchanged with different CP concentration. It shows the strong interlayer expansion and adsorption like HDTMA.

    So CP can be used for the economic organosmectite.

  • Whats property ?Whats property ?

    Modification of Clay Minerals

    Pillared Clay

    Hydrophyllic surface is changed to organophyllic nature

    Hardness

    Viscosity

    Flocculation (dispersion behavior)

    Sorption capacity

    Structure (Interlayer expansion)

  • Smectite (Bentonite) Organo-smectite

    0

    2

    4

    6

    8

    10

    12

    pHHDTMA-bentonite

    BDTDA-bentonite

    CP-bentonite

    0

    2

    4

    6

    8

    10

    12

    pH

    Na-be. Ca-be.Non-treated

    pHpH

  • Volume expansion caused by bonding between interlayer of montmorillonite and water molecules.

    0

    5

    10

    15

    20

    25

    30Sw

    ellin

    g (m

    l/2g)

    Na-be. Ca-be.Non-treated0

    5

    10

    15

    20

    25

    30

    Swel

    ling

    (ml/2

    g)

    HDTMA-bentonite

    BDTDA-bentonite

    CP-bentonite

    SwellingSwelling

  • 0

    2

    4

    6

    8

    10

    12

    visc

    osity

    ( m

    Pa

    s )

    HDTMA-bentonite

    BDTDA-bentonite

    CP-bentonite

    0

    2

    4

    6

    8

    10

    12

    Visc

    osity

    (mPa

    s)

    Na-be. Ca-be.Non-treated

    ViscosityViscosity

  • Turbidity measurement Na-smectite : steady Ca-smectite : flocculatoin Organo-smectite : fast and strong flocculation

    Time (Minutes)

    400

    600

    800

    1000

    1200

    1400

    1600

    1800Tu

    rbid

    ity (N

    TU)

    L E G E N D Non - treated Na - bentoniteCa - bentonite

    0 1 5 10

    0 10 20 30 40 50 60Time (min.)

    0

    200

    400

    600

    800

    1000

    1200

    Turb

    idity

    (NTU

    )

    LEGENDHDTMABDTDACP

    Flocculation and dispersion behaviorFlocculation and dispersion behavior

  • Intercalation model of large molecules exchanged smectitesuch as HDTMA-, BDTDA, and CP-smectite.

    40 (10+15+15)

    Adsorption Model Adsorption Model

    It is explained by the total length of expanded interlayer Double layered paraffin structure

  • 5 10 15 20 25 30 35 40 45

    2Theta (degree)

    0

    400

    800

    1200

    1600

    2000

    Inte

    nsity

    (cou

    nts

    / sec

    ond)

    2

    No heating

    90 C Heating

    250 C Heating

    400 C Heating

    600 C Heating

    890 C HeatingHDTMA - smectite

    HDTMA-smectite 250 C > : HDTMA begins to decompose. 400 C : HDTMA is completely decomposed. 600 C > : smectite structure begins to decompose. 890 C : complete decomposition of smectite structue

    19.4

    13.8

    12.8

    12.6

    0 500 1000

    Temp.( C)

    -20

    0

    20

    40

    60

    20

    24

    28

    32

    DTAuv

    TGAmgHDTMA - smectite

    10.34mg34.4%

    93.13 C268.84 C

    889.36 C

    606.94 C

    403.60 C

    Thermal stability of HDTMA-smectiteThermal stability of HDTMA-smectite

  • BDTDA-smectite 250 C > : BDTDA begin to decompose. 400 C : BDTDA is completely decomposed. 550 C > : smectite structure begins to decompose.

    5 10 15 20 25 30 35 40 45

    2Theta (degree)

    0

    400

    800

    1200

    1600

    2000

    Inte

    nsity

    (cou

    nts

    / sec

    ond)

    2

    No heating

    90 C Heating

    250 C Heating

    400 C Heating

    600 C Heating

    890 C Heating

    BDTDA - smectite

    24.6

    14.0

    12.5

    10.9

    0 500 1000

    Temp.( C)

    -20

    0

    20

    40

    60

    20

    24

    28

    32

    DTAuv

    TGAmg

    11.154mg35.59%

    89.87 C248.74 C

    402.98 C

    BDTDA - smectite

    554.57 C

    Thermal stability of BDTDA-smectiteThermal stability of BDTDA-smectite

  • Thermal stability of CP-smectite

    CP-smectite 250 C > : BDTDA decomposed 430 C : completely decomposed 600 C > : smectite structure

    decomposed 5 10 15 20 25 30 35 40 45

    2Theta (degree)

    0

    400

    800

    1200

    1600

    2000

    Inte

    nsity

    (cou

    nts

    / sec

    ond)

    2

    No heating

    90 C Heating

    250 C Heating

    400 C Heating

    600 C Heating

    890 C HeatingCP-smectite

    19.4

    14.0

    12.7

    10.9

    0 500 1000

    Temp.( C)

    -20

    0

    20

    40

    60

    16

    20

    24

    28

    32

    DTAuv

    TGAmgCP - smectite

    10.78 mg36%

    434.5 C

    90.65 C

    262.3 C

    609.73 C

    896.13 C

  • Thermal stability of BDTDA-smectiteThermal stability of BDTDA-smectite

    Generally HDTMAGenerally HDTMA--, BDTDA, BDTDA--, and CP, and CP--smectitesmectite, , their thermal decomposition begins at 250 their thermal decomposition begins at 250 CCand ends at around 400 and ends at around 400 C. C.

  • Utilization of organoclayUtilization of organoclay

    - 1950 ~ : soil amendment, paint, paper, lubricant, grease, flocculant, adsorbent, cosmetics, medicines etc.

    - Recent (G. R. Alther, 1998) : Removal of organic contaminantsM ortland

    (1970) G. Alther (1998)Rem ovedpollutants

    Lubricants M anufacturing process w ater Oil and grease

    Paper Degreasing operation Oil and grease

    Cosmetics Electroplating Heavy metals

    Paint M etal casting Dye penetrate

    Soil amendment Ground w ater and drinkingw ater

    Oil and greaseHeavy metals

    BTEX

    Pentachlorophenol

    Wood treating Creosote

    Pigment production Organic pigments

    Dry cleaning Perchloroethylene

  • Utilization of organoclay ? Utilization of organoclay ?

    AC H50MH100M

    H200MBD50M

    BD100MBD200M

    BT50MBT100M

    BT200MNa-M

    ZEOH-ZEO

    BD-ZEOBT-ZEO

    SERH-SER

    BD-SERBT-SER

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    0.0

    10.0

    20.0

    30.0

    40.0

    Amou

    nt s

    orbe

    d (g

    / kg

    )

    0.0

    10.0

    20.0

    30.0

    40.0

    Phenol

    Benzene

    Toluene

    Hyamine- &

    BDTDA-Mont.

    Excellent

    adsorbents of

    Organic

    pollutants

    (BTEX)

    This histogram shows sorption capacity of organic pollutants (phenol, benzene and toluene) by manufactured organo-modified minerals.

  • Less than 4~5% nanocomposite organoclayis mixed with major materials for the

    light and strong parts of cars and cameras.

    Ablation performance.

    Environmental stability, etc.

    Improvement of mechanical properties (strength and thermal stability).

    Flammability resistance.

    Recent New Utilization : Nanocomposite organoclayRecent New Utilization : Nanocomposite organoclay

  • Thank you for your attention !