nlc beam delivery

16
NLC - The Next Linear Collider Project NLC Beam Delivery Lehman Review, May 1999 Vacuum System Cost Model Presentation by Leif Eriksson

Upload: leanne

Post on 14-Jan-2016

30 views

Category:

Documents


0 download

DESCRIPTION

NLC Beam Delivery. Lehman Review, May 1999 Vacuum System Cost Model Presentation by Leif Eriksson. NLC Beam Delivery Vacuum: Presentation Content. Systems Presentations, WBS numbers Base Line Specifications Material Choices Base Pressure Calculations and Pressure Profiles - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: NLC Beam Delivery

NLC - The Next Linear Collider Project

NLC Beam Delivery

Lehman Review, May 1999

Vacuum System Cost ModelPresentation by Leif Eriksson

Page 2: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum:Presentation Content

• Systems Presentations, WBS numbers

• Base Line Specifications

• Material Choices

• Base Pressure Calculations and Pressure Profiles

• Component Specification and Choices

• Costing Procedure and System Costs

• R&D

• Summary

Page 3: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum:System Presentation

• NLC Beam Delivery is located between e- and e+ Linac.

• NLC Beam Delivery is sub-divided in:– Collimation Area, WBS 115

– Interaction Region Transport Line 1, IRT 1, WBS 116

– Interaction Region 1, IR 1, WBS 117

– Interaction Region Transport Line 2, WBS 118

– Interaction Region 2, IR 2, WBS 119

Page 4: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum: Baseline specs

• Must have:– Base Pressure 5E-7 Torr in the

Collimation Area [ZDR]

– Base Pressure 5E-8 Torr in the Big Bend Area [ZDR]

– Base Pressure 5E-9 Torr in the Final Focus Area [ZDR]

– Low electrical resistance

– Small aperture, ~ 1/2” ID

– Uniform, smooth transition, inner diameter

• Specials:– Big Bend, absorb synchrotron

radiation, 31.4 W/m @ 500 GeV

Page 5: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum: Materials

• Materials to chose from:

– Stainless steel, low outgassing, cheap

– Aluminum, low outgassing, cheap, good conductor, easy to extrude

– Copper, low outgassing, good heat absorber, good conductor, easy to extrude

Page 6: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum: Pressure calculations

Pressure Profile Calculation for NLC Beam Delivery

Parameters:I.D of 1/2L between Total Conduc- Pumping Distance Pressure at

beam line pumps Outgassing Outgassing tance Speed from pmp. Px

ID (cm) L (cm) Q (Torr ltr/s/cm2) QTOT (Torr ltr/s) C (Ltr/s) Sp (Ltr/s) X (cm) Px (Torr) Material

1.10 650 1.0E-12 3.46E-12 0.02 30 650 4.54E-08 Copper/Stainless Steel1.10 100 5.0E-11 1.73E-10 0.16 30 100 5.42E-08 Aluminum3.00 1800 1.0E-12 9.42E-12 0.18 30 50 3.13E-09 Copper/Stainless steel3.00 550 1.0E-11 9.42E-11 0.59 30 550 4.54E-08 Aluminum

Approximate outgassing rate of Aluminum according to J. Weinberg: 5.0E-11 Torr ltr/s

Approximate outgassing rate of Aluminum according to AVS: 5.0E-13 Torr ltr/s

Approximate outgassing rate of Copper according to AVS: 1E-12 Torr ltr/s

Approximate outgassing rate of stainless steel according to AVS: 1E-12 Torr ltr/s

ID Inner diameter of beamline [cm]

L Half the length between pumps [cm]

Q Outgassing rate [Torr ltr/second/cm2]

QTOT Total outgassing from the inner surface area over L QTOT = (D x 3.14 x L x Q)/L [Torr ltr/second/cm]

C Conductance C = 12.1(ID3/L) [l/s]

Sp Pumping speed at the entrance to the beam line [l/s]

X Point at where the pressure, Px, is calculated [cm]

Px Pressure at point X Px = [(L/Sp) + (X/C) - (X2/2CL)]QTOT [Torr]

SP SP

Inner Diameter

2LLX

Px

Page 7: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery, Vacuum:Pump Spacing & Pressure Profile

• Outgassing rate 1.00E-12 Torr ltrs/s/cm2, (Cu, 304&316)

• ID= 1.1 cm

• Maximum distance between pumps to maintain a maximum pressure of 5.0E-08 Torr: – 13 meters

• With an outgassing rate of 5.00E-11 Torr ltrs/s/cm2, (Al), the distance between pumps is reduced to 2 meters

Pressure Profile Between Pumps

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

5.00E-08

cm

Torr Pressure

Page 8: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery, Vacuum:Pump Spacing & Pressure Profile

• Outgassing rate 1.00E-12 Torr ltrs/s/cm2, (Cu, 304&316)

• ID= 3.00 cm

• Maximum distance between pumps to maintain a maximum pressure of 5.0E-08 Torr: – 32 meters

• With an outgassing rate of 5.00E-11 Torr ltrs/s/cm2, (Al), the distance between pumps is reduced to 11 meters

Pressure Profile Between Pumps

0.00E+00

1.00E-08

2.00E-08

3.00E-08

4.00E-08

5.00E-08

1800

1600

1400

1200

1000 80

060

040

020

0 50

cm

Torr Pressure

Page 9: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery, Vacuum: Components - 1

• PUMPS– The NLC Beam Delivery vacuum system is ion pumped.

– Pump size is 30 l/s.

• BEAM LINE– All vacuum seals in areas in direct contact with the beam must be all-

metal.

– Flange connections will be used only in component dense areas.

– Where the component density is low the beam line sections will be welded/brazed together in situ.

Page 10: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum: Components - 2

• GAUGES– One gauge assembly measuring total pressure from atmospheric pressure

to 2E-10 Torr, every 250m. The gauges must be radiation hardened.

– Every beam line section must have a gauge combination, as described above, on both sides of a beam line isolation valve.

• VALVES– The beam line isolation valves are all-metal valves of VAT type, radiation

hardened.

– The valves are located 250 m apart.

– All metal right angle valves, 2 3/4“ CFF should be provided every 50m

Page 11: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum: Components - 3

• TUNNEL ACCESS– Access to the tunnel will be provided every 500m.

– A power supply/Control vault will be provided adjacent to the tunnel access, on the ground level. No cable length from a beam line vacuum device to the power supply/ controls vault should have to be longer than 300m.

• VACUUM CONTROL ROOM– The NLC Beam Delivery System should have a centrally located vacuum

control room.

Page 12: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum:Costing Procedure

AREA ENGINEERING TECHNICAL SYSTEMS AREA ENGINEERINGENGINEERING TEAM, TSET

Component Count Mechanical Sys. SUCCESS Cost Roll Up

Conceptual Design Trp. Deck Excel Spread Sheets Beam Line Length Costing Total Cost

Component location Controls Sys. ACCESS Data Base

Tunnel LayoutAccess Points

Page 13: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum:Cost, execution phase

• WBS 11525, Collimation– Total, $24,616,028.00

– Material $20,361,028.00, 83%

– ED&I $4,255,000.00, 17%

• WBS 11625, IRT 1– Total, $25,691,366.00

– Material, $20,911,366.00, 81%

– ED&I, $ 4,780,000.00, 19%

• WBS 11725, IR 1– Total, $20,618,000.00

– Material $15,516,000.00, 75%

– ED&I $5,102,000.00, 25%

Page 14: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum:R&D

• Material research, copper vs. aluminum– Investigate outgassing rates for both materials.

– Investigate thermal properties of various beam line material profiles and how to absorb the heat load from the synchrotron radiation in the Big Bends.

• Joining techniques for copper and aluminum– Investigate orbital welding techniques for extruded beam line materials.– Investigate other joining techniques for beam line materials.

• Cost break down

• Material cost, pumps, leak detectors, misc.. hardware, $50,000

• One FTE engineer, 1 yr.'s, 2000 hr’s x $55 = $110,000

• TOTAL: $160,000

Page 15: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum:Summary

• We have a conceptual design for the NLC Beam Delivery vacuum system.

• We understand the pressure requirements and the pressure profile.

• We have an order-of-magnitude cost estimate for the execution phase.

• We have identifies areas in the conceptual design that need more R&D.

• We are ready to enter the next phase of engineering and R&D for the NLC Beam Delivery Vacuum System

Page 16: NLC Beam Delivery

NLC - The Next Linear Collider Project

Author: Leif ErikssonDate: MAY 1999

NLC Beam Delivery Vacuum: Reference text

• All of the presented material is available for downloading from:

– http://www-sldnt.slac.stanford.edu/nlc/beamdeliveryhome.htm

• See under: Issues\Engineering

– A beam line schematic is also available at this location