nexus overview poster ipls 2014 - compadre › ipls › abstracts › files ›...

1
Two students discussing the process of ATP hydrolysis (ATP + H2O ADP + Pi) make the following comments: Justin: “The O-P bond in ATP is called a ‘high-energy bond’ because the energy released when ATP is hydrolyzed is large. That released energy can be used to do useful things in the body that require energy, like making a muscle contract.” Kim: “I thought chemical bonds like the O-P bond in ATP could be modeled by a potential energy curve like this, where r is the distance between the O and the P. If that’s the case, then breaking the O-P bond in ATP would require me to input energy. I might not have to input much energy to break it, if that O-P happens to be a weak bond, but shouldn’t I have to input at least some energy?” How did Kim infer from the PE graph that breaking the O-P bond requires an input of energy? Who’s right? Or can you reconcile their statements? NEXUS/Physics: Rethinking Physics for Biology and Premed Students Edward F. Redish 1 , Chris Bauer 3 , Karen Carleton 1 , Todd, Cooke 1 , Melanie Cooper 4 , Catherin Crouch 5 , Benjamin W. Dreyfus 1 , Benjamin D. Geller 1 , Julia Gouvea 1,2 , John Gianini 1 , Mike Klymkowsky 6 , Wolfgang Losert 1 , Kim Moore 1 , Joelle Presson 1 , VashV Sawtelle 1 , Katrina Thompson 1 , Chandra Turpen 1 , Royce Zia 7 1 University of Maryland, College Park 2 University of California, Davis 3 University of New Hampshire 4 Michigan State University 5 Swarthmore University 6 University of Colorado 7 Virginia Tech A Team of Interdisciplinary Experts NEXUS/Physics: Using a Research & Design Approach to Build an Interdisciplinary Course References [1] NRC: Commi‘ee on Undergraduate Biology EducaVon to Prepare Research ScienVsts for the 21st Century, Bio 2010: Transforming Undergraduate Educa8on for Future Research Biologists (Natl Academy Pr, 2003). [2] Scien8fic Founda8ons for Future Physicians: Report of the AAMCHHMI Commi‘ee (AAMC/HHMI, 2009). [3] Watkins, Coffey, Redish, & Cooke, “Disciplinary AuthenVcity: Enriching the reform of introductory physics courses for life science students”, Phys. Rev. STPER, 8, 010112. [4] Meredith & Redish, ReinvenVng Physics for Life Science Majors, Physics Today 66 (2013) 38. [5] (authors of this poster) “NEXUS/Physics: An interdisciplinary repurposing of physics for biologists,” to be published in Am. J. Phys. (summer 2014) [6] Svoboda, Sawtelle, Geller, & Turpen, “A framework for analyzing interdisciplinary tasks: ImplicaVons for student learning and curricular design,” CBELSE 12 (2013) 187. [7] Moore, Gianini, & Losert, “Toward be‘er physics labs for future biologists,” to be published in Am. J. Phys. (summer 2014) [8] Dreyfus, Geller, Gouvea, Sawtelle, Turpen & Redish, “Chemical energy in an introductory course for the life sciences,” Am. J. Phys. (2014) in press Acknowledgments This work is supported by the NSF Graduate Research Fellowship (DGE 0750616), NSFTUES DUE 1122818, and the HHMI NEXUS grant. Many thanks to the University of Maryland Physics EducaVon Research Group (PERG) and Biology EducaVon Research Group (BERG). Contact: [email protected] Change of Topics from a TradiVonal Introductory Physics Class Goals for the Course An Examples of New Content: Understanding Chemical Bond Energy [8] Coherenceseeking between Physics topics (“crossing chapters”) Physics, biology, and chemistry Physics and everyday knowledge (“feet on the ground”) MetarepresentaVonal competence RepresentaVon translaVon Choosing when to make representaVons How representaVons display informaVon Building mathemaVcal competence: Thinking with mathemaVcs Modeling Being explicit about modeling and models System schema ExplicaVng the value of “toy models” Redesign the physics for biologists course so that it has authenVc value for biology students – in both content and skill development [3][4][5] PosiVon the course within the biology curriculum Assume will be taken in the second year Chem, Bio, and Calculus as prerequisites InnovaVve content focused on the need to support student learning View the development as an iteraVve process where research with student response to the curriculum informs what we do in the next iteraVon [6] Maintain criVcal components – quanVficaVon, mathemaVcal modeling, mechanism, mulVple representaVons and coherence (among others) Development Team OffCampus Collaborators OnCampus Discussants 7 Physicists 4 Biologists 3 Biology EducaVon Specialists 3 Physicists 4 Biologists 2 Chemists 3 EducaVon Specialists (Phys, Bio, Chem) 7 Physicists 1 Biologist 2 Chemistry EducaVon Researchers Expand the treatment of thermodynamics Include atomic and molecular examples from the beginning Eliminate rotaVons, angular momentum and magneVsm Light Intro Waves Thermo Electricity Exam 1 Ex 2 Light How a Kinesin walks Membrane 1 Nernst equaVon Diatomic VibraVons IntroducVon to opVcs DNA SalVng Out What’s “free” about free energy? Membrane 2 Vision Pulses and SHO Fields and potenVals Capacitance in Nerve Cells DNA Shielding Enthalpy of simple molecules Evap. Membrane Polymer folding / EvoluVon Micro scope Modeling chromophores DNA and photons Biologylinked Group ProblemSolving Tasks Biology components of HW Assignments Macro KinemaLcs Math Energy Thermodynamics Dynamics Dynamics Exam 1 Exam 2 Scaling a Worm MoVon of a vesicle Exam Review Arteries / Speed of blood PIP2 Water coat force / DNA charge Wood pecker Exam Review Moving a Para mecium Blood and Breath Diffusion Muscle Contract / Thermal chemical Bound States / Deeper Well None Cat & Antelope Protein Unfolding Gas properVes & pressure Force Problems Microstates Temp. RegulaVon Energy Skate Park Biology components of HW Assignments Biologylinked Group ProblemSolving Tasks Semester 1 Semester 2 Include discussions of kineVc theory, diffusion, and randomness Responding to a Call for Change Biology students are becoming a significant proporVon of the service load of a physics department – enough that we should provide a course that meets their needs. Biologist are calling for [1][2] Be‘er development of scienVfic competencies More coherence among the disciplines Project NEXUS – A mulVuniversity demonstraVon project created by HHMI to provide science courses for a biology major Physics (UMCP) Chemistry (Purdue) Math for Bio (UMBC) Capstone Synthesis (Miami U) New Laboratories [7] Develop student research skills Focus on Sensemaking Focus on Experimental Design Focus on the Value of QuanVficaVon Convey a modern view of physics Use modern equipment and tools Foster interdisciplinary transfer “What biology do you learn from a physical measurement?” For more info: hNp://nexusphysics.umd.edu The chemical reacVon of ATP hydrolysis is the primary source of energy in basic biological metabolic processes. Pusng in a small amount of energy allows one to break a phospate bond in ATP. That phosphate then bonds with the surrounding water, forming a strong bond and releasing usable energy. Biology students all know that “ATP is the currency of biological energy” but oten have a weak understanding of mechanism. Many think bonds “store” energy and release it when broken (“Piñata model”). We build the connecVon from basic physics concepts to help them understand chemical bonding and exothermic reacVons in a more effecVvely. Exam essay ques+on How Big is a Protein The DNA spring Electric forces: H bonding Electro phoresis Cell polarizaVon (diffusion) Fluid flow in arteries Exam Review Exam Review Moving through a cell /Listeria Random walk and entropy Photosyn thesis Spectroscopy Light/ma‘er interacVon Electric circuits Membrane model VibraVons Fourier construcVon of wave shapes

Upload: others

Post on 25-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NEXUS Overview Poster IPLS 2014 - ComPADRE › IPLS › abstracts › files › NEXUSOverviewPoster_I… · Two students discussing the process of ATP hydrolysis (ATP + H 2O ADP +

Two students discussing the process of ATP hydrolysis (ATP + H2O ADP + Pi) make the following comments: Justin: “The O-P bond in ATP is called a ‘high-energy bond’ because the energy released when ATP is hydrolyzed is large. That released energy can be used to do useful things in the body that require energy, like making a muscle contract.” Kim: “I thought chemical bonds like the O-P bond in ATP could be modeled by a potential energy curve like this, where r is the distance between the O and the P. If that’s the case, then breaking the O-P bond in ATP would require me to input energy. I might not have to input much energy to break it, if that O-P happens to be a weak bond, but shouldn’t I have to input at least some energy?” How did Kim infer from the PE graph that breaking the O-P bond requires an input of energy? Who’s right? Or can you reconcile their statements?

NEXUS/Physics:  Rethinking  Physics  for  Biology  and  Pre-­‐med  Students  Edward  F.  Redish1,  Chris  Bauer3,  Karen  Carleton1,  Todd,  Cooke1,  Melanie  Cooper4,  Catherin  Crouch5,  Benjamin  W.  Dreyfus1,  Benjamin  D.  Geller1,  Julia  Gouvea1,2,      John  Gianini1,  Mike  Klymkowsky6,  Wolfgang  Losert1,  Kim  Moore1,    Joelle  Presson1,  VashV  Sawtelle1,  Katrina  Thompson1,  Chandra  Turpen1,  Royce  Zia7    

 1  University  of  Maryland,  College  Park      2  University  of  California,  Davis      3  University  of  New  Hampshire          4  Michigan  State  University    5  Swarthmore  University      6  University  of  Colorado      7  Virginia  Tech      

A  Team  of  Interdisciplinary  Experts   NEXUS/Physics:  Using  a  Research  &  Design  Approach  to  Build  an  Interdisciplinary  Course  

References  [1]  NRC:  Commi`ee  on  Undergraduate  Biology  EducaVon  to  Prepare  Research  ScienVsts  for  the  21st  Century,  Bio  2010:  Transforming  Undergraduate  Educa8on  for  Future  Research  Biologists  (Natl  Academy  Pr,  2003).    [2]  Scien8fic  Founda8ons  for  Future  Physicians:  Report  of  the  AAMC-­‐HHMI  Commi`ee  (AAMC/HHMI,  2009).  [3]  Watkins,  Coffey,  Redish,  &  Cooke,  “Disciplinary  AuthenVcity:  Enriching  the  reform  of  introductory  physics              courses  for  life  science  students”,  Phys.  Rev.  STPER,  8,  010112.      [4]  Meredith  &  Redish,  ReinvenVng  Physics  for  Life  Science  Majors,  Physics  Today  66  (2013)  38.  [5]  (authors  of  this  poster)  “NEXUS/Physics:  An  interdisciplinary  repurposing  of  physics  for  biologists,”              to  be  published  in  Am.  J.  Phys.  (summer  2014)  [6]  Svoboda,  Sawtelle,  Geller,  &  Turpen,  “A  framework  for  analyzing  interdisciplinary  tasks:  ImplicaVons              for  student  learning  and  curricular  design,”  CBE-­‐LSE  12  (2013)  187.  [7]  Moore,  Gianini,  &  Losert,  “Toward  be`er  physics  labs  for  future  biologists,”                to  be  published  in  Am.  J.  Phys.  (summer  2014)  [8]  Dreyfus,  Geller,  Gouvea,  Sawtelle,  Turpen  &  Redish,  “Chemical  energy  in  an  introductory  course            for  the  life  sciences,”  Am.  J.  Phys.  (2014)  in  press    

Acknowledgments  This  work  is  supported  by    the  NSF  Graduate  Research  Fellowship  (DGE  0750616),  NSF-­‐TUES  DUE  11-­‐22818,  and  the  HHMI  NEXUS  grant.    Many  thanks  to  the  University  of  Maryland  Physics  EducaVon  Research  Group  (PERG)  and  Biology  EducaVon  Research  Group  (BERG).    Contact:    [email protected]  

Change  of  Topics  from  a  TradiVonal  Introductory  Physics  Class   Goals  for  the  Course    

An  Examples  of  New  Content:  Understanding  Chemical  Bond  Energy  [8]  

Coherence-­‐seeking  between  •  Physics  topics  (“crossing  chapters”)  •  Physics,  biology,  and  chemistry  •  Physics  and  everyday  knowledge  (“feet  on  the  ground”)  

 Meta-­‐representaVonal  competence  

•  RepresentaVon  translaVon  •  Choosing  when  to  make  representaVons  •  How  representaVons  display  informaVon  •  Building  mathemaVcal  competence:  

Thinking  with  mathemaVcs    

Modeling  •  Being  explicit  about  modeling  and  models  •  System  schema  •  ExplicaVng  the  value  of  “toy  models”  

•  Redesign  the  physics  for  biologists  course  so  that  it  has  authenVc  value  for  biology  students  –  in  both  content  and  skill  development  [3][4][5]  

•  PosiVon  the  course  within  the  biology  curriculum  •  Assume  will  be  taken  in  the  second  year  •  Chem,  Bio,  and  Calculus  as  prerequisites  

•  InnovaVve  content  focused  on  the  need    to  support  student  learning    

•  View  the  development  as  an  iteraVve  process  where  research  with  student  response  to  the  curriculum    informs  what  we  do  in  the  next  iteraVon  [6]  

•  Maintain  criVcal    components  –  quanVficaVon,  mathemaVcal  modeling,  mechanism,  mulVple  representaVons  and  coherence  (among  others)  

Development  Team    

Off-­‐Campus  

Collaborators  On-­‐Ca

mpus  D

iscussa

nts  

•  7  Physicists  •  4  Biologists  •  3  Biology  EducaVon  

Specialists  

•  3  Physicists  •  4  Biologists  •  2  Chemists  •  3  EducaVon  

Specialists  (Phys,  Bio,  Chem)  

•  7  Physicists  •  1  Biologist  •  2  Chemistry  

EducaVon  Researchers  

Expand  the  treatment  of  thermodynamics  

Include  atomic  and  molecular  examples  from  the  beginning  

Eliminate  rotaVons,  angular  momentum  and  magneVsm  

Light  Intro   Waves  Thermo   Electricity   Exam  1   Ex  2   Light  

How  a  Kinesin  walks  

Membrane  1  Nernst  equaVon  

 

Diatomic  VibraVons  

IntroducVon  to  opVcs  

DNA  SalVng  Out  

What’s  “free”  about  free  energy?  

Membrane  2   Vision  Pulses  and  

SHO  

PE  analogs  for  chem.  

rxns  

Fields  and  potenVals  

Capacitance  in  

Nerve  Cells  

DNA  Shielding  

Enthalpy  of  simple  

molecules  

Evap.  Membrane  

Polymer  folding  /    EvoluVon  

Micro-­‐  scope  

Modeling  chromophores  

DNA  and  photons  

 Biology-­‐linked  Group  Problem-­‐Solving  Tasks  

Biology  components  of  HW  Assignments  

Macro  KinemaLcs  Math   Energy   Thermodynamics  Dynamics   Dynamics  Exam  1   Exam  2  

Scaling  a  Worm    

MoVon  of  a  vesicle  

Exam  Review  Arteries  /  Speed  of  blood  

PIP2  Water  coat  force  /  DNA  charge  

Wood-­‐pecker  

Exam  Review  

Moving  a  Para-­‐

mecium  

Blood  and  Breath  

Diffusion  

Muscle  Contract  /  Thermal-­‐chemical  

Bound  States  /  

Deeper  Well  None  

Cat  &  Antelope  

Protein  Unfolding  

Gas  properVes  &  pressure  

FricVon  Problems  

Force  Problems  

Micro-­‐states  Temp.  

RegulaVon  Energy  Skate  

Park  

Biology  components  of  HW  Assignments  

Biology-­‐linked  Group  Problem-­‐Solving  Tasks  

Semester  1  

Semester  2  

Include  discussions  of  kineVc  theory,  diffusion,  and  randomness  

Responding  to  a  Call  for  Change  

•  Biology  students  are  becoming  a  significant  proporVon  of  the  service  load  of  a  physics  department  –  enough  that  we  should  provide  a  course  that  meets  their  needs.  

•  Biologist  are  calling  for  [1][2]  •  Be`er  development  of    

scienVfic  competencies  •  More  coherence  among  the  disciplines  

•  Project  NEXUS  –  A  mulV-­‐university  demonstraVon  project  created    by  HHMI  to  provide  science  courses    for  a  biology  major  •  Physics    (UMCP)  •  Chemistry  (Purdue)  •  Math  for  Bio  (UMBC)  •  Capstone  Synthesis  (Miami  U)  

New  Laboratories  [7]  

•  Develop  student  research  skills  •  Focus  on  Sensemaking      •  Focus  on  Experimental  Design  •  Focus  on  the  Value  of  

QuanVficaVon  •  Convey  a  modern  view  of  physics    

•  Use  modern  equipment  and  tools  •  Foster  interdisciplinary  transfer    

•  “What  biology  do  you  learn    from  a  physical  measurement?”  

   

For  more  info:  hNp://nexusphysics.umd.edu  

The  chemical  reacVon  of  ATP  hydrolysis  is  the  primary  source  of  energy  in  basic  biological  metabolic  processes.  Pusng  in  a  small  amount  of  energy  allows  one    to  break  a  phospate  bond  in  ATP.  That  phosphate  then  bonds  with  the  surrounding  water,  forming  a  strong  bond  and  releasing  usable  energy.  

Biology  students  all  know  that  “ATP  is  the  currency  of  biological  energy”  but  oten  have  a  weak  understanding  of  mechanism.  Many  think  bonds  “store”  energy  and  release  it  when  broken  (“Piñata  model”).  We  build  the  connecVon  from  basic  physics  concepts  to  help  them  understand  chemical  bonding  and  exothermic  reacVons  in  a  more  effecVvely.  

Exam  essay  ques+on  

How  Big  is  a  Protein  

The  DNA  spring  

Electric  forces:    

H  bonding  

Electro-­‐phoresis  

Cell  polarizaVon  (diffusion)  

Fluid  flow  in  arteries  

Exam  Review   Exam  Review  

Moving  through  a  cell  /Listeria  

Random  walk  and  entropy  

Photosyn-­‐thesis    

Spectroscopy  Light/ma`er  interacVon  

 

Electric  circuits  

Membrane  model  

VibraVons  

Fourier  construcVon  of  wave  shapes