nicola pinna atomic layer deposition 130118

Upload: shcnmartin

Post on 02-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    1/68

    N. Pinna | 18.01.2013

    Atomic Layer Deposition

    Nicola Pinna

    Humboldt-Universitt zu Berlin, Institut fr Chemie, Brook-Taylor-Str. 2, 12489Berlin, Germany

    E-mail: [email protected]

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    2/68

    N. Pinna | 18.01.2013

    Outline of the Presentation

    1. Literature2. Introduction to Atomic Layer Deposition

    3. Chemistry in ALD

    4. ALD Reactors

    5. Nanostructures

    6. Applications

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    3/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    4/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    5/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    6/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    7/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    8/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    9/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    10/68

    N. Pinna | 18.01.2013

    Progress and future directions for

    atomic layer deposition and ALD-based

    chemistry. This issue of MRS Bulletin

    details current progress in atomic layer

    deposition, including the extension of ALDto new regions of the periodic table, and

    molecular layer deposition and vapor in

    filtration for synthesis of organic based thin

    films. The cover image shows a diagram of

    an ALD reaction schemea snapshot of the

    reactants and products as they would be

    flowing from left to right. This is a general,

    stylized ALD reaction scheme to visualize

    surface ligand exchange. The backgroundis a scanning electron microscopy image of

    2 nm ALD-deposited Pt nanoparticles

    uniformly dispersed on strontium titanate

    nanocubes.

    MRS Bulletin / Volume 36 / Issue 11 / November 2011, pp 899-906

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    11/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    12/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    13/68

    N. Pinna | 18.01.2013

    Atomic Layer Deposition

    ALD is a method for depositing thin films onto various substrates withatomic scale precision.

    The principle is similar to chemical vapor deposition (CVD), except thatthe ALD reactions are separated into two half-reactions by keeping the

    precursor materials separate during the reaction.

    ALD film growth is self-limited and based on surface reactions.Therefore, film thickness control can be as fine as one monolayer.

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    14/68

    N. Pinna | 18.01.2013Riikka L. Puurunen, J. Appl. Phys., 2005, 97, 121301

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    15/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    16/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    17/68

    N. Pinna | 18.01.2013

    Short History

    1970s - The ALD technology was developed in Finland and patented.Technology for thin films electroluminescent (TFEL) flat panel display.Suntola, T. and Antson, J., Method for producing compound thin films, USPatent 4 058 430 (1977).At that time the technique was called Atomic Layer Epitaxy (ALE)

    TFEL displays commercialized in 1980 were based on ALDAl2O3/ZnS:Mn/Al2O3 structures

    Ein Flughafendisplay, dessen elektrolumineszenteBeschichtung durch das ALD-Verfahren hergestellt

    wurde. Das Verfahren wurde fr diesen Zweck Endeder siebziger Jahre entwickelt.

    Source: http://www.weltderphysik.de/gebiete/stoffe/duenne-schichten-und-oberflaechen/atomic-layer-deposition/

    Source: http://lumineq.com/en/technology

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    18/68

    N. Pinna | 18.01.2013

    Short History

    Mid-1980s to the mid-1990s - The ALD research was extremely active onthe epitaxial growth of III-V, II-VI, Si and Ge semiconductors

    Beginning of the 21th-century- Microelectronic industry drives thedevelopment of the ALD due to the continuous scaling of microelectronicdevices1st application: ALD of Al2O3 insulating layers in DRAM capacitors due tothe need of rather thin and conformal coating of high aspect ratio

    structures2007: Intel announces the use of HfO2-based high- gate oxides in CMOStransistors ALD

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    19/68

    N. Pinna | 18.01.2013

    Intel in 2007 introduced ALD of Hf-based oxide in 45 nm technology

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    20/68

    N. Pinna | 18.01.2013http://nano.tkk.fi/en/research_groups/microfabrication/research/microfabrication/

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    21/68

    N. Pinna | 18.01.2013

    Introduction to the Chemistry Employed in ALD

    Oxides: Hydrolysis-Condensations Oxygen sources (H2O, H2O2, O3,...)

    Nitrides: Aminolysis (e.g. NH3)

    Sulfides: Sulfur, Hydrogen sulfide

    Metals: O

    2, H

    2, etc.

    Requirements for the precursors: Reasonably high vapor pressure in order to allow saturation of the chambervolume upon dosing Good thermal stability to avoid decomposition prior to the next step Must chemisorb onto the substrate to be coated

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    22/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    23/68

    N. Pinna | 18.01.2013

    Metal Precursors

    M. Putkonen, Chapter 3: Precursors for ALD Processes

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    24/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    25/68

    N. Pinna | 18.01.2013

    Basic hydrolysis of alkoxysilanes (SN2)

    Acid hydrolysis of alkoxysilanes (proton assisted SN1)

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    26/68

    N. Pinna | 18.01.2013

    Polycondensation

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    27/68

    N. Pinna | 18.01.2013

    Silica Growth in ALD: Base Catalyzed

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    28/68

    N. Pinna | 18.01.2013

    Silica Growth by ALD: Self-Catalyzed

    a) Anchoring: surface hydroxygroups cleave Si-OEt bonds ofthe silane under self-catalysis bythe pendent amino group (green),causing chemisorption

    b) Hydrolysis: remaining ethoxygroups are removed self-catalytically

    c) Oxidation: the aminoalkyl armis removed by ozone

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    29/68

    N. Pinna | 18.01.2013

    Platinum thin films were grown at 300 C by atomic layer deposition (ALD) using(methylcyclopentadienyl)trimethylplatinum (MeCpPtMe3) and oxygen as precursors. Thefilms had excellent uniformity, low resistivity, and low-impurity contents.

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    30/68

    N. Pinna | 18.01.2013

    Plasma-enhanced ALD

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    31/68

    N. Pinna | 18.01.2013

    Plasma-enhanced ALD

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    32/68

    N. Pinna | 18.01.2013

    Molecular Layer Deposition

    Illustration of surface chemistry forPPTA MLD using terephthaloyl chlorideand p-phenylenediamine as reactants.

    S.M. George, B. Yoon, A.A. Dameron; Acc. Chem. Res. 2009, 42, 498-508.

    Illustration of surface chemistry forpoly(aluminum ethylene glycol) aluconeMLD using TMA and EG as reactants.

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    33/68

    N. Pinna | 18.01.2013

    1. Nonhydrolytic Hydroxylation Reactions(Formation of M-OH species)

    Reaction of alcohols with metal halides:

    1) Coordination of the alcohol to the metal centre

    2) a) Formation of metal alkoxide under elimination of HX

    b) Formation of hydroxyl group and elimination of alkyl halide RX(if R is an electron-donor substituent, the nucleophilic attack ofthe chloride on the carbon group is favored)

    A. Vioux: Chem. Mater. 1997, 9, 2292-2299

    Nonaqueous Sol-Gel Routes to Oxides

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    34/68

    N. Pinna | 18.01.2013

    Aprotic Condensation Reactions

    (M-O-M Bond Formation)

    A. Vioux: Chem. Mater. 1997, 9, 2292-2299

    Reaction between two metal alkoxides under ether elimination

    Reaction between metal acetates and metal alkoxides under ester elimination

    Reaction between metal alkoxides and metal halides under alkyl halide elimination

    Nonaqueous Sol-Gel Routes to Oxides

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    35/68

    N. Pinna | 18.01.2013

    Alkyl Halide Elimination

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    36/68

    N. Pinna | 18.01.2013

    M-OR + RCOOH M-OOCR + ROH Eq. 1

    M-OOCR + M-OR

    M-O-M

    + RCOOR Eq. 2

    Non-Aqueous Sol-Gel Routes Applied to ALD

    Angew. Chem. Int. Ed. 2008, 47, 3592 - J. Phys. Chem. C 2008, 112, 12754,J. Mater. Chem. 2009, 19, 454 - Adv. Funct. Mater. 2011, 21, 658Patent WO 2008 098963 A2

    Low oxidative character of carboxylic acids Large deposition temperature range

    High quality and purity of the films No OH groups involved in the M-O-M bond formation

    Metal Precursors: Hf(OtBu)4, Ti(OiPr)4, VO(OPr)3, Sn(OtBu)4 Oxygen Sources: Carboxylic acids e.g. acetic acid Deposition temperature: 50 350 C

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    37/68

    N. Pinna | 18.01.2013

    3rd TIP 2nd Ac.

    3rd Ac. 3rd TIP

    Ti-OCCD3

    SiH

    CH

    10001500200025003000 Wavenumbers (cm-1)

    COO

    3rd cycle

    14th cycle

    Difference FT-IR spectra

    14th TIP 13th Ac.

    14th Ac. 14th TIP

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    38/68

    N. Pinna | 18.01.2013

    TiO2

    Self-limiting growth!

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    39/68

    N. Pinna | 18.01.2013

    ALD Reactors

    Copyrighted Content Removed

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    40/68

    N. Pinna | 18.01.2013

    Copyrighted Content Removed

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    41/68

    N. Pinna | 18.01.2013

    Copyrighted Content Removed

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    42/68

    N. Pinna | 18.01.2013

    Compact Reactors

    Copyrighted Content Removed

    B h

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    43/68

    N. Pinna | 18.01.2013

    Various types of typical ALD reactor systems. a) Cross-flow reactorsystem based on forced flow laterally across the wafer. b) systemwith single injector above the center of the wafer. c) shower headsystem; gas is injected through an array of injectors covering theentire wafer surface. d) Vertical batch reactor: 50150 wafers areprocessed simultaneously.

    Batch Reactors

    E. Granneman, P. Fischer, D. Pierreux, H. Terhorst, P. Zagwijn, Surf.Coatings Technol. 2007, 201, 8899

    Copyrighted Content

    Removed

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    44/68

    N. Pinna | 18.01.2013

    J. Meyer and T. Riedl. Chapter 6: Low-Temperature Atomic Layer Deposition

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    45/68

    N. Pinna | 18.01.2013

    Fluidized bed reactor Rotary reactor

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    46/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    47/68

    N. Pinna | 18.01.2013

    Fabrication of Nanostructures

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    48/68

    N. Pinna | 18.01.2013

    Nature Mater. 2006, 5, 627.

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    49/68

    N. Pinna | 18.01.2013

    Conformal coating of carbon nanotubes

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    50/68

    N. Pinna | 18.01.2013

    HfO2TiO2

    VOx

    Carbon nanotube

    TiO2

    VOx

    SEM images recorded at

    different accelerationvoltages using SE and BSEdetectors prove that thetubes are coated on the in-and outside surfaces.

    Characterization:SEM

    Nano Lett. 2008, 8, 4201 - Phys. Chem. Chem. Phys. 2009, 11, 3615 - Adv. Funct. Mater. 2011, 21, 658

    Conformal coating of carbon nanotubes

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    51/68

    N. Pinna | 18.01.2013

    Characterization:HRTEM

    High resolution imagingshows the amorphous

    character of the asdeposited films.However, in the case ofVxOy films, annealing at150C induces

    crystallization (V2O5).

    HfO2 TiO2

    VOx VOx after annealing @ 150C

    Chemical Analysis

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    52/68

    N. Pinna | 18.01.2013

    Characterization: Electron Energy Loss Spectrometry (EELS)

    Chemical Analysis

    Effect of the CNTs functionalization

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    53/68

    N. Pinna | 18.01.2013

    Effect of the CNTs functionalization

    J. Mater. Chem. 2012, 22, 7323

    Effect of the CNTs functionalization

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    54/68

    N. Pinna | 18.01.2013

    Effect of the CNTs functionalization

    J. Mater. Chem. 2012, 22, 7323

    Applications in Energy Related Fields

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    55/68

    N. Pinna | 18.01.2013

    pp gy

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    56/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    57/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    58/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    59/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    60/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    61/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    62/68

    N. Pinna | 18.01.2013

    Gas Sensors

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    63/68

    N. Pinna | 18.01.2013

    3 mm

    6mm

    3 mm

    6mm

    Front sidegold electrodes

    Back sideplatinum contacts

    Cross section

    0.3

    8

    mm

    Alumina substrate

    Sensing layer

    50 m

    Angew. Chem. Int. Ed. 2004, 43, 4345

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    64/68

    N. Pinna | 18.01.2013Nano Lett. 2008, 8, 4201 - Phys. Chem. Chem. Phys. 2009, 11, 3615 - Adv. Funct. Mater. 2011, 21, 658

    SnO2 coated CNTs

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    65/68

    N. Pinna | 18.01.2013

    0 1000 2000 3000

    40

    42

    44

    46 a)

    Time (sec)

    Resistance()

    NO2in

    NO2out

    Pure CNTs are p-type semi-conductors SnO2 coated CNTs are n-type semiconductors

    formation of a p-n heterojunctionbetween the metal oxide film and support

    Nano Lett. 2008, 8, 4201 - Adv. Funct. Mater. 2011, 21, 658

    0 200 400 600 80010

    4

    10

    5

    Resistance

    ()

    Time (sec)

    5 ppm NO2

    NO2 in

    NO2 out

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    66/68

    N. Pinna | 18.01.2013

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    67/68

    N. Pinna | 18.01.2013

    Oxidative dehydrogenation of ethane toethylene at 650 C

    SCIENCE, 2012, 335,1205

  • 8/10/2019 Nicola Pinna Atomic Layer Deposition 130118

    68/68

    N. Pinna | 18.01.2013NATURE CHEMISTRY, 2012, 4, 1031