nitrided (oxynitride) glasses...nitrided (oxynitride) glasses spring school gdr verres, cargèse...

44
Nitrided (oxynitride) glasses Spring School GDR Verres, Cargèse 2017 Francisco Muñoz Ceramics and Glass Institute (CSIC), Madrid (Spain) [email protected] The origin and concept of nitrided glasses Methods of preparation. Silicates vs Phosphates Structure of oxynitride networks Effect of N on physical and chemical properties Applications and current developments

Upload: others

Post on 18-Feb-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

  • Nitrided (oxynitride) glasses

    Spring School GDR Verres, Cargèse 2017

    Francisco MuñozCeramics and Glass Institute (CSIC), Madrid (Spain)

    [email protected]

    The origin and concept of nitrided glassesMethods of preparation. Silicates vs PhosphatesStructure of oxynitride networksEffect of N on physical and chemical propertiesApplications and current developments

  • First experiments by Hans-Otto Mulfinger:Studied dissolution of N through bubbling N2, H2/N2 or NH3 in silicate and borate melts: < 1 wt. % N

    (Mulfinger, J. Am. Ceram. Soc. 49 (1966) 462)

    Origin of nitrided glasses

    Importance of nitrogen in glasses:Hot pressing of nitrogen containing ceramics to produce SiAlON phasesand formation of a glassy phase at grain boundaries

    (Jack, J. Mat. Sci. 11 (1976) 1135)Incorporation of nitrogen in phosphate glassesThermal ammonolysis of the phosphate melt

    (Marchand, CR Acad Sc Paris 294 (1982) 91,Marchand, J. Non-Cryst. Solids 56 (1983) 173)

  • Synthesis of oxynitride glasses

    • Silicate glasses: melting with metallic nitrides

    Si3N4, AlN, Li3N, Ca3N2, Mg3N2 (Hampshire, J. Eur. Ceram. Soc. 28 (2008) 1475Sharafat, Ceram. Int. 41 (2015) 3345)

    La + SiO2 + Si3N4 (Hakeem, Adv. Mat. 17 (2005) 2214)

    • Phosphate glasses: thermal ammonolysis of phosphate melts

    Melting of phosphate glass+

    Thermal treatment in NH3 flow at T < 800ºC

    Liquid-gas chemical reaction: MPO3 + xNH3 → MPO3-3x/2Nx + 3x/2H2O

  • — O — P — N —

    O-

    O-

    — O — P O —

    N

    O-

    — O — P — N —

    O-

    N

    — O — P — O —

    O

    O-

    Metaphosphate glassnetwork

    Exception to one of Zachariasen’s rules:“Anions should not bind more than 2 central atoms”Þ Higher degree of interconnected network

    PO3N

    PO2N2

    Improves the chemical resistanceIncreases the electrical conductivityIncreases viscosity Þ Higher resistance to devitrification

    NH3

    Substitution of nitrogen for oxygen in phosphates

  • TNH3

    N2N2

    Tt

    t

    Phosphateglassmelting+

    ThermaltreatmentinNH3 atT

  • N/Pra

    tio

    N/P=KT·Öt

    N/Pa T

    F.Muñozetal.,Phys.Chem.Glasses 43C(2002)113;FMuñoz52(4)(2011)181

    Kinetics inLiNaPbPO3-3x/2Nx glasses

    Substitution of nitrogen for oxygen in phosphates

  • SubstitutionrulesbyMarchand:Nt =3/2B

    Nd =NBO+1/2BO

    Substitution of nitrogen for oxygen in phosphates

    2PO4+NH3 PO3N-PO3N

    PO4+PO3N+NH3 PO2N2-PO3N

    Systemof2pseudo-firstorderconsecutivereactions

    F.Muñozetal.,Phys.Chem.Glasses 43C(2002)113;FMuñoz52(4)(2011)181

  • 200 300 400 500 600 700 800 900 1000 1100 12000

    2

    4

    6

    8

    10

    12 NaPO3 LiPO3 Ba(PO3)2 Sr(PO3)2 Ca(PO3)2 Zn(PO3)2 Mg(PO3)2 VFT

    log h

    (dP

    a.s)

    T (ºC)

    NaPO3LiPO3

    LiNaPO3LiZnPO3

    Alkali+akaline-earth

    Substitution of nitrogen for oxygen in phosphates

    Muñoz-Senovilla et al., J. Non-Cryst. Solids 385 (2014) 9-14

  • 0.4 0.6 0.8 1.0 1.2 1.4 1.6

    log ( in dPa.s)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    N/P

    ratio

    h h

    Na-Pb-P-O-NLi-Pb-P-O-N

    Li-Na-Pb-P-O-N

    Parameters controlling nitrogen incorporation:Viscosity of the phosphate melt at the temperature of ammonolysisIonic Field Strength (z/r2)of the modifier cations

    Substitution of nitrogen for oxygen in phosphates

  • • Metals:Dependence on their reduction EºPrecipitation of Cu, Ag, AuSn4+ ® Sn2+Pb2+ ® Pb possible in PbPO3

    • Volatiles: S2-, F-, SO42- (reduced)

    • Former elements:SiO2 and Al2O3 increase reaction TB2O3 lowers the N content, may form BN

    0 2 4 6 8 10

    % B2O3

    0.2

    0.4

    0.6

    0.8

    wt.

    % N

    2

    N2 in (50-x)Li2O.xB2O3.P2O5 700ºC, 0.5 h

    Li+ +  e− ® Li(s)Na+ +  e− ® Na(s)Ba2+ + 2 e− ® Ba(s)Ca2+ + 2 e− ® Ca(s)La3+ + 3 e− ® La(s)Ti3+ + 3 e− ® Ti(s)Zn2+ + 2 e− ® Zn(s)Pb2+ + 2 e− ® Pb(s)

    Cu+ +  e− ® Cu(s)Ag+ +  e− ® Ag(s)Au3+ + 3 e− ® Au(s)Sn4+ + 2 e− ® Sn2+

    E°(V)−3.0401

    −2.71−2.912−2.868−2.379−1.21

    −0.7618−0.13

    +0.520+0.7996

    +1.52+0.15

    • Alkali and alkaline-earth elements:No problem provided the melt viscosity is low

    Substitution of nitrogen for oxygen in phosphates

    100 nm

    PbPO3

  • Structure of oxynitride glasses

  • 29Si NMR

    Y15Si15Al10O4515N15

    Y12.3Si18.5Al7.1O54.215N7.9

    -47, -52, -60, -70, -81 ppm:

    Koroglu et al., Phys. Chem. Glasses 52 (2011) 175

    SiN4 (impurities from melting)SiN3OSiN2O2SiNO3SiO4

    Structure of oxynitride glasses

  • 15N NMR (I=-1/2, 0,37%,4.10-6), needing enrichment in 15N

    Y15Si15Al10O4515N15

    Y12,3Si18,5Al7,1O54,215N7,9

    Y15,2Si14,6Al8,7O54,715N6,9

    %N

    -268 ppm: NSi2

    -300 ppm: NSi3

    Si-N=Si

    Si-N

  • -40-30-20-1001020Chemical shift 31P (ppm)

    Inte

    nsity

    (a.u

    .)

    N/P = 0.10

    N/P = 0.12

    N/P = 0.22

    N/P = 0.25

    N/P=0.46

    N/P=0.68

    31P MAS NMR9.4 T, 10 kHz

    Structural groups distribution in NaPO3-3x/2Nx glasses

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    N/P ratio

    0

    20

    40

    60

    80

    100

    % P

    (O,N

    ) 4 g

    roup

    s

    PO4PO3N

    PO2N2

    1. PO3N formed2. PO2N2 from PO3N-PO4 regions

    PO4

    PO3NPO2N2

    Structure of oxynitride glasses

  • -50-40-30-20-10010Chemical shift 31P (ppm)

    N/P = 0.05

    N/P = 0.10

    N/P = 0.18

    N/P = 0.42

    N/P = 0.45

    N/P = 0.63

    Inte

    nsity

    (a.u

    .)31P MAS NMR9.4 T, 10 kHz

    PO4

    PO3N

    PO2N2

    Structural groups distribution in LiPO3-3x/2Nx glasses

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    N/P ratio

    0

    20

    40

    60

    80

    100

    % P

    (O,N

    ) 4 g

    roup

    s

    PO4PO3NPO2N2

    Much lower content of PO3N groupsIs nitrogen segregated in regions of PO2N2 ?

    Structure of oxynitride glasses

  • LiPO3-3x/2Nx

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    N/P ratio

    0

    20

    40

    60

    80

    100

    % P

    (O,N

    ) 4 g

    roup

    s

    PO4PO3N + PO2N2

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    N/P ratio

    0

    20

    40

    60

    80

    100

    % P

    (O,N

    ) 4 g

    roup

    s

    PO4PO3N + PO2N2

    NaPO3-3x/2Nx

    Structure of oxynitride glasses

  • Correlations

    PO4-PO4

    PO4-PO3N

    PO3N-PO2N2

    Q1-Q1 (Pyrophosphate)

    Homogeneous distributionof oxynitride microdomains

    Double Q

    uantumdim

    ension, w1 (ppm

    )

    MAS dimension, w2 (ppm)

    A: Q2(-20.5 ppm)

    C: PO2N2(-3.1 ppm)

    Q1(+4.1 ppm)

    A-A

    A-B

    B-CQ1-Q1

    B: PO3N(-7.6 ppm)31P DQ MAS NMR

    9.4 T, 10 kHzN/P = 0.69

    B-A

    C-B

    31P DQ MAS NMR in Li0.25Na0.25Pb0.25PO3-3x/2Nx

    Structure of oxynitride glasses

    F. Muñoz et al., J. Non-Cryst. Solids 324 (2003) 142-149

  • N1s XPS

    Intensity (a.u.)

    Binding energy (eV)

    401 399 397 395

    Nt (-N

  • 3QMAS 17O9.4 T

    -461-230023046117O frequency shift (ppm)

    NaPO3

    9.4 T

    BO

    NBO

    — O — P — O —

    O

    O-

    Structure of oxynitride glasses

    In a metaphosphate glass:

    17O NMR9.4 T

  • 170 60708090100110120130140150160

    diso/ppm (17O)

    BO

    NBO1

    NBO2

    3Q-MAS 17O

    Inte

    nsity

    (a. u

    .)

    25507510012515017O frequency shift (ppm)

    NaP17O3

    NaP17ON-1

    NaP17ON-2

    NaP17ON-3

    NaP17ON-4

    Inte

    nsity

    (a.u

    .)

    18.8 T108.48 MHz20 kHz3.2 mm

    BO

    NBO

    Structure of oxynitride glasses

    Down-field shift of 17O resonance in PON of imidophosphates(J. Am. Chem. Soc. 105 (1983) 6475)

  • Sample dCS % PON

    NaP17ON 8.0 (4.0) 0

    NaP17ON-1 14.9 (5.2) 20

    NaP17ON-2 14.2 (7.1) 41

    NaP17ON-3 12.2 (8.3) 53

    NaP17ON-4 15.8 (8.8) 81

    — O — P — N <

    O

    O-

    PO3N: BO/NBO = 0.25

    -O — P — N <

    N

    O-

    PO2N2: BO/NBO = 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7N/P ratio

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    % P

    ON

    calculated

    17O NMR

    % PON = [100×(xPO3N + xPO2N2)]/[ xPO4 + xPO3N + xPO2N2]

    Structure of oxynitride glasses

    — O — P — O —

    O

    O-PO4: BO/NBO = 0.5

  • Properties and applications

  • Oxynitride phosphate glasses: thermal and chemical stability

    0 40 80 120 160 200

    tiempo (h)

    0

    2

    4

    6

    8

    10

    12

    m/S

    (mg

    cm-2

    )D

    N/P=0

    N/P=0,03

    N/P=0,05

    N/P=0,22

    Weight loss vstimeat55ºCInLiNaPbPON glasses

    T=55ºC

    Time(h)

  • 0.0 0.1 0.2 0.3 0.4 0.5 0.6

    N/P

    240

    260

    280

    300

    320

    340

    360

    T g (º

    C)

    NaPbPONLiNaPbPONLiPbPON

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    N/P

    10

    12

    14

    16

    18

    20

    22

    (30-

    225

    ºC) x

    106

    (K-1

    )

    a

    NaPbPONLiNaPbPONLiPbPON

    F. Muñoz et al, Phys. Chem. Glasses 43C (2002) 39

    Nitrogen variable content allows for the adjustment of thesoftening temperatures as well as the coefficients of thermal expansion

    Properties of Li2O-Na2O-PbO-P2O5 sealing glasses

    Low temperature sealing glasses

  • Control of the dissolution rate:• CaO/Na2O ratio• Content of nitrogen in the glass

    Q. Riguidel et al. Acta Biomaterialia 7 (2011) 2631

    Biocompatible/resorbable materials

  • Oxynitride phosphate glasses: stability against crystallization in LiPON

    0 100 200 300 400 500 600 700 800

    Temperature (ºC)

    -80

    -60

    -40

    -20

    0

    20

    40

    DTA

    ( V

    )

    AN2-80

    -60

    -40

    -20

    0

    20

    40

    60A

    0 100 200 300 400 500 600 700 800

    -80

    -60

    -40

    -20

    0

    20

    40

    DTA ( V)AN3

    -80

    -60

    -40

    -20

    0

    20

    40

    60AN1

    µµ

    Tg Tg

    TgTg

    Increase ofthermal stability

    N/P=0 N/P=0.05

    N/P=0.15 N/P=0.22

  • Bates et al., Solid State Ionics 135 (2000) 33

    RF magnetron sputtering

    Li3PO4 N2

    LiPON (Li~2.8PO~3.5Nx) amorphous

    s (25ºC) ~ 2·10-6 S cm-1, Ea = 0.55 eV

    Yu et al., J. Electrochem Soc. 144(2) (1997) 524

    „I learned that adding nitrogen to sodiummetaphosphate glasses improves their durabilityin contact with air and water vapor. So we decided tosputter the lithium orthophosphate in nitrogen ratherthan the standard gas mixture of argon and oxygen.… the presence of this small amount of nitrogen greatlyimproves the performance of the electrolyte.“

    J. B. Bates

    Development of phosphate and oxynitride phosphate glasses

    Solid electrolytes for lithium batteries

  • Wang et al., J. Non-Cryst. Solids, 183 (1995) 297-306

    • Higher s in the glassy material than in the crystalline counterpart• Increase in s with increasing nitrogen content• Increase in the thermal and mechanical stability of the electrolyte• The oxynitride may act as a protecting barrier for Li-metal

    Solid electrolytes for lithium batteries

  • 0.0 0.1 0.2 0.3

    N/P ratio

    0.60

    0.65

    0.70

    0.75

    E a (e

    V)

    Li1.22PO3.11-3x/2Nx

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    N/P ratio

    -9.0

    -8.5

    -8.0

    -7.5

    -7.0

    log

    ( in

    S c

    m-1

    ), 25

    ºCs

    LiPO3-3x/2Nx

    Li1.22PO3.11-3x/2Nx

    Li1.35PO3.18-3x/2Nx

    Solid electrolytes for lithium batteries

  • N. Mascaraque et al. Solid State Ionics 233 (2013) 73-79

    XPSO1s

    Solid electrolytes for lithium batteries

  • ratio

    N. Mascaraque et al. Solid State Ionics 233 (2013) 73-79

    The change inBO/NBOratioafter nitridation decreases wtih Li2OThe higher the BO/NBOchange,the higher the increase ins

    N/P=0.25

    Solid electrolytes for lithium batteries

  • 1st melting: 55Li2O.45P2O5 + NH3 Li-P-O-N

    2nd melting: Li-P-O-N + LiF Li-P-O-F-N

    Synthesis of (55-x/2)Li2O.xLiF.(45-x/2)P2O5 glasses

    0 1 2 3 4

    mol % F2

    280

    290

    300

    310

    320

    330

    340

    350

    T g (º

    C)

    Non-nitrided glasses

    Oxynitride glasses 4 mol % N2

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    mol % F2

    -9

    -8

    -7

    -6

    Log

    ( in

    S.c

    m-1

    ), 25

    ºCs

    Oxynitride glasses 4 mol % N2

    Non-nitrided glasses

    Mascaraque et al. Solid State Ionics 254 (2014) 40

    N2

    Solid electrolytes for lithium batteries

  • Log s LiPON = -7.8Log s LiPOSN = -6.6

    Æ=10 mm

    Ar in out

    Silica tube

    Silica cap

    Vitreous carboncrucible

    Sample

    Silicon rubber

    1 mol Li1.22PO2.66N0.3 + 0.2 mol Li2S

    Melted @ 650ºC for 30 min in Ar flowusing vitreous carbon crucible

    Mascaraque et al. J. Non-Cryst. Solids405 (2014) 159

    Solid electrolytes for lithium batteries

  • Nd-doped luminiscent oxynitride glasses

    Optical properties ofnitridedglasses

    15Na2O-15K2O-20BaO-50P2O5+0.5wt.%Nd2O3

    0.0 0.1 0.2 0.3

    N/P ratio

    300

    305

    310

    315

    320

    325

    330

    T g (º

    C)

    Na0.3K0.3Ba0.2PO3-3x/2Nx

  • Nd-doped luminiscent oxynitride glasses

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2Time (ms)

    -7.0-6.0-5.0-4.0-3.0-2.0-1.00.01.02.0

    Inte

    nsity

    (arb

    . uni

    ts)

    4F3/2 lexc= 800 nm

    P13P13N1P13N2P13N3P13N4P13N5

    Transition: 4F3/2→4I11/2

    1010 1030 1050 1070 1090 1110 1130 1150Wavelength (nm)

    0.00

    0.03

    0.06In

    tens

    ity (a

    rb. u

    nits

    )

    P13

    P13N2P13N3P13N4P13N5

    P13N14F3/2®4I11/2

    0.0 0.1 0.2 0.3

    N/P ratio

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    (ms)

    t

  • Nd-doped luminiscent oxynitride glasses

    15002000250030003500400045005000

    wave number (cm-1)

    0

    25

    50

    75

    100

    Tran

    smitt

    ance

    (%)

    N/P=0.13 after ammonolysis

    N/P=0.13 + N2 at 800ºC, 3 hN/P=0.13 + N2 at 750ºC, 3 h

    150020002500300035004000450050005500

    wave number (cm-1)

    0

    25

    50

    75

    100

    Tran

    smitt

    ance

    (%)

    N/P=0

    N/P=0.14N/P=0.13

    N/P=0.27N/P=0.17 N-H and O-H bonds may contribute to

    The non-radiative decay of the Nd3+Fluorescence and make decrease theAverage lifetime

    Thermal annealing at temperaturesAbove the ammonolysis T can reduceThe water content in the glasses andImprove their optical quality

  • • Nitrogen increases the glass-forming range

    • Improves thermal and chemical stability

    • Modifies diffusion depending properties

    • Allows application of phosphates below Tg

    Conclusions

  • Thank you for your attention

    Francisco MuñozCeramics and Glass Institute (CSIC), Madrid (Spain)

    [email protected]

  • 1988. Richard Brow & Mary Reidmeyer: NaPON, LiPONN substitution without preference for BO and NBO oxygens

    2000. André Le Sauze & Roger Marchand: LiNaPONRandom distribution of N, growing of oxynitride regionsat the expense of the oxide regions

    Nt = 3/2 BO, Nd = NBO + 1/2BO

    2003. F. Muñoz, L. Pascual, A. Durán, L. Montagne & Roger MarchandMechanism of nitridation based on the preference for the oxygensnear Pb2+ in LiNaPbPON

    2006. F. Muñoz, L. Pascual, A., R. Berjoan & Roger Marchand: LiNaPbPONXPS O1s results on the N for O substitution following Marchand’s rules

    2013. F. Muñoz, L. Montagne, L. Delevoye, T. CharpentierDistinction between BO and NBO in P(O,N)4 tetrahedra[J. Non-Cryst. Solids 363 (2013) 134]

  • PO3N PO2N2PO3N

  • 0.0 0.1 0.2 0.3

    N/P ratio

    -9.0

    -8.5

    -8.0

    -7.5

    -7.0

    log

    (

    in S

    cm

    -1),

    25ºC

    s LiPO3-3x/2Nx

    Li1.22PO3.11-3x/2Nx

    Li1.35PO3.18-3x/2Nx

    s

    Increaseofnon-bridgingoxygensÞ s

    strengthofLi-O

    Þ counteracts s

    F. Muñoz et al., Solid State Ionics 179 (2008) 574

    Oxynitride phosphate glasses: conductivity in LiPON glasses

  • PCl5 + 4H2O* ® H3PO*4 + 5HCl

    H3PO*4 + Na2CO3 ® NaH2PO*4 + CO2 + H2O ® NaPO*3

  • Phosphate glasses in biodegradable composite materials• Congruent dissolution in aqueous media• Control of the dissolution rate• Glass formulation with bio-compatible elements

    ApplicationsReinforcement with polymers and calcium phosphate cementsPhosphate glass fibersDrugs release; Antibacterial effect, antimicrobial (Ga, Cu, Ag)Fluorine release for reparation in odontology

    Knowles J.C. et al., J. Mater. Chem. 13 (2003) 2395Valappil S.P. et al., Adv. Func. Mater. 18 (2008) 732

    Abou Neel E.A. et al., J. Mater. Chem. 19 (2009) 690Lin S.T. et al., Biomaterials 15(13) (1994) 1057

    Increase of chemical durability ® + Fe, Al

    Biocompatible/resorbable materials

  • TV solder glasses: BaO-PbO-ZnO-B2O3-SiO2PbO must be substituted : Low softening T and high CTE

    source: SCHOTT technical handbook

    Low temperature sealing glasses

    1. Sealing temperature T < Tm melting temperature2. Viscosity: Log h = 3 – 53. Adjust coefficient of thermal expansion

    Da = am - ag = 0.5 – 1.10-6 K-15. Minimize residual tensions5. High chemical durability at the same time6. Low thermal expansion7. High electrical resistance