nickel alloy steel castings

22
NICKEL ALLOY STEEL CASTINGS A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS N O 406 Distributed by NICKEL INSTITUTE Produced by INCO

Upload: others

Post on 05-Dec-2021

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NICKEL ALLOY STEEL CASTINGS

NICKEL ALLOYSTEEL CASTINGS

A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYS

NO 406

Distributed byNICKEL

INSTITUTEProduced byINCO

Page 2: NICKEL ALLOY STEEL CASTINGS

NICKEL ALLOY STEEL CASTINGS

A PRACTICAL GUIDE TO THE USE OF NICKEL-CONTAINING ALLOYSNO 406

Originally, this handbook was published in 1963 by INCO, The International Nickel Company Inc. Today this company is part of Vale S.A.The Nickel Institute republished the handbook in 2021. Despite the age of this publication the information herein is considered to be generally valid.Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice.The Nickel Institute, INCO, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein.

Nickel Institute

[email protected]

Page 3: NICKEL ALLOY STEEL CASTINGS

Location of Data

Steel Type Tables and Figures Page No.

1-2 Ni .............................. Fig. 3 ............................................ 7

2-3 Ni (LC2) ......................... Tables V, XIV; Fig. 3 ........................... 16, 21; 7

3-4 Ni (LC3) ......................... Tables V, XIV; Fig. 3 ........................... 16, 21; 7

3.5 Ni (2300) ........................ Fig. 4 ............................................ 8

4-5 Ni .............................. Fig. 3 ............................................. 7

1.5 Ni-0.7 Cr (3100 & 3140) ............ Table XIII; Fig. 5, 6 ............................. 20; 8, 9

2.5 Ni-1 Cr .......................... Fig. 7 ............................................ 9

1.8 Ni-0.3 Mo (4600) .................. Table XIII; Fig. 8 ................................ 20; 10

Ni-Mn .............................. Table XIII; Fig. 19, 20 ............................ 20; 15

1.6 Ni-0.1 V ......................... Table XIII; Fig. 21 ............................... 20; 15

0.6 Ni-0.6 Cr-0.22 Mo (8600 & 8630) ...... Tables I, XIII; Fig. 9, 10 ...................... 6, 20; 10, 11

0.6 Ni-0.5 Cr-0.25 Mo (8727) ............ Fig. 22 .......................................... 17 0.85 Ni-0.6 Cr-0.5 Mo .................. Fig. 22 .......................................... 17

0.85 Ni-0.6 Cr-0.5 Mo-.07 V-Cu-B ......... Table II .......................................... 11

0.9 Ni-0.65 Cr-0.5 Mo (WC4) ............ Tables VI, XIV .................................. 16, 21 0.8 Ni-0.7 Cr-1.0 Mo (WC5) ............. Tables VI, XIV .................................. 16, 21

1.8 Ni-0.7 Cr-0.3 Mo (4300, 4330 & 4335) . . Tables I, VI, XIII; Fig. 11, 12, 13, 22 ....... 6, 16, 20; 11, 12, 17

1.8 Ni-0.8 Cr-0.4 Mo-0.1 V-1.6 Si (300-M) . .. Table XIV; Fig. 22 ............................... 21; 17 2 Ni-0.8 Cr-0.35 Mo ................... Table XIV ......................................... 21

2.4 Ni-1.2 Cr-0.3 Mo ................... Table XIV; Fig. 14, 22 ......................... 21; 12, 17 3 Ni-1.5 Cr-0.5 Mo (HY-80) .............. Tables Ill, XIII; Fig. 15 ......................... 13, 20; 13 3.2 Ni-1.6 Cr-0.5 Mo (HY-100) ........... Tables 111, XIII .................................. 13, 20

4 Ni-2 Cr-0.4 Mo-0.1 V ................. Table IV; Fig. 16 ................................ 14; 13

1.5 Mn-0.6 Ni-0.6 Cr-0.35 Mo (9500) ...... Table XIII; Fig. 17 ............................... 20; 14 1.5 Mn-1.2 Ni-0.6 Cr-0.35 Mo ............ Fig. 18 .......................................... 14

13 Mn-3.5 Ni (Austenitic) ............... Table VIII .........................•............... 18

Ni-Cr-Mo Weld Metal ................... Tables X, XI, XII ............................ \ ........ 19

Summary of Constructional Nickel Alloy Steels ...... , ............ Table XIII ........................................ 20

Summary of Low-Temperature, Elevated-Temperature, and Abrasion-Resistant Nickel Alloy Steels ................... Table XIV ......................................... 21

Page 4: NICKEL ALLOY STEEL CASTINGS

Nickel Alloy Steel Castings

INTRODUCTION

This bulletin presents data on the mechanical prop­erties of nickel alloy steel castings. Many of the compo­sitions used for castings are quite similar to those of standard wrought types. However, the mechanical properties of castings are not necessarily identical to those in wrought steels of corresponding composition because castings do not receive the benefits of hot working.

The mechanical properties shown in this bulletin were determined largely from standard specimens cut from separately cast 1-inch double keel bars of ASTM and/ or AFS design using good foundry practice. The cases in which particular compositions are capable of meeting test-bar requirements in standard specifica­tions are indicated, otherwise the data should be con­sidered typical and not used for specification purposes.

Melting and casting practice from the foundry view­point are not covered in this bulletin. Such information can be found in several publications listed in the bibliography. 1• 2

SPECIFICATIONS

In the standard specification systems, constructional steel castings usually are specified by mechanical prop­erties with composition and heat treatment optional. Castings designed for more special applications, such as high or low temperatures, usually specify composition and heat treatment as well as mechanical properties. Standard specifications for cast alloy steels include:

American Society for Testing Materials

A 128 Austenitic Manganese Steel Castings. A 148 High Strength Steel Castings for Structural

Purposes. A 217 Alloy Steel Castings for Pressure-Containing

Parts Suitable for High-Temperature Service. A 352 Ferritic Steel Castings for Pressure-Contain­

ing Parts Suitable for Low-Temperature Service.

A 486 Steel Castings for Highway Bridges. A 487 Low Alloy Steel Castings Suitable for Pres­

sure Service. A 488 Qualification of Procedures and Personnel

for the Welding of Steel Castings.

4

American Society of Mechanical Engineers*

SA-217 Specification for Alloy-Steel Castings for Pressure-Containing Parts Suitable for High-Temperature Service.

SA-352 Specification for Ferritic Steel Castings for Pressure-Containing Parts Suitable for Low-Temperature Service.

SA-487 Specification for Low-Alloy Steel Castings Suitable for Pressure Service.

Society of Automotive Engineers

SAEJ435a Automotive Steel Castings.

Government

QQ-S-681 Steel, Cast. MIL-S-15083 (NAVY), Steel, Castings. MIL-S-10026 (ORD), Steel Castings (Centrifugal)

for Gun Tubes. MIL-S-10029 (ORD), Steel Castings for Breech

Rings. MIL-S-11356 (ORD), Steel Armor, Cast, Homo­

geneous Combat-Vehicle Type ( ¼ to 12 inches, inclusive).

MIL-S-12253 (ORD), Steel Castings for Muzzle Brakes.

MIL-S-23008 (SHIPS), Steel, Castings, Alloy, High Yield Strength (HY-80 and HY-100).

MIL-S-46052 (MR), High Strength Low Alloy Steel Castings.

Association of American Railroads

M-201 Steel Castings.

The basic tensile property requirements of the more general specifications (ASTM A 148, SAE J435a, QQ-S-681, MIL-S-15083 and AAR M-201) range from 80,000 to 175,000 psi minimum tensile strength. The remaining specifications cover more specific applica­tions where properties such as toughness and ductility are also major requirements. For example, the mini­mum reduction of area and impact requirements, as related to ranges of yield strength, are shown in Figure 1 for four military specifications for ordnance compo­nents and high-strength alloy steel castings for general applications. The minimum impact requirements for homogeneous cast steel armor at various hardness ranges are shown in Figure 2.

* ASME numbers coincide with ASTM grades with identical technical requirements, except SA is used in place of A.

Page 5: NICKEL ALLOY STEEL CASTINGS

The specifications to which the various cast nickel alloy steels conform are listed in this buleltin in the tables and figures where typical properties are shown.

COMPOSITION AND HARDENABILITY

Although the compositions of cast steels do not fol­low exactly the ranges specified for the AISI-SAE standard wrought steels, they do fall into the same gen­eral alloy types and combinations. It is therefore cus­tomary and convenient to use the AISI-SAE numbers in referring to similar cast compositions. The effects of individual elements on hardenability are basically the same in cast and wrought steels. However, the cast form

of a nominal AISI-SAE type may show slightly higher

hardenability than the wrought form, because of the wider ranges permitted for the alloying elements and the larger grain size typical of the cast material. For

example, in cast steels the manganese content, if not specified as an alloy, usually falls between 0.60 and 1.00 per cent. Generally silicon is between 0.35 and 0.65

per cent with a maximum of 0.80 per cent. It is also common for molybdenum, and sometimes nickel and

chromium, ranges to be somewhat wider in cast than in wrought steels, as illustrated in Table I. Phosphorus and sulfur are specified usually at .05 and .06 per cent maximum, respectively.

80 ~----~---~~--------c---------c------r-------,------.--------, 60

~ ~ 11> .... et -0

C 0 :;:::; u ::,

"Cl 11> a:::

70 50

Impact at - 40 F, MIL-S-10026 (ORD)

Impact at -20 F, MIL-S-10029 (ORD)

60 40

Impact at - 40 F, MIL-S-12253 (ORD)

50 30

40 20

Impact at -40 F, MIL-S-46052

30 10

20 0

OL.__ ____ ..L. ____ --1- ____ __j_ ____ _j_ ____ _j_ ____ ___J_ ____ __, ____ ___,

60 80 100 120 140 160 180 200

Yield Strength (0.1 % offset),* 1000 psi *0.2% offset for MIL-S-46052

Fig. l. Minimum reduction of area and impact requirements for various ranges

of yield strength in four government specifications for steel castings. (See specifica­tions for exact values.)

5

220

:5! ' +-' -= u

+-' 0 z ' > ~

+-' u ea c. .5 >, c. .... ea -= c.,

Page 6: NICKEL ALLOY STEEL CASTINGS

TABLE I

Composition of Cast and Wrought 4300 and 8600 Steels

4300 8600

AISI-SAE AISI-SAE Wrought Cast a Wrought Castb

Element IH Steel) Steel (H Steel) Steel

Manganese, % 0.55-0.90 0.60-1.00 0.70-1.05 1.00 max Silicon,% 0.20-0.35 0.80 max 0.20-0.35 0.80 max Nickel,% 1.55-2.00 1.40-2.00 0.35-0.75 0.40-0.80 Chromium,% 0.65-0.95 0.55-0.90 0.35-0.65 0.40-0.80 Molybdenum, % 0.20-0.30 0.20-0.40 0.15-0.25 0.15-0.30

• ASTM A 487, Class 10. b ASTM A 487, Class 4.

:5!

:::

50~----,------.------,-------,-----,

Homogeneous Cast Steel (¼ to 12 in. thick, inclusive)

Government Specification MIL-S-11356D (ORD)

(See specification for exact values)

~ 30 1-----+------"-9'k----t------+-------l C, z ~ ... u ... § 20 >-----+-----+-­>,

e-... .c u

o..__ ___ -+----~---~--~,,,--'---~ 150 200 250 300 400

Brinell Hardness

Fig. 2. Minimum impact requirements for armor of homo­

geneous cast steel for various hardness ranges.

HEAT TREATMENT

Alloy steel castings generally are supplied in the heat-treated condition. The usual types of heat treat­ment are: anneal (A), normalize (N), stress relieve (SR), normalize and temper (NT) and quench and temper (QT). In some instances a single grade may be tempered over a wide range of temperatures to obtain various combinations of strength and ductility.

MECHANICAL PROPERTIES

Mechanical properties of cast steels are specified on the basis of testing specimens cut from a standard keel bar (ASTM A 370) poured and heat treated simul-

6

taneously with the castings that they are to represent. When the hardenability of a steel composition is such that both keel bar and all sections of the casting respond to the heat treatment in the same way, the keel bar properties will predict the properties to be expected in the casting. However, keel bar properties do not neces­sarily represent casting properties when there is too great a difference in relative section sizes between cast­ing and keel bar.

The majority of mechanical properties reported in this bulletin are based, as is customary, on properties developed in the standard 1 by 1 ¼ by 6-inch test bar. Broader relationships between composition, harden­ability, section size and mechanical properties are outlined for wrought grades in several other Inco bul­letins* which can be used as guides to indicate the prop­erties of test bars and castings of different thicknesses. In addition, Tables XIII and XIV in this bulletin give qualitative indications of the section size capabilities of a number of the nickel steel compositions.

NICKEL STEELS

The steel casting compositions in which nickel is the principal alloying element have nickel contents up to 5.0 per cent. The range of typical carbon and nickel contents and representative mechanical properties for these casting grades are shown in Figure 3, along with the specifications to which they conform. 3 • 4 , 5

The lower carbon, higher nickel steels provide tensile strengths in the 70,000-90,000 psi range along with excellent ductility, toughness and weldability. Castings of these compositions are employed extensively for truck frames in railroad and rapid transit rolling stock to secure weight reductions with safety. These steels are used also for carburized applications and heavy sec­tion castings, such as rock crusher frames, which are subject to severe shock loads and which may require repair by field welding.

Higher carbon 3.5 per cent nickel cast steels, ap­proximating the AISI-SAE 2330 composition, develop tensile strengths from 80,000 to 100,000 psi, yet retain good ductility. The influence of carbon on the tensile properties of a normalized and tempered 3.5 per cent nickel steel is shown in Figure 4.6 Six-inch sections of the 2330 type develop a tensile strength of 80,000 psi if normalized and tempered at 1200 F and 90,000 psi if liquid quenched and tempered at 1200 F.

The cast nickel steels are used in applications re­quiring resistance to the embrittling effects of low temperature, and further comments on low-tempera­ture properties are given on page 15.

* Bulletin 6-A, "Hardenability of Nickel Alloy Steels."

Bulletin 6-B, "Isothermal Transformation Diagrams of Nickel Alloy Steels."

Bulletin 2-A, "Quenched and Tempered Nickel Alloy Steels."

Bulletin 2-C, "Annealed, Hot Rolled and Normalized Nickel Alloy Steels."

Page 7: NICKEL ALLOY STEEL CASTINGS

100

80

'lg_ 60 0 0

s ::i ., f;; 40

20

0

100

80

·;;; 60 ... 0 0

s ::i ~ 40 V,

20

0

a

Tensile Strength

1-2 Nickel

- NT (0.28-0.32 C)

Yield 1-------Point --------------l

I Elongation

Red. Area

80

60 'ifl. .;-~ ... -g "" 40 .. .E ~ ...

20 g Li:i

·;;; ... 0 0 s .,;

~ .;;

b

Tensile Strength

60....._ ___ _

2-3 Nickel

- NT (0.13-0.25 CJ

WQT (0.14-0.19 C>

40 f.--------- Elongation ___ _

• Charpy Impact -100F

20 f.-----------------

100

80

60

40

20

0 0r-------------------~0

C

Tensile Strength

NT meets Specifications:

ASTM A 148 (80-50) AAR M-201 (8) QQ-S-681 (80-50) MIL-S-15083 (80-50)

3-4 Nickel

- NT <.05-0.13 C)

ii!J WQT <.05-0.13 C)

Red. Area

t Elongation •

Charpy Impact -150 F

N = Normalized

WQ = Water Quenched

T =Tempered

1-in. Section

100

~ 100

.:i: u 'c:

80 z 80 ::'.'. -u ... ... .5

60 ·;;; >, ... 60 ... ~ 0

0 c.., s

I ::i 'ifl. ., 40 i ii; 40

,c .,; ., ""

20 .. .5

20

~ ... C 0

0 Li:i 0

d

NT and WQT meet Specifications:

ASTM A 352 (LC-2> ASTM A 486 (90) ASME SA 352 <LC-2) ASTM A 148 (80-50> AAR M-201 (8) MIL-S-15083 (80-50) SAE J435a (080) QQ-S-681 (80-50>

Tensile Strength -

4-5 Nickel

- NNT (.08-0.17 C) (Commercial and Laboratory Test Heats)

Red. Area

Yield Point

■ Elongation - Charpy

Impact -170F

NT and WQT meet Specifications: NNT meets Specifications:

ASTM A 352 <LC-3> AAR M-201 (8>

ASME SA 352 <LC-3> AAR M-201 (8)

Fig. 3. Cast nickel steels: (1) Range of composition and properties and (2) Ap­

plicable specifications. 3-5

7

100

80

60

40

20

0

..c u 'c: z ::'.'. u ... ... .5

~ ... ..c c.>

I

'ifl. .;­~ ... -g "" .. ... C 0 Li:i

=,= .:::: --..c 2 0 z ::'.'. -u ... § >, ... ~ ..c c.> I

'ifl. i ,c -g "" .. .5 ~ ... C 0 Li:i

Page 8: NICKEL ALLOY STEEL CASTINGS

3.5 Nickel Normalized 1650 F

100 Tempered 1200 F 1-in. Section

I

80

·=-60 g 5!

i ;:,; 40

20

0

0.10 0.15

Elonration

0.20

Carbon,%

0.25

80

60 ~ .; I!!

C

j 40 ..

.5 ~ ::,0

20 ;!!

0.30

NICKEL-CHROMIUM

STEELS

Nickel and chromium were among the earliest com­binations of alloying elements used to achieve high strengths in cast steels, although they have not been as popular as the nickel-chromium-molybdenum triple alloy grades in recent years.

Figures 5 and 6 show that 1-inch sections of the 1.5 nickel-0.7 chromium (3100) composition at 0.30 to 0.40 per cent carbon achieve tensile strengths from 95,000 to 140,000 psi, depending upon heat treatment. Specifications to which the steel conforms also are listed. Figure 6 illustrates the influence of tempering temperature on the mechanical properties of oil quenched cast 3140 type steel. In sections to three inches thick, normalizing or liquid quenching and tem­pering around 1150 F gives a tensile strength in the 3100 type of approximately 75,000 to 80,000 psi at 0.20 per cent carbon and 90,000 to 100,000 psi at 0.35 per cent carbon. Elongation is 20 per cent or higher at both carbon levels. 7

Fig. 4. Influence of carbon content on tensile properties of normalized and tempered cast 3.5 nickel (2300) steel. 6

The properties of steels with higher nickel and chromium levels are shown in Figure 7.

140

120

100

·;;; ... C, C,

5:! 80 .,; ::: t;

60

40

20

0

Tensile Strength

Yield Point

Elongation

-NT Meets ASTM A 148 ( 80-50)

1.5 Ni-0.7 Cr (3100)

1-i n. Section

C-0.30-0.40 Mn - 0.60-1.00

Red. Area

Si-0.35-0.65 Ni -1.25-1.75 Cr - 0.45-0.90

OQT Meets ASTM A 148 (90-60),SAEJ435a (090), AAR M-201 (C), MIL-S-15083 (105-85), & QQ-S-681 (90-60)

~ WQT Meets ASTM A 148 (105-85), SAE J485a (105), AAR M-201 (D), MIL-S-15083 (105-85), & QQ-S-618 (105-85)

N = Normalized on= Oil Quenched WO= Water Quenched T = Tempered at 1200-1250 F

Fig. 5. Cast 1.5 nickel-0.7 chromium (3100) steel: (l) Range of composition and mechanical properties and (2) Applicable specifications. 4

8

100

~ 80 =

tf "' .§

-0

60 .§

I

'if. "' ~

C

40 ..; .. "' .. .5

20 ~ go C,

iM

0

Page 9: NICKEL ALLOY STEEL CASTINGS

250

200

150

100

50

Tempering Temperature, C

550 575 600 625 650 675 700 I I I I 11 I

1.5 Ni-0.7 Cr (3140) ~

~l Oil Quenched, 1-in. Section

~~ C -0.38-0.43 Si-0.80 max

300 Mn-0.60-1.00 Ni-1.25-1.75

Cr-0.45-0.90

I -,.!!!_ne// --200

--- Tensile St ~ntth

Yie:d p) ~-100

r---.::..'. mt -1tat 115f ,1119•• -r- -7 ,~·I/, ~ ~.,,,..

/' ,;.- ~ed. ~,ea --

;'

,.. i--u:;-Impact at - 40 F

I --Elongation

80

70 =¥ ;:

60 -g .§

50 ~ .§ I

40 tf. "' E ..

30 ~ .. 20 §

10

0

"'

1000 1050 1100 1150 1200 1250 1300 Tempering Temperature, F

NICKEL-MOLYBDENUM STEELS

The nickel-molybdenum compositions, similar to the 4600 grade, have good strength and excellent ductility in the normalized and tempered and quenched and tempered conditions. The nominal composition range and mechanical properties are shown in Figure 8. This figure also shows the respective specifications to which the material conforms. 6 • 8 This grade can be expected to develop tensile strengths around 110,000 to 120,000 psi in 3- to 4-inch sections of quenched and tempered castings.

The nickel-molybdenum steels are suited particu­larly for carburized applications and often are selected for castings requiring a hard, wear-resistant surface combined with a tough and ductile core.

NICKEL-CHROMIUM-MOLYBDENUM STEELS

Fig. 6. Influence of tempering temperature on the mechanical properties of oil quenched 1.5 nickel-0.7 chromium (3140) cast steel. 6

The triple-alloy nickel-chromium-molybdenum com­positions utilize the hardenability contributed by the individual alloying elements with maximum economy. By selecting the right alloy balance and heat treatment, they are able to offer a variety of strength-ductility­toughness combinations over a very wide range of cast­ing sizes.

a

140

120

Tensile Strength

100

·;;; 80 ..

c:, c:,

!2 ::f ~ 60 t;;

40

20

0

2.5 Ni-1 Cr 1-in. Section

-

Normalized, NT Tempered 1250 F

QT Water Quenched, Tempered 1250 F

C-0.20 Ni - 2.67 Cr-1.12

b

140

120

100

Tensile Strength

2.5 Ni -1 er 1-in. Section

-

Normalized, NT Tempered 1300 F

QT Oil Quenched, Tempered 1100 F

C- 0.40 Ni - 2.30 Cr -1.00

80 ·;;; .. 80 -----------t 80 c:, c:,

!2 I,!!. ~

60 :g ii 60 < -d .. "" 40 o0 40

-~ ~

20 g,, 20 ;:il

0 0

NT and QT meet Specifications: NT meets Specifications: QT meets Specifications:

ASTM A 148 (90-60) ASTM A 148 {105-85) ASTM A 148 (120-95) SAE J435a ( 090) SAE J435a ( 0105) SAE J435a ( 0120) MIL-S-15083 (90-60) MIL-S-15083 (105-85) MIL-S-15083 (120-95) QQ-S-681 (90-60) QQ-S-681 (105-85) QQ-S-681 (120-95)

Fig. 7. Cast 2.5 nickel-1 chromium steels at two carbon levels: (1) Composition and tensile properties and (2) Applicable specifications. 4

9

I,!!. 60 :g

4

i 40 o0

0

Page 10: NICKEL ALLOY STEEL CASTINGS

140

120

·.;; 100 ... 0 0 :: 80 .,; .. ~ "' 60

40

1.8 Ni-0.3 Mo (4600)

Tensile Strena:th

-NT Normalized, Tempered

1000-1200 F

1-in. Section C - 0.20-0.23

Mn - 0.60 -1.00 Si - 0.35-0.65 Ni - 1.50-2.00

Mo - 0.20-0.40

ILliI] QT

Quenched, Tempered

about 1000 F 2-in. Section

C - 0.24 Mn- -Si- -Ni-1.65

Mo - 0.35

Yield --------------<80 Point

■ Elongation

1-----------------------io

NT meets Specifications: ASTM A 148 (80-50) ASTM A 486 (70) SAE J435a (080) MIL-S-15083 (80-50) QQ-S-681 (80-50) AAR M-201 (C)

QT meets Specifications:

ASTM A 148 (120-95) ASTM A 486 (120) SAE J435a (0120) Mll-S-15083 (120-95) QQ-S-681 (120-95) AAR M-201 (D)

Fig. 8. Cast 1.8 nickel-0.3 molybdenum (4600) steel: (1) Range of composition and mechanical properties and (2) Applicable specifications. NT specimens were cast stati­cally, QT centrifugally. 6, 8

0.6 Nickel-0.6 Chromium-0.22 Molybdenum (8600 Type)

Figure 9 presents typical properties of the 8600 type heat treated by normalizing or quenching followed by tempering at about 1200 F. 5 • 6 • 8 Figure 10 is a chart of the properties after water quenching and tempering over the range 600 to 1300 F. The 8600 composition develops good combinations of strength and toughness. Castings at the 0.20 per cent level are used where weld­ability is a prime requirement, or where parts will be carburized to obtain wear-resisting surfaces. The 0.30 per cent carbon level is specified for parts where strength is a primary requirement. At the latter carbon level, 2-inch sections will develop a tensile strength of at least 95,000 psi if normalized and tempered at 1200 F and 105,000 if water quenched before a 1200 F temper. 10

10

0.85 Nickel-0.6 Chromium-0.5 Molybdenum­.07 Vanadium-Copper-Boron

Table II shows the minimum properties required by ASTM A 487, Class 7Q, for this low-carbon 0.85 nickel-0.6 chromium-0.5 molybdenum-.07 vanadium­copper-boron steel. It meets the specified 100,000 psi yield strength and, when requested, 15 foot-pounds Charpy impact (V-notch) at -50 F. The specified properties can be developed in 2-inch cast sections water quenched from 1650-1750 F and tempered at 1100-1275 F.

1.8 Nickel-0.7 Chromium-0.3 Molybdenum (4300 Type)

The properties of the 4300 steel at 0.30 and 0.35 per cent carbon are presented in Figures 11, 12 and 13. Because of its high hardenability, the 4300 type is selected for medium- to heavy-section castings and for good combinations of strength and ductility in the normalized and tempered condition where liquid quenching is not feasible. At 0.35 per cent carbon, oil­quenched 4.5-inch sections develop 170,000 psi tensile strength if tempered at 800 F and 120,000 if tempered at 1200 F.

160

140

120 'i. 0

5'! 100 ii e

0.6 Ni-0.6 Cr-0.22 Mo (8630)

1-in. Section

-NT CDJOT Normalized, Water Quenched, Tempered Tempered

about 1200 F about 1200 F

C - 0.27 · 0.32 Mn -1.00 max Si- 0.80 max Ni - 0.40-0.80 Cr - 0.40-0.80 Mo - 0.15-0.30

Tensile ----------------< 80 Strength

;;:; 80 I------

40 ~---------------~

NT meets Specifications:

ASTM A 148 (90-60) ASTM A 486 ( 90) ASTM A 487 ( 4N) ASME SA 487 ( 4N) SAE J435a (090) MIL-S-15083 (90-60) llQ-S-681 (90-60) AAR M-201 (C)

Ill meets Specifications: ASTM A 148 (120-95) ASTM A 486 ( 120) ASTM A 487 ( 40) ASME SA 487 ( 411) SAE J435a (0120) MIL-S-15083 (120-95) QQ-S-681 (120-95) AAR M-201 (D)

Fig. 9. Cast 0.6 nickel-0.6 chromium-0.22 molybdenum (8630) steel: (1) Range of composition and mechanical properties and (2) Applicable specif1cations.5, 6, 8

Page 11: NICKEL ALLOY STEEL CASTINGS

Tempering Temperature, C

250 100 200 300 400 500 600 700

II I I I I I I I II I 11 0.6 Ni-0.6 Cr-0.22 Mo

200

150 "ii = = ~ 1 "' 100

!I (8630)

' 1-i n. Section

' Water Quenched

500 ~ ~~-~,r.l

~ .... ~~~ '-);;,A °\:

400 '- l)'A \s 4.-;,

C-0.28-0.33 -.......~--.! \. r--r- ~ '\ ' r-- r- Mn-1.00 max

r--f--Si-0.80 max ' '\. )c ... Ni-0.40-0.80 '\ \.

r-- r- Cr-0.40-0.80 \. 300 r- Mo-0.15-0.30

X

'"~/ ' ' v.el\-~ \. ----1- ......... ~,/ '

60

'#-40 ..

E C

-ci ell ..

20 t ... 50 200

E\ona:ation __.,

0

0 200 400 600 800 1000 1200 1400

Tempering Temperature, F

Fig. 10. Representative mechanical properties of cast 0.6 nickel-0.6 chromium-0.22 molybdenum (8630) steel: 4, 9

"i 0

~ .,;

~ .:;;

1.8 Ni-0.7 Cr-0.3 Mo (4330)

1-in. Section

- NT Cili!OT Normalized, Tempered

about 1200 F

C -0.27-0.32 Ni - 1.40-2.00 Cr - 0.60-0.85 Mo - 0.25 · 0.30

Water Quenched, Tempered

about 1200 F

C - 0.24 Ni - 2.00 Cr - 0.80 Mo - 0.35

160 Tensile ~-------------< Strength

140

120

100

80

60

40 '----------------~

NT meets Specifications:

ASTM A 148 (90-60) ASTM A 487 (10N) ASME SA 487 (10 N) MIL-S-15083 (90-60) QQ-S-681 { 90-60) SAE J435a ( 090) AAR M-201 {C)

QT meets Specifications:

ASTM A 148 (120-95) ASTM A 486 (120) ASTM A 487 (100) ASME SA 487 (lOQ) SAE J435a ( 0120) MIL-S-15083 (120-95) QQ-S-681 (120-95) AAR M-201 (E)

80

' == ~= 60 ea-__:

~~ ~~

40 a:>

~i 20

N _5

ie ~~

0

Fig. 11. Cast 1.8 nickel-0.7 chromium-0.3 molybdenum (4330) steel: (1) Range of composition and mechanical

properties and (2) Applicable speciflcations.5, 6, 8

11

100 300

250

::i

ii i~

200 500 ·:g_ g So! ~-.:;;

150 400

100 300

50

Tempering Temperature, C

200 300 400 500 600 700 I I I I 11 I II I II

1.8 Ni-0.7 Cr-0.3 Mo (4335) Homogenized, Oil Quenched

Double Normalized

:"- 1-in. Section

" C-0.33-0.38 Si-0.80 max

Mn-0.60-1.00 Ni-1.40-2.00 r--.. I I Cr-0.55-0.90

' r-..11 Mo-0.22-0.40

~1>.n I .......... ~ ~

" I'..., J,;,4;,I '\. 'Q

....... ~"'~t '\

' ~-1 '- \. { .. ~ " ' " '\ \

I\. ' I\. \ \

\. 'V ~\

11 11-1ea v \ ~ -- Ix' El~ngation ---/

60

.5 20 ~

0 200 400 600 800 1000 1200 1400

Tempering Temperature, F

Fig. 12. Influence of tempering temperature on the tensile

properties of cast 1.8 nickel-0.7 chromium-0.3 molybdenum (4335) steel.6, 11

TABLE II

Composition and Mechanical Properties of a Cast 0.85

Nickel-0.6 Chromium-0.5 Molybdenum-.07 Vanadium­

Copper-Boron Steel for 100,000 psi Minimum Yield

Point in Quenched and Tempered Condition

STEEL Type . ........................... 0.85 Ni-0.6 Cr-0.5 Mo-.07 V-Cu-B Specification ............................ . ASTM A 487, Class 7Qa

COMPOSITION Carbon, % ......................................... 0.20 max Manganese, % ..................................... 0.60-1.00 Phosphorus, % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .04 max Sulfur, % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .05 max Silicon, % ........................................ 0.80 max

Nickel, % ......................................... 0.70-1.00 Chromium, % .................... _ ................. 0.40-0.80 Molybdenum, % .................................... 0.40-0.60 Vanadium, % . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .03-0.10 Copper, % ........................................ 0.15-0.50 Boron, % .......................................... 002-.006

HEAT TREATMENT . ................. Water quench, temper 1100 F min

MECHANICAL PROPERTIES

Tensile Strength, min, psi ............................ 125,000 Yield Point, min, psi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100,000 Elongation, min, % . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reduction of Area, min, % . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Charpy Impact IV-Notch), min, ft-lb ................... 15 b (-50 Fl

• Minimum yield point is 100,000 psi. b When specified. Average of 3 tests, none below 10 ft-lb.

Page 12: NICKEL ALLOY STEEL CASTINGS

For ultra high strength or for service conditions in­volving abrasion, carbon contents higher than 0.35 per cent are specified sometimes. Figure 13 indicates the high-strength properties that can be obtained in com­positions with normal and high ( 1.6 per cent) silicon. The high silicon permits tempering up to 600 F to develop yield strengths on the order of 200,000 psi without the reduction in toughness usually asso­ciated with tempering lower silicon steels in the range 500 to 600 F. Other information on cast 4300 steels is available.11• 12 • 13

2.4 Nickel-1.2 Chromium-0.3 Molybdenum

As shown in Figure 14 this steel offers yield strengths above 100,000 psi with intermediate toughness in the quenched and tempered condition. For example, typi­cal properties of 175,000 psi yield point and 22 foot­pounds Charpy impact (V-notch) are indicated for 1-inch sections water quenched and tempered at 800 F.

300

250

200 ·;; 1:1.

C, C,

s .,; "' e in

150

100

50

Tempering Temperature, C

100 200 300 400 500 600 700

I I I I

1.8 Ni-0.7 Cr-0.3 Mo (4335)

1-in. Section

'-- Homogenized at 1850-2280 F

' Oil Quenched from 1650 F ... _

Tempered , .... l',1 I ' ~-"-.... ~J),J ""'-e.n,\ ~ - -- I"\.~ ~-----Yie/f/ I\.

~%;r-..' 1, " I ' f--

-Normal Si ---High Si ~

C - 0.34 C - 0.32 f-- Mn -1.03 Mn -1.01

- Si - 0.47 Si-1.56 Ni -1.93 Ni -1.92

f--Cr - 0.92 Cr - 0.91

f-- Mo - 0.40 Mo - 0.40 ~

.._ - l~i \\11\\;.?':

- Elongation I I I

200 400 600 800 1000 1200

Tempering Temperature, F

-

--

--

80 '#­.;-

60 ~ -ci ., "' 40 o11

20 :::'-

0

.,. C: C,

i:.:i

1400

Fig. 13. Composition and tensile properties of cast 1.8 nickel-0.7 chromium-0.3 molybdenum (4335) steel with normal and high silicon.11

12

Tempering Temperature, C

400 450 500 550 600 650 700 750 250 I I I I I I 11 I 11 I 11 : I

2.4 Ni-1.2 Cr-0.3 Mo -

(High Purity) -

1-in. Section -

Homogenized, Oil Quenched and Tempered _

200 C - 0.20-0.25 Si - 0.30-0.33 -

150 ·;; c.

0 0

52 .,; "' ~

-~ -~ Mn - 0.31-0.39 Ni - 2.39-2.40 -r4, Str, P - .006-.011 Cr-1.07-1.23

~tq S - .005-.010 Mo - 0.31-0.32 -

~

-ne 1<1s7;:::-!,...__ i'-.. ~- tre11

'l!tq~r-,.,.,_ I'-. I\.'\

'\ ' ' ' :'... '

'¥ :: ---"

120 .c

~ z

100 ~ -'-' "' in

100 r---.... I/

... 80

.§ >,

e-

50

/ L--

~- \\e\\-t.1ea, ~ -7 ....::?-'"T SI,'<./

I lta\~ ~ar~1 ~c--1 1 . ~ Elongation

"' .s=

60 u I

'ift-.;-

40 .. .:;; -g

20 "' ... . 5

0 ~

~ C,

0 [ij

800 900 1000 1100 1200 1300 1400

Tempering Temperature, F

Fig. 14. Composition and mechanical properties of high­purity heats of cast 2.4 nickel-1.2 chromium-0.3 molybdenum steel. 14

3 Nickel-1.5 Chromium-0.5 Molybdenum (HY-80)

and HY-100 Types

Military requirements set forth in MIL-S-23008 (SHIPS) demand weldable steels developing strengths above 80,000 psi combined with exceptional resistance to shock and brittle fracture. Table III shows required properties and compositions. Figure 15 presents typical properties and composition within the low-carbon HY-80 specification range. The 80,000 psi grade (HY-80) is nominally, in per cent: 3.0 nickel, 1.5 chromium and 0.5 molybdenum, whereas the 100,000 psi grade (HY-100) is 3.2 nickel, 1.6 chromium and 0.5 molyb­denum. The exceptional toughness of these grades is indicated by Charpy impact (V-notch) levels of 60 to 90 foot-pounds at -100 F, Figure 15. Nil ductility transition temperatures must be below -100 F, as

shown in Table III. The steels are highly resistant to quench cracking and have excellent weldability be­cause of their low-carbon contents. The properties in MIL-S-23008 (SHIPS) can be developed in 8-inch cast sections.

Page 13: NICKEL ALLOY STEEL CASTINGS

4 Nickel-2 Chromium-0.4 Molybdenum-0.1 Vanadium

Air-Hardening Steel for Massive Sections

Table IV and Figure 16 show the composition and properties of this steel designed to develop a uniform bainitic structure and a minimum yield strength of 100,000 psi at 0.25-0.29 per cent carbon in 1- to 40-inch sections ( or thicker) without the benefit of liquid quenching. 16 The data were developed from 3-inch thick castings normalized by controlled cooling at a rate simulating air cooling of a 40-inch section and tempered at 1150 F. Tests from an air-cooled casting with an 8-inch section were in close agreement.

120

100

80 ·;;; c,.

c::, c::, $! 60 ,,; "' ~ <I)

40

20

0

3 Ni-1.5 Cr-0.5 Mo (HY-80)

3-in. Section Homogenized, Water Quenched,

Tempered 1150-1200 F

C - 0.13-0.19 Si - 0.26-0.50 Mn - 0.61-0.74 Ni- 2.79-3.19

P- .004-.015 er -1.38-1.68 S - .005-.014 Mo - 0.43-0.51

Tensile Strength---------------<

Charpy Yield Impact Point -100 F

Elongation

Specifications met:

ASTM A 148 (105-85) MIL-S-10026 (80-95 ksi yield) SAE J435a (0105) MIL-S-10029 (80-95 ksi yield) QQ-S-681 (105-85) MIL-S-11356 (230 BHN) AAR M-201 (D) MIL-S-12253 (80-95 ksi yield)

MIL-S-15083 (105-85) MIL-S-23008 (HY-80l

100 ,9

;::::

-= !:l 0

80 z ~ '-' .. .§

60 >, c,.

:v -= c..> 1

~ 40 .;-.,

< -g "'

20 .. .E N

bO

0 § ;:;::;

Fig. 15. Cast 3 nickel-1.5 chromium-0.5 molybdenum (HY-80)

steel: (1) Range of composition and mechanical properties

and (2) Applicable specifications. 14, 15

13

250

200

·;;; 150 c,.

C C

S!

i "' 100

50

0

f-- -- 4 Ni - 2 Cr - 0.4 Mo - 0.1 V -f-- 1--- ~ Hardened by cooling an 8-in. section or -f-- 1--- ~ simulating cooling of a 40-in. section. -f-- -~ Tempered 1150 F for various times. -f-- 1--- ~ C-0.25-0.29 S-<.01 -

f-- 1---

' Mn -0.40-0.70 Ni - 3.70-4.20 -

P-<.01 Cr-1.90-2.10 -.......... lr, I~ Mo-0.38-0.45 -

--.,..;._e1J.r,1e v-0.10-0.14 -....

h.~ .....::111 S. "'.i>t4 t,-,

'-.:".i>t4 I '-I .. ,,,.ft.1.;,_l1d -....~

I I I i',..'.'o~ .... J;.<1 I I ·-..../tJ '- "1,rlt,·

,'o,, J: I ... ~

r,s e,,,,11., ))<_~ ,...,,4' ,, I ~I ~ ,, I I~ ............ n ~\~ -~- I ~-=--- 1 1 t1onv.at1on

- - (Longer Tempering Time - ) - 1--- -

..... .;

240 ! 160 ~ .,

I-

80 ~ g

80 ~ : ~ 60 < 0 ai -= '-' a::

-80 .;

40 .. z:

20~

::'.'. -160 ~

0 g,o

-240 .§

~ >-= .. -= c.,

420 380 340 300 260 220 180 Brinell Hardness

Fig. 16. Mechanical properties (laboratory data) of air

hardening (bainitic) cast 4 nickel-2 chromium-0.4 molyb­

denum-0. l vanadium steel developed for 100,000 psi mini­

mum yield strength in massive sections. 16

TABLE Ill

Specification Requirements for Composition and

Mechanical Properties of Cast 3 Nickel-1.5 Chromium-

0.5 Molybdenum (HY-80) and HY-100 Steels

STEEL Type . . . . . . . . . . . . . . . . . HY-80 HY-100 Specification ........... MIL-S-23008 (SHIPS) MIL-S-23008 (SHIPS)

COMPOSITION Carbon, % ............ 0.20 max 0.22 max Manganese, % ......... 0.55-0.75 0.55-0.75 Phosphorus, % ......... .020 max .020 max Sulfur, % ............. .015 max .015 max Silicon, % ............ 0.50 max 0.50 max Nickel,% ............. 2.50-3.25 2.75-3.50 Chromium, % .......... 1.35-1.65 1.35-1.85-Molybdenum, % ........ 0.30-0.60 0.30-0.60

HEAT TREATMENT ......... Homogenize, nor- Homogenize, nor-mal ize or anneal; malize or anneal; quench and tern- quench and tern-per 1100 F min per 1100 F min

MECHANICAL PROPERTIES

Tensile Strength ........ Record a Record a Yield Strength

(0.2% offset), psi ..... 80,000-95,000 100,000-120,000 Elongation (2 in.), min, % 20 18 Charpy Impact IV-Notch)

min, ft-lb ............ 30 (-100 Fl 30 (-100 Fl Nil Ductility Transition

Temperature,b F ...... Below -100 Below -100

• To be recorded for information only.

b By the drop-weight test. This test shall govern if it conflicts with the Charpy impact data.

Page 14: NICKEL ALLOY STEEL CASTINGS

MANGANESE-NICKEL-CHROMIUM­

MOL YBDENUM STEELS

High manganese ( 1.5 per cent) compositions similar to type 9500 and modifications are produced with nominal nickel levels of 0.6 or 1.2 per cent. Such steels have good hardenability for medium-section castings. For example, 4-inch sections of the 9530 type develop a tensile strength of about 110,000 psi if normalized and tempered at 1200 F and about 125,000 psi if water quenched before tempering. 10 Typical compositions, properties and specifications are shown in Figures 17 and 18.

NICKEL-MANGANESE STEELS

Figure 19 shows that the toughness of pearlitic man­ganese steels, widely used for castings in railroad, earth­moving and similar equipment, can be improved appre­ciably by adding nickel. The properties developed in 3-inch sections of normalized and tempered nickel­manganese steels are shown in Figure 20. A tensile strength of about 80,000 psi with good ductility can be expected in 6-inch sections of a 1.0 manganese-LO nickel steel at 0.22 per cent carbon after a 1600 F normalize and a 1100 to 1150 F temper. 7

TABLE IV

Composition and Mechanical Properties of a

Cast 4 Nickel-2 Chromium-0.4 Molybdenum-

0.1 Vanadium Steel for Massive Sections up

to at Least 40 Inches

COMPOSITION Carbon,% .............••.....•.....•• Manganese, % ....................... . Phosphorus, % ...........•...•..•..•.• Sulfur, % .......................•.•.. Silicon,% .....••.....••...•.....••••.

Nickel,% ...................•.•...... Chromium, % ..............•..•.•••••. Molybdenum, % .....••...•••.•.•.••••• Vanadium, % ............•........••••

0.25-0.29 0.40-0.70

Less than .01 Less than .01

0.20-0.40

3.70-4.20 1.90-2.10 0.38-0.45 0.10-0.14

HEAT TREATMENT ........................ Homogenize 1750-1950 F, normalize 1500 F, double temper 1150 F

MECHANICAL PR0PERTIESa

Tensile Strength, min, psi •.•.•.••••..... Yield Strength (0.2% offset!, min, psi ..•.• Elongation, min, % ..........•..•.•...• Reduction of Area, min, % .............. . Charpy Impact IV-Notch), min, ft-lb ....... . Fracture Appearance Transition

Temperature (FATT, 50%), max, F ...... .

125,000 100,000

14 30

15 (-70 Fl

0

• Tests made on cast 3-inch bar heat treated to simulate the cooling rate of a 40-inch section.

14

180

160

.; 140 ... .. 120 .. $! .,;

100 !! in

80

60

40

1.5 Mn-0.& Ni-0.& Cr-0.35 Mo (9500)

1-in. Section

NT • Normalized and Tempered

QT - Water lluenched and Tempered

Temperinr Temperature

Elongation 1200F

-im 1000 F

C-0.31 Mn -1.47 Ni - 0.55 Cr-0.S0 Mo-0.35

Red. lzod

Impact Area _at 75 F 1200 F 1200 F

NT meets Specifications: QT meets Specifications:

ASTM A 148 (105-85) ASTM A 487 (SN) ASME SA 487 (6N) SAE J435a (0105) AAR M-201 (0) QQ-S-681 (105-85) MIL-S-15083 (105-85)

ASTM A 148 (120-95) ASTM A 486 (120) ASTM A 487 ( SQ) ASME SA 487 (60) SAE J435a ( 0120) AAR M-201 (E) QQ-S-681 (120-95) MIL-S-15083 (120-95)

100 J 80 .. e::!3!

c.,:.

60 'i ... "" ... .. :. 40 --:-.5

.5-c,

20 !:!I ... .. 0

0 iii

Fig. 17. Cast 1.5 manganese-0.6 nickel-0.6 chromium-0.35 molybdenum (9500) steel: (1) Composition and mechanical properties and (2) Applicable specifications: 4

200

1.5 Mn-1.2 Ni-0.& Cr-0.35 Mo (High Ni 9500)

1-in.Saction

NT • Normalized and Tempered

Ill Ill Oil Quenched and Tempered

C-0.28 Mn-1.56

Tensile Ni - 1.18 S h Cr-0.68 trengt Yield Mo - 0.36 1000 F

1801-------1~-- Point ,=-------------i

160

·;; 140 ... g $! 120

J 100 ,__ ____ _

NT meats Specifications: ASTM A 148 005-85) SAE J435a (0105) AAR M-201 (D) QQ-S-681 (105-85) MIL-S-15083 (105-85)

Tamperlni Temperature

QT meets Specifications: ASTM A 148 (120-95) ASTM A 486 (120) SAE J435a (0120) AAR M-201 (E)

QQ-S-681 (120-95) MIL·S-15083 020-95)

Fig. 18. Cast 1.5 manganese-1.2 nickel-0.6 chromium-0.35 molybdenum (High nickel 9500) steel: (1) Composition and tensile properties and (2) Applicable specifications.4

Page 15: NICKEL ALLOY STEEL CASTINGS

Ni-Mn

2.0 f-----+------+---

3-in. Square Bar Homogenized 1800 F Normalized 1500 F Tempered 1200 F

I I \

0.5 1.0 1.5 2.0

Nickel,%

Fig. 19. Effect of nickel and manganese on the Charpy

V-notch, 15 foot-pound transition temperature of cast steels containing 0.3 per cent carbon. 17

100

BO

·;; 60 ...

Cl Cl S!

:ii :!! 40 in

20

0

Tensile

Ni-Mn 3-in. Square Bar

Homogenized 1800 F Normalized 1500 F Tempered 1200 F

Test Heats: C - 0.30-0.34

Mn - 0.48-1.73 Ni - 0.40-1.54

Suggested: C- 0.30

Mn -1.50 Ni-1.50

Strength _____________ _,

e---------------------1 BO

Yield Point

Red. Area

.e ~ ...

~------------------t 20 ~

L----------------~o Specifications met:

ASTM A 148 (80-50) OO·S-681 (80-50> SAE J435a (080) MIL·S-15083 (80-50) AAR M-201 (B>

Fig. 20. Cast nickel-manganese steels (laboratory heats and

data): (1) Composition and tensile properties and (2) Ap­

plicable specifications.17

15

NICKEL-VANADIUM STEELS

Nickel cast steels containing vanadium have strengths

and ductilities somewhat higher than plain nickel com­positions. Figure 21 presents typical properties for

1-inch sections of a 1.6 nickel-0.10 vanadium grade and can be compared with Figure 3a. In 2-inch sections a

tensile strength of 90,000 psi and a yield strength of

60,000 psi can be expected when normalized and tem­pered in the range 1100 to 1200 F.

NICKEL STEELS

FOR LOW-TEMPERATURE SERVICE

Low-carbon cast 2-3 and 3-4 per cent nickel steels are permitted under code regulations in equipment operating down to -100 F and -150 F, respectively,

as covered by two specifications: ASTM A 352 and

ASME SA 352. The specified requirements on com­position, heat treatment and mechanical properties are

assembled in Table V. Figures 3b and 3c show that the respective specification requirements are met by these nickel steels.

For temperatures moderately lower than -150 F,

a 4-5 per cent nickel grade has been used successfully for the handling of liquid ethylene. Figure 3d shows

about 22 foot-pounds Charpy V-notch impact at -170 F for this nickel range.

1.6 Ni-0.1 V 1-in. Section

Normalized 1725 and 1525 F Tempered 1200 F

C - 0.26-0.35 Ni-1.53-1.65 V-0.10-0.12

Tensile

100 Strength 100

■ '!ii ~

80 Yield 80 u

Point .. ... lzod .5

Red. Impact ... .. ·;;; 60 60 .l:! ... Area I

C,

■ 'ifl.

C,

S! : ::f c :!! 40 40 ,.; in

.. ""

Bongation ... - .5 ~

20 20 ... C .. iii

0 0

Specifications met:

ATSM A 148 {90-60) AAR M-201 {C)

ATSM A 486 {90) 00-S-681 (90-60)

SAE A J435a { 090) MIL-S-15083 ( 90-60)

Fig. 21. Cast 1.6 nickel-0.1 vanadium steels: (1) Com­

position and mechanical properties and (2) Applicable

specifications.4

Page 16: NICKEL ALLOY STEEL CASTINGS

TABLE V

Composition and Mechanical Properties of

Cast Nickel Steels for Low-Temperature Service

STEEL Type ...................... . Specification ................ .

COMPOSITION Carbon, % ................. . Manganese, % .............. . Phosphorus, % .............. . Sulfur, % .................. . Silicon, % ................. . Nickel, % .................. .

2·3 Nickel ASTM A352

or ASME SA 352 Class LC2

0.25 max 0.50-0.80 .05 max .05 max

0.60 max 2.0-3.0

HEAT TREATMENT . . . . . . . . . . . . . . . Normalize or normalize and temper

MECHANICAL PROPERTIES Tensile Strength, min, psi ..... . Yield Point, min, psi .......... . Elongation (2 in.J, min, % ..... . Reduction of Area, min, % ..... . Charpy Impact

Keyhole Notch, min, ft-lb .... . V-Notch, min, ft-lb ......... .

0 ASTM A 300 or ASM E SA 300.

65,000 40,000

24 35

15a HOOF) 2Qb

3-4 Nickel ASTM A352

or ASME SA 352 Class LC3

0.15 max 0.50-0.80 .05 max .05 max

0.60 max 3.0-4.0

Normalize or normalize and temper

65,000 40,000

24 35

15a (-150 F) 2Qb

6 ASM E Boiler and Pressure Vessel Code, Case 1317-1. Test to be per­formed at the lowest service temperature.

NICKEL ALLOY STEELS

FOR ELEVATED TEMPERATURE SERVICE

Cast steels generally have elevated temperature properties similar to wrought steels of comparable com­position and heat treatment. The nickel-chromium­molybdenum steels offer attractive elevated tempera­ture properties in combination with other useful char­acteristics. The ASME Boiler and Pressure Vessel Code has established the following maximum allowable design stresses: 6250 psi at 1000 F for Grade WC4 and 4000 psi at 1100 F for Grade WCS.

The tensile and creep properties for three nickel grades are given in Table VI. The steels correspond to the 4300 type and two compositions conforming to ASTM A 217, Grades WC4 and WCS respectively. Another Inco bulletin contains more complete data on the elevated temperature properties of cast and wrought steels.*

NICKEL ALLOY STEELS

FOR WEAR AND ABRASION RESISTANCE

Quenched and Tempered Nickel-Chromium­Molybdenum Types

Figure 22 gives an indication of the ability of cast nickel alloy steels to offer combinations of properties particularly required in wear and abrasion resisting

* Bulletin 4-D, "Elevated Temperature Properties of Nickel Alloy Steels."

TABLE VI

Creep and Tensile Properties of Three Grades of Cast Nickel-Chromium-Molybdenum Steel

Steel Composition, %

Grade a C Mn Ni Cr Mo

4300 0.24- 0.51- 0.98- 0.65- 0.27-0.41 0.68 2.11 0.87 0.45

WC4c 0.20 0.50- 0.70- 0.50- 0.45-max 0.80 1.10 0.80 0.65

WC5C 0.20 0.40- 0.60- 0.50- 0.90-max 0.70 1.00 0.90 1.20

, At 75 F the mechanical properties of these steels are:

Tensile Strength, Yield Point, Grade psi psi

4300 92,000-122,000 63,000-91,000 WC4 86,000 64,000 WC5 92,000 65,000

b This average was derived from several sets of tests which include some scatter because of differences in composition. 18

16

Test Stress (psi) for Desig-Heat Temper- nated Creep Rate of

Treatment, ature, F F .00001%/hr .0001%/hr

Normalized, 500 - 60,000 tempered 800 - 4Q,0Q0b 1100-1300 F 900 - 22,0Q0b

1000 - 7,0Q0b

Double normal- 900 22,000 31,000 ized, tempered 950 10,000 25,000 1200-1300 F 1000 5,000 12,000

Double normal- 1050 7,000 -ized, tempered 1100 4,000 -1200-1300 F

Elongation, Red. Area, Charpy Impact % % (V-Notchl, ft-lb

14-23 32-52 -26 54 30 23 56 56

c Grade in ASTM A 217. 1 , 6

Page 17: NICKEL ALLOY STEEL CASTINGS

applications. Such applications usually require a com­promise between abrasion resistance, which is a func­tion of hardness and carbon content, and toughness to resist the shock usually inherent in the service. Another compromise involves sufficiently high carbon and alloy contents to maintain the required level of hardness throughout the thickness of a casting and at the same time meet the requirement that castings should be readily weldable for fabrication or field maintenance.

section castings, for example, 1 ½-inch thick maximum, because of its limited hardenability. Typical hardness ranges for a number of applications are shown in Table VII.

TABLE VII

Typical Hardness for Some Applications of the Wear and Abrasion Resistant Cast Steels of Figure 22

The 4335 steel, Figure 22, would be expected to have maximum abrasion resistance because of its high hardness. Along with the 300-M and 2.4 nickel-1.2 chromium-0.3 molybdenum steels, it has sufficient hardenability for heavy sections. Toughness varies inversely with hardness for all steels and, in general, weldability is inverse to carbon content. Therefore, the 2.4 nickel-1.2 chromium-0.3 molybdenum and 0.85 nickel-0.6 chromium-0.5 molybdenum types are the most weldable and toughest, although of lower hard­ness. The 8727 type is usually limited to relatively light

Application

Tractor and shovel castings ........•..............•. Liners and crusher plates ......•...........•••••••• Dipper bucket teeth ...........................•... Sand slurry pumps ............................•...

Dredge pumps, crusher jaws, rollers, pinions •..•....... Gears and hammers ......................•..•...•. Rail segments for power shovels ..•................•. Crawler shoes for power shovels ...........•••...•.•.

Cast Alloy Steels for Abrasion Resistance

550 - Brinell Hardness

400 F Charpy Impact at - 40 F Temper

1-in. Section 500 25

Normalized Quenched Tempered

450 20

., ., .. = 1: "' 400 ::c 15

;;; = i

350 10

300 5

250 0 1.8 Ni-0.7 Cr 1.8 Ni-0.8 Cr 2.4 Ni-1.2 Cr 0.85 Ni-0.6 Cr 0.6 Ni-0.5 Cr

0.3 Mo 0.4 Mo-0.1 V 0.3 Mo 0.5 Mo 0.25 Mo (4335) 1.6 Si (8727)

(300-MJ

Composition, %

Steel Type C Mn Si Ni Cr Mo Other

4335 0.33-0.38 0.60-1.00 0.80 max 1.40-2.00 0.55-0.90 0.20-0.40 -300-M 0.28-0.33 0.60-1.00 1.45-1.80 1.65-2.00 0.65-0.90 0.30-0.45 .05 minV 2.4 Ni-1.2 Cr-0.3 Mo 0.25 max 0.35 0.30 2.40 1.20 0.30 -0.85 Ni-0.6 Cr-0.5 Mo 0.20 max 0.60-1.00 0.80 max 0.70-1.00 0.40-0.80 0.40-0.60 .03-0.10 V

.002-.006 B 0.15-0.50 Cu

8727 0.25-0.30 0.75-1.00 0.80 max 0.40-0.70 0.40-0.60 0.20-0.30 -

Fig. 22. Hardness and toughness of five cast alloy steels for applications requir­ing resistance to abrasion, 1, 11, 14, 19, 20

17

:e :::: -= <> -::: :z ~ .... <> "' Cl.

.5 >-e-"' -= (.)

Brinell Hardness

500 500

300-480 475

470 265-380

360 300-350

Page 18: NICKEL ALLOY STEEL CASTINGS

Normalized and Tempered Nickel-Chromium­Molybdenum Types

The higher alloyed grades in Figure 22 are used often with higher carbon contents for abrasion resistant cast­ings that can only be normalized and tempered. For example, steels of the 4300 and 2.4 nickel-1.2 chro­mium-0.3 molybdenum types are made with 0.40-0.50 per cent carbon to develop 225-250 Brinell hardness for dredge pump casings, impellers and liners. At car­bon levels of 0.50-0.60, normalizing and tempering develops hardnesses of 300-600 Brinell for use as mill liners, roll shells and grizzlies. Castings that require even higher hardnesses can utilize carbon contents in the range of 0.60-0.80 per cent.

Austenitic Manganese-Nickel Steel

The nickel-containing grade of austenitic manganese steel, of the Hadfield type, conforms to ASTM A 128, Grade D. It develops the characteristic toughness and work hardening properties by a normalizing treatment in contrast to the water quenching treatment required for the nickel-free grade. The less drastic thermal treat­ment eliminates the danger of quench cracking. The nickel-modified version retains its strength and tough­ness after long exposure to temperatures as high as 800 F. This property makes the steel especially useful for applications involving both abrasion and elevated temperatures. Its good abrasion resistance is developed by surface work hardening during use.

Nickel increases the weldability of austenitic man­ganese steel by preventing precipitation of embrittling grain-boundary carbides during the slow cooling after welding. The nickel grade therefore is advantageous for components that frequently are reconditioned by weld overlaying methods. Table VIII lists the composition, heat treatment and bending properties of this steel.

TABLE VIII

Composition and Bending Properties of

Cast Austenitic Manganese-Nickel Steel

STEEL

Type ...................... · · · · · · · · · · · · · · · · · · · Specification .................................. .

COMPOSITION Carbon,% .................................... . Manganese, % ................................ . Phosphorus, % ................................ . Silicon,% .................................... . Nickel, % .................................... .

13 Mn-3.5 Ni ASTM A 128

Class D

0.7-1.3 11.5-14.0 .07 max

1.00 max 3.0-4.0

HEAT TREATMENT ..................... Hold at 1832 F min to dissolve carbides, air cool.

BENDING PROPERTIES When required ..................... If specified in purchase order. Requirement ....................... Bend at 75 F through 150 deg

around a 1-inch dia pin with­out breaking.

18

., : C

~ :,;:

"-'

; tl ., ""

Tempering Temperature, C

0 100 200 300 400 500 600 700

Weld Metal

40 Quenched from

from %2 in. E-11018 Electrode

(Composition in Table X)

1700 F 0.4-in. Section

35

25

20 f--+---+-t-+---+-t-+--+---11--+--+---1---1

As 200 Quenched

400 600 800 1000 1200

Tempering Temperature, F

180

170

160

150

140

130

120

110

·;;; ... C, C,

S! ., ., .. C

'E .. :,;: C .,

"C .. ., .. "" :5 ll," ~ "' .. ·;;; ii ... .e .. E ·;:;; e ... ...

C

Fig. 23. Effect of quenching and tempering temperatures on hardness and tensile strength of weld metal deposited from E-11018 coated electrode. 27

WELDING ALLOY STEEL CASTINGS

Basically the same procedures can be used to weld cast alloy steels as for their wrought counterparts. The same weld groove preparations may be used and, as in any weld repair, all defective or contaminated material must be removed. The need for preheat is established by the level of carbon and alloy contents, and the restraint of the weldment. Suggested preheat require­ments based on carbon content are listed in Table IX. When welding low-alloy steels with covered electrodes, coatings of the low-hydrogen type are preferred.

The chemical compositions and mechanical prop­erties of weld metal deposited by some coated elec­trodes are listed in Table X. Table XI gives the mechanical properties required of weld deposits of the 4340 type by Specification MIL-E-8697.

In Table XII the effect of tempering temperature on the properties of HT-4340 weld metal is shown. Information on the tensile strength and hardness of quenched and tempered E-11018 weld metal is shown in Figure 23.

Automatic and semi-automatic MIG and submerged arc processes also can be used to weld cast nickel alloy steels. Because there are differences in the chemical compositions of the wires available from different sup­pliers, it is best to base selection for a particular appli­cation upon information obtained from suppliers. It is

Page 19: NICKEL ALLOY STEEL CASTINGS

particularly important when using the submerged arc process to use the correct flux-wire combination. Some suppliers obtain the properties in the weld metal by adding all of the alloy required through the flux,

whereas others introduce some or all of the alloy in the core wire.

References 1 and 21-26 give background informa­tion on welding high strength steels and castings.

TABLE IX TABLE XII

Suggested Preheat for Welding Nickel Alloy Steel

Castings of Several Carbon Levels

Effect of Tempering Temperature on Properties

of HT-4340 Weld Metal

Carbon,% Temperature, F Tempering Tensile Average Charpy Impact IV-Notch), ft-lb, at Temperature*, Strength,

0.10-0.20 . . . . . . . . . . . . . . . . . . . . . . 80-400 0.20-0.30 ...................... 300-500 0.30-0.45 ...................... 400-600

70 F F psi -4DF OF

450 265,000 13 14 16 800 210,000 10 12 19

• Weld deposits oil quenched from 1550 F.

TABLE X

Composition and Mechanical Properties of Deposited Weld Metal from Electrodes Suitable

for Welding Nickel Alloy Steel Castings

ELECTRODE TYPE MIL-10018 MIL-11018

COMPOSITION a Carbon, max, % ....................................................... . 0.10 0.10 Manganese, % ........................................................ . 0.75-1.70 1.30-1.80 Silicon, max, % ....................................................... . 0.60 0.60 Phosphorus, max, % .................................................... . .030 .030 Sulfur, max, % ........................................................ . .030 .030 Nickel, % ................................ · .... · .. · ·. · ·. · · · · · · · · · · · · · · · 1.40-2.10 1.25-2.50 Chromium, % ......................................................... . 0.35 max 0.40 max Molybdenum, % ....................................................... . 0.25-0.50 0.30-0.55 Vanadium, max, % ..................................................... . .05 .05

MECHANICAL PROPERTIESa Tensile Strength, min, psi ................................................ . 100,000b 110,000b Yield Strength !0.2% offset), min, psi

As Welded .......................................................... . 90,000-102,000 95,000-107,000 Stress Relieved ...................................................... . 82,000 87,000

Elongation (2 in.l, min, % ............................................... . 20' 20' Charpy Impact IV-Notch), average min, ft-lb ................................. . 20 (-60 Fl 20 (-60 Fl

b As welded. • Based on Military Specification MIL-E-22200 (lC), the appropriate job specification should be consulted for details of specimen configura­tion and heat treatment required.

, As welded or stress relieved.

TABLE XI

Mechanical Properties of Heat-Treated Weld Metal*

Heat Treatment Tensile

ELECTRODE TYPE of Weld Metal, F Strength,

Oil Quench Temper psi

HT-4340 1550 1050 150,000-170,000 1550 900 180,000-200,000 1550 800 200,000-220,000

HT-4340 1550 450 260,000-280,000 (UHSl

• Based on Military Specification MIL-E-8697D. The appropriate job specification should be consulted for details of specimen configura­tion and heat treatments required.

19

Yield Strength (0.2% Offset!,

min, psi

120,000 145,000 160,000

200,000

Elongation (4 x dial, min,

%

8 6 5

4

MIL-12018

0.10 1.30-2.25

0.60 .030 .030

1.75-2.25 0.30-1.50 0.30-0.55

.05

120,000b

110,000-122,000 102,000

20' 20 (-60 Fl

Charpy Impact IV-Notch) at D F,

ft-lb

25 12 8

6

Page 20: NICKEL ALLOY STEEL CASTINGS

TABLE XIII

Composition, Heat Treatment, Typical Mechanical Properties and Specifications Met by Castings of Constructional Nickel Alloy Steels

1.5 Mn-0.6-N~ TYPE OF STEEL 1.8 Ni-0.3 Mo 1.5 Ni-0.7 Cr 0.6 Ni-0.6 Cr-0.22 Mo 0.6 Cr-0.35 Mo

1.6 Ni-0.1 V (4600) Ni-Mn (3100) (8600) (9500)

COMPOSITION a

Carbon,% 0.28-0.33 0.28-0.33 0.26-0.32 0.30-0.40 0.25-0.35 0.38 max Manganese, % 0.80-1.10 0.60-1.00 1.25-1.60 0.60-1.00 1.00 max 1.30-1.70 Silicon,% 0.35-0.65 0.35-0.65 0.35-0.65 0.35-0.65 0.80 max 0.80 max Nickel,% 1.25-1.75 1.50-2.00 1.25-1.75 1.25-1.75 0.40-0.80 0.40-0.80 Chromium,% - - - 0.45-0.90 0.40-0.80 0.40-0.80 Molybdenum, % - 0.20-0.40 - - 0.15-0.30 0.30-0.40 Vanadium,% .08-0.12 - - - - -

HEAT TREATMENT,b F N 1600 N 1600 N 1550 wa 1550 N 1750 WQ 1600 T 1200 T 1200 T 1200 T 1200 WQ 1650 T 1100

T 1250

TYPICAL PROPERms C

Tensile Strength, psi 96,000 91,000 101,000 I 14,000 115,000 135,000 Yield Strength, psi 67,000 60,000 68,000 94,000 96,000 115,000 Elongation (2 in.l, % 27 24 25 20 20 20 Reduction of Area, % 51 50 55 45 52 45 Brinell Hardness 190 190 178 236 230 250 Endurance/Tensile Ratiod 0.50 0.47 0.50 0.45 0.47 -Charpy Impact (V-Notch), ft-lb 35• 18• 28 e 271 (-40 F) 40 27•

SECTION SIZE CAPABILITY,1 in. 2 4 5 3 2 4

SPECIFICATIONS MET ASTM A 148 (90-60) ASTM A 148 (80-50) ASTM A 148 (105-85) ASTM A I 48 (I 05-85) ASTM A 148 (120-95) ASTM A 486 (90) SAE J435a (080) SAE J435a (0105) ASTM A 486 (90) ASTM A 486 (120) SAE J435a (090) AAR M-20I (8) AAR M-20I (D) ASTM A 487 (4Ql ASTM A 487 (6Q) AAR M-201 (C) QQ-S-68I (80-50) QQ-S-681 (105-85) ASME SA 487 (4Q) ASME SA 487 (6Q) QQ-S-681 (90-60) MIL-S-I5083 (80-50) MIL-S-I5083 (105-85) SAE J435a (0105) SAE J435a (0120) MIL-S-15083 (90-60) AAR M-201 (D) AAR M-201 (E)

QQ-S-681 (I 05-85) QQ-S-681 (I 20-95) MIL-S-15083 (105-85) MIL-S-15083 (120-95)

TABLE XIII (continued)

TYPE OF STEEL 3.2 Ni-1.6 Cr-0.5 Mo (HY-100) 1.8 Ni-0.7 Cr-0.3 Mo (4300)

COMPOSITION a Carbon,% 0.22 max 0.33-0.37 Manganese, % 0.55-0.75 0.60-1.00 Silicon,% 0.50 max 0.80 max Nickel,% 2.75-3.50 1.40-2.00 Chromium,% 1.35-1.85 0.55-0.90 Molybdenum, % 0.30-0.60 0.20-0.40 Vanadium,% - -

HEAT TREATMENT,b F N 1800 N 1750 N 1650 N 1650 N 1650 WQ 1550 N 1600 QQ * 1525 QQ * 1525 aa· 1525 T 1100 min T 1200 T 1125 T 1000 T 950

TYPICAL PROPERTIESc Tensile Strength, psi 118,000 114,000 130,000 175,000 185,000 Yield Strength, psi 104,000 89,000 108,000 155,000 168,000 Elongation (2 in.), % 20 21 16 14 9.5 Reduction of Area, % 55 50 40 32 20 Brinell Hardness 215 241 280 377 390 Endurance/Tensile Ratio d - 0.49 0.46 0.46 -Charpy Impact IV-Notch), ft-lb 70 HOO FJ 25• 21 e 22 18

SECTION SIZE CAPABILITY,I in. 8 4 4.5 4.5 4.5

SPECIFICATIONS MET ASTM A 148 (120-95) ASTM A 148 (90-60) ASTM A 148 (120-95) ASTM A 148 (175-145) MI L-S-10029 ASTM A 486 (120) ASTM A 487 (ION) ASTM A 487 (I OQ) SAE J435a (0175) MIL-S-46052 080-150) SAE J435a (0120) ASME SA 487 (!ON) ASME SA 487 (1 OQ) QQ-S-681 075-145) AAR M-201 (E) SAE J435a (090) SAE J435a (0120) MIL-S-I0029 QQ-S-681 (120-95) AAR M-20I (Cl AAR M-201 (El MIL-S-I2253 MIL-S-10026 QQ-S-68I (90-60) QQ-S-68I (120-95) MIL-S-15083 (150-125) MIL-S-10029 MIL-S-15083 (90-60) MIL-S-15083 020-95) MIL-S-11356 MIL-S-12253 MIL-S-15083 020-95) MIL-S-23008 (HY-I00)

3 Ni-1.5 Cr-0.5 Mo !HY-80!

0.20 max 0.55-0.75 0.50 max 2.50-3.25 1.35-1.65 0.30-0.60

-N 1800 WQ 1550 T 1100 min

112,000 90,000

23 58

200 -

80 HOO FJ

8

ASTM A 148 (105-85) SAE J435a (0105) AAR M-201 (Dl QQ-S-681 (105-85) MIL-S-10026 MIL-S-10029 MIL-S-11356 MIL-S-12253 MIL-S-15083 (105-85) MIL-S-23008 (HY-80)

N 1850 QQ * 1600 T 400

258,000 202,000

10 23

500 -

191(-40 FJ

3

MIL-S-46052 (220-180)

, Phosphorus, .05% max, sulfur .06% max (Values are lower in a few specifications).

d Data on smooth (no notch) test specimens with a standard polish. • Charpy keyhole notch.

b A = Anneal. N = Normalize. WQ = Water Quench. OQ = Oil Quench. T = Temper.

c Data on 1 by 1 ¼ by 6-inch cast test bars. • Water quenching is used sometimes for simple shapes.

20

r lzod impact. g The steels in this table are capable of meeting the specifications

listed in the section sizes indicated. However, greater thicknesses may be possible in some cases.

Page 21: NICKEL ALLOY STEEL CASTINGS

SUMMARY

The compositions and properties of some of the cast nickel alloy steels frequently used for commercial

applications are summarized in Tables XIII and XIV. (See pages 20 and 21.)

TABLE XIV

Composition, Heat Treatment, Typical Mechanical Properties and Specifications Met by Castings

of Low-Temperature, High-Temperature and Abrasion-Resistant Nickel Alloy Steels

Low Temperature High Temperature Abrasion Resistant

TYPE OF STEEL 0.9 Ni-0.65 Cr-0.5 Mo

2·3 Ni (LC2) 3-4 Ni (LC3) <WC4)

COMPOSITION a Carbon,% 0.25 max 0.15 max 0.20 max Manganese, % 0.50-0.80 0.50-0.80 0.50-0.80 Silicon,% 0.60 max 0.60 max 0.60 max Nickel,% 2.00-3.00 3.00-4.00 0.70-1.10 Chromium,% - - 0.50-0.80 Molybdenum, % - - 0.45-0.65 Vanadium,% - - -

HEAT TREATMENT, b F N 1700 N 1700 N 1900 N 1550 N 1600 N 1600 T1150 T 1150 T 1250

TYPICAL PROPERTIESc Tensile Strength, psi 82,000 80,000 87,000d Yield Strength, psi 62,000 54,000 63,000 Elongation (2 in.),% 32 32 27 Reduction of Area, % 54 60 57 Brinell Hardness 160 160 180 Endurance/Tensile Ratio• 0.55 0.54 -Charpy Impact (V-Notch), ft-lb 25 (-100 Fl 30 (-150 Fl 30

SECTION SIZE CAPABILITY, I in. 2 3 3-4

SPECIFICATIONS MET ASTM A 352 (LC2) ASTM A 352 (LC3) ASTM A 217 (WC4) ASME SA 352 (LC2l ASME SA 352 (LC3) ASME SA 217 (WC4)

, Phosphorus .05 max, sulfur .06 max (Values are lower in some specifications).

b A = Anneal. N = Normalize. WQ = Water Quench. OQ = Oil Quench. T = Temper.

, Properties on 1 by 1 ¼ by 6-inch test bars.

21

1.8 Ni-0.8 Cr• 0.8 Ni-0.7 Cr-1.0 Mo 0.4 Mo-0.1 V- 2.4 Ni-

<WC5) 1.6 Si (300-M) 1.2 Cr-0.3 Mo 2 Ni-0.8 Cr-0.35 Mo

0.20 max 0.28-0.33 0.25 0.48-0.53 0.40-0.70 0.60-1.00 0.35 0.70-0.90 0.60 max 1.45-1.80 0.30 0.30-0.40 0.60-1.10 1.65-2.00 2.40 1.75-2.25 0.50-0.90 0.65-0.90 1.20 0.70-0.90 0.90-1.20 0.30-0.45 0.30 0,30-0.40

- .05min - -N 1900 oa 1650 wa 1550 N 1650 N 1650 N 1650 N 1600 T 600 T 1250 T 600 T 800 T 500 T 1250

91,000d 245,000 188,000 - - -64,000 200,000 175,000 - - -

23 8 10 - - -58 22 40 - - -

192 485 375 490 485 333 - - - - - -58 15(-40f) 21 (-40 F) - - -

4-6 - - - - -ASTM A 217 (WC5) - - - - -ASME SA 217 (WC5) - - - - -

d Type of Steel

Creep Stress, psi, for Creep Rate of .00001 %/hour

WC4 WC5

900 F 1000 F 1100 F 22,500 6300

7000 4800

• Data on smooth (no notch) test specimens with a standard polish. r The steels in this table are capable of meeting the specificatoins

listed in the section sizes indicated. However, greater thicknesses may be possible in some cases.

Page 22: NICKEL ALLOY STEEL CASTINGS

REFERENCES

1. Steel Castings Handbook, Steel Founder's Soc. America, Cleveland, Ohio, 3rd ed., 1960.

2. Electric Furnace Proceedings, AIME.

3. Metals Handbook, Am. Soc. Metals, Metals Park, Ohio, 1948 edition.

4. Hall, A. M., "Nickel in Iron and Steel," John Wiley & Sons (for Engineering Foundation), New York, 1954.

5. The International Nickel Company, Inc., unpublished data.

6. Steel Castings Handbook, Steel Founder's Soc. America, Cleveland, Ohio, 1950 edition.

7. Rys, A., "Cast Alloy Steel in Theory and Practice," Kruppsche Monatsh., 11, 1930, p 47. Also: Stahl u. Eisen, 50, 1930, p 423.

8. Metals Handbook, American Soc. Metals, Metals Park, Ohio, Vol. 1, 8th ed., 1961, p 122.

9. Juppenlatz, J. W., "Water Quenching Small Steel Cast­ings," Steel, 114, May 22, 1944, p 84.

10. Hawkes, M. F., "Research Report No. 3," Steel Founder's Soc. America, Cleveland, Ohio, 1944.

11. Larson, H. R., Campbell, R. C., and Lloyd, H. W., "Development of Low Alloy Steel Compositions Suit­able for High Strength Steel Castings," WADC Techni­cal Report 59-63, June 1959.

12. Zotos, J., "Low Phosphorus and Sulfur for High Ductil­ity and Toughness in Steel Castings," Modern Castings, 37, March 1960, p 42.

13. Polich, R. F., and Flemings, M. C., "Mechanical Prop­erties of Unidirectional Steel Castings," Modern Cast­ings, February 1965, p 84.

14. American Brake Shoe Company, unpublished data.

15. Lebanon Steel Foundry and Newport News Shipbuild­ing & Drydock, unpublished data.

22

16. Knoth, R. J., and Schelleng, R. D., "Notch Tough, High Yield Strength Cast Steel for Heavy Sections," Trans. American Foundrymen's Soc., 72, 1964, p 618.

17. Elman, I. B., and Schelleng, R. D., "Impact Resistance of Nickel-Manganese Cast Steels," Trans. American Foundrymen's Soc., 68, 1960, p 67.

18. ASTM-ASME Joint Publication, "Compilation of Avail­able High-Temperature Creep Characteristics of Metals and Alloys," ASTM, Philadelphia, Pa., 1938.

19. United States Steel Corporation, private communica­tion.

20. Rosenblatt, D. N., "Melting Practice, Heat Treatment and Properties of Low-Alloy Wear-Resistant Steels," AIME Electric Furnace Proceedings, 1963, p 193.

21. Franks, E. H., and Wooding, W. H., "Some Dynamic Mechanical Properties of Heat-Treated Low-Alloy Weld Deposits," Welding J., 35, 1956, p 291s.

22. Smith, D. C., "Evolution of High-Tensile Weld Metal with Low-Hydrogen Electrodes," Welding J., 36, 1957, p 677.

23. Arnold, P. C., "Problems Associated with the Welding of T-1 Material," Welding J., 36, 1957, p 373s.

24. Deesing, E. F., "A Coated Electrode for Fusion Weld­ing AISI 4340 Steel for Ultra High Strength Applica­tions," Bulletin No. 68, Welding Research Council, New York, N. Y., April 1961.

25. Wilcox, W. L., and Campbell, H. C., "Yield Strength of E9018 Weld Metal," Welding J., 40, 1961, p 193s.

26. Masubuchi, K., Monroe, R. E., and Martin, D. C., "Inter­pretive Report on Weld Metal Toughness," Bulletin No. 111, Welding Research Council, New York, N. Y., January 1966.

27. "Weldirectory of Manual Electrodes," The Lincoln Electric Company, Cleveland, Ohio, January 1965, p 13.

28. Thompson, R.H., and Briggs, J. Z., "High Strength Steel Castings Stand Up in Rugged Environments," Materials in Design Engineering, 63, No. 2, Feb. 1966, p 67.