nn47263-505 04.01 configuration mpls

150
Configuration — MPLS Avaya Secure Router 2330/4134 10.3 NN47263-505, 04.01 October 2010

Upload: rosembergp

Post on 02-Feb-2016

241 views

Category:

Documents


0 download

DESCRIPTION

NN47263-505_04.01_Configuration_MPLS

TRANSCRIPT

Page 1: NN47263-505 04.01 Configuration MPLS

Configuration — MPLSAvaya Secure Router 2330/4134

10.3NN47263-505, 04.01

October 2010

Page 2: NN47263-505 04.01 Configuration MPLS

© 2010 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that theinformation in this document is complete and accurate at the time ofprinting, Avaya assumes no liability for any errors. Avaya reserves theright to make changes and corrections to the information in thisdocument without the obligation to notify any person or organization ofsuch changes.

Documentation disclaimer

Avaya shall not be responsible for any modifications, additions, ordeletions to the original published version of this documentation unlesssuch modifications, additions, or deletions were performed by Avaya.End User agree to indemnify and hold harmless Avaya, Avaya's agents,servants and employees against all claims, lawsuits, demands andjudgments arising out of, or in connection with, subsequentmodifications, additions or deletions to this documentation, to theextent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked Websites referenced within this site or documentation(s) provided by Avaya.Avaya is not responsible for the accuracy of any information, statementor content provided on these sites and does not necessarily endorsethe products, services, or information described or offered within them.Avaya does not guarantee that these links will work all the time and hasno control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on this product. Refer to your salesagreement to establish the terms of the limited warranty. In addition,Avaya’s standard warranty language, as well as information regardingsupport for this product, while under warranty, is available to Avayacustomers and other parties through the Avaya Support Web site: http://www.avaya.com/support. Please note that if you acquired theproduct from an authorized Avaya reseller outside of the United Statesand Canada, the warranty is provided to you by said Avaya reseller andnot by Avaya.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYAWEBSITE, HTTP://SUPPORT.AVAYA.COM/LICENSEINFO/ AREAPPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/ORINSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC.,ANY AVAYA AFFILIATE, OR AN AUTHORIZED AVAYA RESELLER(AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITHAVAYA OR AN AUTHORIZED AVAYA RESELLER. UNLESSOTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOESNOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINEDFROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR ANAVAYA AUTHORIZED RESELLER, AND AVAYA RESERVES THERIGHT TO TAKE LEGAL ACTION AGAINST YOU AND ANYONEELSE USING OR SELLING THE SOFTWARE WITHOUT A LICENSE.BY INSTALLING, DOWNLOADING OR USING THE SOFTWARE, ORAUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OFYOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING,DOWNLOADING OR USING THE SOFTWARE (HEREINAFTERREFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”),AGREE TO THESE TERMS AND CONDITIONS AND CREATE ABINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THEAPPLICABLE AVAYA AFFILIATE (“AVAYA”).

Copyright

Except where expressly stated otherwise, no use should be made ofmaterials on this site, the Documentation(s) and Product(s) providedby Avaya. All content on this site, the documentation(s) and theproduct(s) provided by Avaya including the selection, arrangement anddesign of the content is owned either by Avaya or its licensors and is

protected by copyright and other intellectual property laws including thesui generis rights relating to the protection of databases. You may notmodify, copy, reproduce, republish, upload, post, transmit or distributein any way any content, in whole or in part, including any code andsoftware. Unauthorized reproduction, transmission, dissemination,storage, and or use without the express written consent of Avaya canbe a criminal, as well as a civil, offense under the applicable law.

Third-party components

Certain software programs or portions thereof included in the Productmay contain software distributed under third party agreements (“ThirdParty Components”), which may contain terms that expand or limitrights to use certain portions of the Product (“Third Party Terms”).Information regarding distributed Linux OS source code (for thoseProducts that have distributed the Linux OS source code), andidentifying the copyright holders of the Third Party Components and theThird Party Terms that apply to them is available on the Avaya SupportWeb site: http://www.avaya.com/support/Copyright/.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed in thissite, the documentation(s) and product(s) provided by Avaya are theregistered or unregistered Marks of Avaya, its affiliates, or other thirdparties. Users are not permitted to use such Marks without prior writtenconsent from Avaya or such third party which may own the Mark.Nothing contained in this site, the documentation(s) and product(s)should be construed as granting, by implication, estoppel, or otherwise,any license or right in and to the Marks without the express writtenpermission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All other trademarks are the property of their respective owners.

Downloading documents

For the most current versions of documentation, see the Avaya SupportWeb site: http://www.avaya.com/support

Contact Avaya Support

Avaya provides a telephone number for you to use to report problemsor to ask questions about your product. The support telephone numberis 1-800-242-2121 in the United States. For additional supporttelephone numbers, see the Avaya Web site: http://www.avaya.com/support

2 Configuration — MPLS October 2010

Page 3: NN47263-505 04.01 Configuration MPLS

Contents

Chapter 1: New in this release.................................................................................................9Other changes...................................................................................................................................................9

Chapter 2: Introduction...........................................................................................................11Navigation........................................................................................................................................................11

Chapter 3: MPLS fundamentals.............................................................................................13MPLS elements...............................................................................................................................................13

Label switched path................................................................................................................................13LSRs and LERs......................................................................................................................................14Supported interfaces..............................................................................................................................14

MPLS label......................................................................................................................................................14Label description....................................................................................................................................15Label allocation.......................................................................................................................................15Operations on labels...............................................................................................................................15NHLFE....................................................................................................................................................16ILM..........................................................................................................................................................16FTN.........................................................................................................................................................16

Penultimate Hop Popping...............................................................................................................................16Implicit null..............................................................................................................................................16Explicit null..............................................................................................................................................17PHP disabled..........................................................................................................................................17

LSP routes......................................................................................................................................................18Routing traffic with policy-based redirection...........................................................................................18

Types of LSPs.................................................................................................................................................18Static LSP...............................................................................................................................................19LDP LSP.................................................................................................................................................19RSVP-TE-signaled LSPs........................................................................................................................19

Standards compliance.....................................................................................................................................20

Chapter 4: LDP fundamentals................................................................................................23LDP overview..................................................................................................................................................23

LDP identifier and label space................................................................................................................23LDP discovery........................................................................................................................................23LDP sessions..........................................................................................................................................24LDP message types...............................................................................................................................25

LDP operation modes.....................................................................................................................................26Label advertisement modes...................................................................................................................26Label retention mode..............................................................................................................................27Label control mode.................................................................................................................................28

ACL configuration with LDP............................................................................................................................29LDP loop detection..........................................................................................................................................29

Hop count limit........................................................................................................................................29Path vector limit......................................................................................................................................29

Chapter 5: RSVP-TE fundamentals........................................................................................31RSVP-TE overview.........................................................................................................................................31

Control messages...................................................................................................................................31RVSP-TE tunnel setup...........................................................................................................................32

Configuration — MPLS October 2010 3

Page 4: NN47263-505 04.01 Configuration MPLS

OSPF-TE and CSPF.......................................................................................................................................33RSVP-TE resource reservation styles.............................................................................................................33

Fixed filter...............................................................................................................................................34Shared explicit........................................................................................................................................34

Priority of signaled LSP...................................................................................................................................35Setup priority..........................................................................................................................................35Hold priority............................................................................................................................................35

Explicitly routed LSPs.....................................................................................................................................35Route Recording.............................................................................................................................................36Refresh reduction............................................................................................................................................36

Reliable messaging................................................................................................................................36Fast reroute and node protection....................................................................................................................37

Node protection......................................................................................................................................37Secondary LSP (global repair)........................................................................................................................38

Secondary LSP signaling.......................................................................................................................38Secondary LSP with fast reroute............................................................................................................39

Administrative groups......................................................................................................................................39MPLS QoS......................................................................................................................................................39

Ingress LER- EXP marking.....................................................................................................................40DSCP Marking on Egress LER...............................................................................................................41

Chapter 6: MPLS Pseudowire fundamentals........................................................................43Layer 2 virtual circuits.....................................................................................................................................43

Virtual circuit labelling.............................................................................................................................44Binding an attachment circuit to the pseudowire....................................................................................44LDP requirement for dynamic virtual circuits..........................................................................................44Static virtual circuits................................................................................................................................45Multiple virtual circuits............................................................................................................................45

PPP over MPLS..............................................................................................................................................45HDLC over MPLS............................................................................................................................................46Ethernet over MPLS........................................................................................................................................46

VLAN Rewrite.........................................................................................................................................46

Chapter 7: Static LSP configuration......................................................................................47Static LSP configuration procedures...............................................................................................................47

Static LSP configuration task navigation................................................................................................48Configuring a static FTN entry on the ingress router......................................................................................48Configuring static ILM entries on transit and egress routers...........................................................................49Displaying the static FTN entry.......................................................................................................................49Displaying the static ILM entry........................................................................................................................50Displaying static FTN statistics.......................................................................................................................50Displaying static ILM statistics........................................................................................................................50

Chapter 8: LDP LSP configuration.........................................................................................51LDP configuration procedures.........................................................................................................................51

LDP configuration task navigation..........................................................................................................53Configuring loopback interface and router ID..................................................................................................53Enabling LDP at the router level.....................................................................................................................54Configuring targeted LDP peer adjacency......................................................................................................54

Specifying a targeted LDP peer for extended discovery........................................................................54Configuring the global targeted LDP peer hello interval.........................................................................55Configuring the interface targeted LDP peer hello interval.....................................................................55

4 Configuration — MPLS October 2010

Page 5: NN47263-505 04.01 Configuration MPLS

Configuring the global targeted LDP peer hold time...............................................................................56Configuring the interface targeted LDP peer hold time..........................................................................56

Configuring LDP properties.............................................................................................................................57Configuring explicit-null labels................................................................................................................57Configuring the transport address for a label space...............................................................................58Configuring global loop detection...........................................................................................................58Configuring the global loop detection count...........................................................................................59Configuring global request retries...........................................................................................................59Configuring the global request retry timeout...........................................................................................60Propagating the global release of labels to downstream routers............................................................60Configuring the global label control mode..............................................................................................61Applying ACL rules to LDP.....................................................................................................................61Configuring the global label advertisement mode..................................................................................62Configuring the interface label advertisement mode..............................................................................63Configuring the global label retention mode...........................................................................................63Configuring the interface label retention mode.......................................................................................64Configuring the global LDP hello interval...............................................................................................65Configuring the interface LDP hello interval...........................................................................................65Configuring the global LDP hold time.....................................................................................................66Configuring the interface LDP hold time.................................................................................................67Configuring the global keepalive interval................................................................................................67Configuring the interface keepalive interval............................................................................................68Configuring the global keepalive timeout................................................................................................68Configuring the interface keepalive timeout...........................................................................................69

Enabling LDP on an interface.........................................................................................................................70Enabling auto-discovery of LDP peers............................................................................................................70

Configuring global multicast hellos.........................................................................................................70Configuring interface multicast hellos.....................................................................................................71

Displaying LDP configuration and statistics....................................................................................................71Displaying LDP adjacency......................................................................................................................71Displaying the IP access list of LDP advertise-labels.............................................................................72Displaying FECs known to the current LSR...........................................................................................72Displaying detailed LDP information for interfaces.................................................................................72Displaying LDP LSP configuration..........................................................................................................72Displaying LDP LSP hosts corresponding to an FEC.............................................................................73Displaying LDP LSP host.......................................................................................................................73Displaying LDP LSP prefix.....................................................................................................................73Displaying LDP session..........................................................................................................................74Displaying LDP packet statistics.............................................................................................................74Displaying LDP advertise-labels statistics..............................................................................................74Clearing LDP adjacencies......................................................................................................................75Clearing LDP statistics...........................................................................................................................75

Chapter 9: RSVP-TE LSP configuration................................................................................77RSVP-TE configuration procedures................................................................................................................77

RSVP-TE configuration task navigation.................................................................................................79Configuring loopback interface and router ID..................................................................................................79Enabling RSVP-TE at the router level.............................................................................................................80Enabling RSVP-TE at the interface level........................................................................................................80Creating an RSVP-TE LSP.............................................................................................................................81

Creating an RSVP-TE LSP.....................................................................................................................81

Configuration — MPLS October 2010 5

Page 6: NN47263-505 04.01 Configuration MPLS

Configuring the ingress address for the LSP..........................................................................................81Configuring the egress router for the LSP..............................................................................................82

Configuring an explicit path LSP.....................................................................................................................82Disabling and enabling CSPF globally...................................................................................................82Disabling and enabling CSPF on RSVP-TE LSPs.................................................................................83Create the explicit route and define the hops.........................................................................................84Associate the RSVP-TE explicit route with an LSP................................................................................84Specifying the Route Record List as an explicit route............................................................................85

Configuring constrained path LSP properties.................................................................................................86Reserving bandwidth for RSVP-TE LSPs...............................................................................................86Configuring the filter style for RSVP-TE LSP.........................................................................................86Configuring retry limit for RSVP-TE LSP................................................................................................87Configuring retry timer for RSVP-TE LSP..............................................................................................88Configuring setup priority for RSVP-TE LSP..........................................................................................88Configuring the hold priority for RSVP-TE LSP......................................................................................89Configuring CSPF retry limit...................................................................................................................90Configuring CSPF retry timer.................................................................................................................90Configuring the hop limit for RSVP-TE LSP...........................................................................................91Configuring label recording.....................................................................................................................91Configuring route recording....................................................................................................................92Creating an MPLS administrative group.................................................................................................93Adding an interface to an administrative group......................................................................................93Including administrative groups in an RSVP-TE LSP.............................................................................94Excluding administrative groups from an RSVP-TE LSP.......................................................................94Disabling affinity.....................................................................................................................................95

Configuring Fast Reroute for constrained path LSP.......................................................................................96Enabling and disabling one-to-one fast reroute protection.....................................................................96Configuring fast reroute node protection................................................................................................96Configuring fast reroute bandwidth.........................................................................................................97Specifying the administrative groups to include in the fast reroute........................................................97Excluding administrative groups from the fast-reroute...........................................................................98Configuring fast reroute setup priority....................................................................................................99Configuring fast reroute hold priority......................................................................................................99Configuring fast reroute hop limit..........................................................................................................100Configuring detour LSP identification method......................................................................................100

Configuring RSVP-TE LSP properties..........................................................................................................101Configuring the extended tunnel ID in RSVP-TE messages................................................................101Configuring the creation and tear-down method for the RSVP-TE LSP...............................................102Restarting the RSVP-TE LSP...............................................................................................................102Configuring hello exchanges with a specific neighbor..........................................................................103

Configuring RSVP-TE global and interface properties..................................................................................103Configuring the RSVP-TE source address...........................................................................................103Configuring explicit-null labels..............................................................................................................104Configuring Penultimate-Hop-Popping.................................................................................................104Configuring loop detection....................................................................................................................105Configuring MPLS tunnel-mode...........................................................................................................105Enabling the receipt of Hello messages globally..................................................................................106Enabling the receipt of Hello messages on the interface.....................................................................107Configuring the global Hello interval.....................................................................................................107Configuring the Hello interval and enabling Hello transmission on the interface..................................108Configuring the global hello timeout.....................................................................................................108

6 Configuration — MPLS October 2010

Page 7: NN47263-505 04.01 Configuration MPLS

Configuring the interface hello timeout.................................................................................................109Configuring the global RSVP keep multiplier........................................................................................109Configuring the interface RSVP keep multiplier....................................................................................110Configuring the global RSVP refresh time............................................................................................111Configuring the interface RSVP refresh time........................................................................................111Configuring the global refresh reduction advertisement.......................................................................112Configuring the interface refresh reduction advertisement...................................................................112Configuring global message acknowledgement...................................................................................113Configuring interface message acknowledgement...............................................................................113Configuring the global acknowledgement wait timeout.........................................................................114Configuring the interface acknowledgement wait timeout....................................................................114

Mapping routes to RSVP-TE LSPs................................................................................................................115Displaying RSVP-TE LSP configuration and statistics..................................................................................116

Displaying session-related information for configured LSPs................................................................116Displaying LSP session count..............................................................................................................116Displaying session-related information for egress router......................................................................116Displaying session-related information for specific egress router.........................................................117Displaying session-related information for ingress router.....................................................................117Displaying session-related information for specific ingress router........................................................118Displaying session-related information for specific sessions................................................................118Displaying session-related information for transit router.......................................................................118Clearing traffic-engineered LSP data....................................................................................................119

Displaying RSVP-TE configuration and statistics..........................................................................................119Displaying RSVP-TE interface information...........................................................................................119Displaying RSVP-TE neighbors............................................................................................................120Displaying next-hop data cached in RSVP-TE.....................................................................................120Displaying RSVP-TE statistics..............................................................................................................120Displaying RSVP-TE summary refresh data........................................................................................121Displaying RSVP-TE version................................................................................................................121Displaying traffic engineering path.......................................................................................................121Displaying MPLS tunnel mode.............................................................................................................121Displaying all configured MPLS administrative groups.........................................................................122Clearing RSVP sessions......................................................................................................................122Clearing RSVP statistics.......................................................................................................................122

Chapter 10: MPLS Pseudowire configuration.....................................................................123Pseudowire configuration procedures...........................................................................................................123

Pseudowire configuration task navigation............................................................................................125Configuring a pseudowire Layer 2 virtual circuit...........................................................................................125

Creating a Layer 2 virtual circuit...........................................................................................................125Binding an Ethernet interface to a Layer 2 virtual circuit...............................................................................126Binding a VLAN interface to a Layer 2 virtual circuit.....................................................................................126Binding a WAN interface to a Layer 2 virtual circuit......................................................................................127Configuring a static FTN entry for ingress virtual circuit................................................................................128Configuring a static ILM entry for egress virtual circuit.................................................................................128Displaying the pseudowire configuration and statistics.................................................................................129

Displaying the static Layer 2-circuit FTN entry.....................................................................................129Displaying the static L2-circuit ILM entry..............................................................................................129Displaying the Layer 2 virtual circuit summary information..................................................................129Displaying Layer 2 virtual circuit data...................................................................................................130Displaying Layer 2 virtual circuit group data.........................................................................................130

Configuration — MPLS October 2010 7

Page 8: NN47263-505 04.01 Configuration MPLS

Displaying Layer 2 virtual circuit statistics............................................................................................130Displaying Layer 2 virtual circuit table..................................................................................................130

Chapter 11: Common procedures........................................................................................131Displaying MPLS-enabled interfaces............................................................................................................131Displaying interface statistics........................................................................................................................131Displaying originating LSP statistics.............................................................................................................131Displaying MPLS forwarding table................................................................................................................132Displaying incoming label map table.............................................................................................................132Clearing MPLS statistics...............................................................................................................................132

Chapter 12: Configuration examples...................................................................................135Static LSP configuration................................................................................................................................135

Static LSP configuration on Secure Router 4134 1..............................................................................135LSP configuration on Secure Router 4134 2........................................................................................136

LDP-based LSP configuration.......................................................................................................................137RSVP-TE LSP configuration.........................................................................................................................138

LSP1 configuration on SR4134 1.........................................................................................................138LSP2 configuration on SR4134 2.........................................................................................................140Configuring fast reroute for SR4134 1..................................................................................................141Configuring fast reroute for SR4134 2..................................................................................................141Configuring policy-based redirection into an RSVP-TE LSP................................................................141

Ethernet over RSVP-TE pseudowire configuration.......................................................................................142Ethernet over pseudowire configuration for SR4134 1.........................................................................143Ethernet over pseudowire configuration for SR4134 2.........................................................................144

PPP over RSVP-TE pseudowire configuration.............................................................................................144PPP over pseudowire configuration for SR4134 1...............................................................................145PPP over pseudowire configuration for SR4134 2...............................................................................146

HDLC over MPLS pseudowire......................................................................................................................146HDLC over pseudowire configuration for SR4134 1.............................................................................147

Static L2VPN pseudowire configuration........................................................................................................148SR4134 1 configuration........................................................................................................................149SR4134 2 configuration........................................................................................................................149

8 Configuration — MPLS October 2010

Page 9: NN47263-505 04.01 Configuration MPLS

Chapter 1: New in this release

There is no new content added to Avaya Secure Router 2330/4134 Configuration — MPLS(NN47263-505) for Release 10.3.

Other changesThis document is rebranded to Avaya.

Configuration — MPLS October 2010 9

Page 10: NN47263-505 04.01 Configuration MPLS

New in this release

10 Configuration — MPLS October 2010

Page 11: NN47263-505 04.01 Configuration MPLS

Chapter 2: Introduction

This document describes the operation and configuration of the MPLS features on the Avaya SecureRouter 2330/4134.

Navigation• MPLS fundamentals on page 13

• LDP fundamentals on page 23

• RSVP-TE fundamentals on page 31

• MPLS Pseudowire fundamentals on page 43

• Static LSP configuration on page 47

• LDP LSP configuration on page 51

• RSVP-TE LSP configuration on page 77

• MPLS Pseudowire configuration on page 123

• Configuration examples on page 135

Configuration — MPLS October 2010 11

Page 12: NN47263-505 04.01 Configuration MPLS

Introduction

12 Configuration — MPLS October 2010

Page 13: NN47263-505 04.01 Configuration MPLS

Chapter 3: MPLS fundamentals

In traditional IP networks, each transit node makes an independent forwarding decision when transmittingpackets through the network. MPLS defines a mechanism for forwarding traffic packets based on fixed-length labels instead of IP address-based routing at each hop.

MPLS uses an underlying interior gateway protocol (IGP) to establish network reachability, and associatesfixed-length labels with discovered routes to forward packets through the network. Packets are classifiedonce, when they enter the MPLS domain, then travel along a predefined Label Switched Path (LSP) tothe network egress. Transit nodes do not make any routing decisions when processing packets, but merelyforward them based on the MPLS label, independent of the information in the encapsulated IP header.

The ingress node assigns a fixed-length label to each packet as it enters the network, and forwards it tothe next hop. As traffic moves through the network, each node swaps the incoming label for an outgoinglabel, based on a predefined label database on each node.

MPLS elementsThe following sections describe the elements of MPLS networks.

Label switched pathA label switched path (LSP) is an end-to-end unidirectional tunnel set up between MPLS-enabled routers. Data travels through the MPLS network over LSPs from the network ingress tothe network egress. The LSP is determined by a sequence of labels, initiated at the ingressnode.

Packets that require the same treatment for transport through the network are grouped into aforwarding equivalence class (FEC). The FECs are identified by the destination subnet of thepackets to be forwarded.

All packets within the same FEC use the same LSP to travel across the network. Packets areclassified once, as they enter the network; all subsequent forwarding decisions are based onthe FEC to which each packet belongs (that is, each label corresponds to a FEC). MPLS-enabled routers use a label distribution protocol (such as LDP or RSVP-TE) to generate anddistribute label-to-FEC bindings.

Because LSPs are unidirectional, you must create a pair of LSPs to support bidirectional traffic.

Configuration — MPLS October 2010 13

Page 14: NN47263-505 04.01 Configuration MPLS

LSRs and LERsMPLS-enabled routers are grouped into two categories:

• label switching routers (LSRs), or provider (P) nodes

• label edge routers (LERs), or provider edge (PE) nodes

LSRs reside in the network core, and provide high-speed switching functions for the network.LERs reside at the network edge, initiating and terminating LSPs and assigning packets toFECs as traffic enters the network. Each LSR and LER builds a Label Information Base (LIB) tomap FECs to incoming and outgoing labels.

Supported interfacesThe Avaya Secure Router 2330/4134 supports MPLS on the following interfaces:

• WAN interfaces supporting PPP or HDLC encapsulation:

- T1/E1 interfaces

- CT3/DS3 interfaces

- Serial and HSSI interfaces

WAN interfaces running MLPPP are not supported.

• All SR2330 Ethernet ports, and VLAN interfaces containing these ports.

• SR4134 Chassis Ethernet ports, and VLAN interfaces containing only Chassis Ethernetports.

SR4134 Module Ethernet ports and VLAN interfaces that contain any of these ports arenot supported.

Interface-specific MPLS parameter configurations are not supported for VLAN interfaces. Inwhich case, the global MPLS parameters apply to MPLS over VLAN.

MPLS cannot operate on IPSec-enabled (crypto) interfaces.

MPLS labelThe following sections provide additional detail about the MPLS label distribution.

MPLS fundamentals

14 Configuration — MPLS October 2010

Page 15: NN47263-505 04.01 Configuration MPLS

Label descriptionAs traffic enters the MPLS network, each packet is marked with a label. A label, in its simplestform, identifies the path a packet should traverse. An MPLS label is carried or encapsulatedin between the Layer 2 and the Layer 3 header. The receiving router examines the packetfor its label content to determine the next hop. Once a packet has been labeled, the rest of thejourney of the packet through the MPLS network is based on label switching. The label valuesare of local significance only, meaning that they pertain only to hops between LSRs.

Figure 1: MPLS label

• Label: Label Value carries the actual value of the Label.

• Exp: Experimental Use. Reserved for experimental use.

• S: Bottom of Stack. This bit is set to one for the last entry in the label stack, and zerofor all other label stack entries

• TTL: Time to Live field is used to encode a time-to-live value.

Label allocationAs traffic enters the MPLS network, the ingress LSR groups traffic requiring similar treatmentinto forward equivalence classes (FECs). Each transit LSR maps the FECs to incoming andoutgoing labels. Each downstream router advertise the FEC-to-label assignments to theupstream router.

Operations on labelsThe Secure Router 2330/4134 supports the following label operations:

• Push: adds a new label onto the packet.

• Pop: removes the label from the packet.

• Swap: replaces the existing label with a new label.

MPLS label

Configuration — MPLS October 2010 15

Page 16: NN47263-505 04.01 Configuration MPLS

NHLFEThe Next Hop Label Forwarding Entry (NHLFE) specifies the actions to take for each labeledpacket. The details it provides include:

• next hop for the packet

• the operation to perform on the label: push, pop, swap

ILMThe Incoming Label Map (ILM) maps each incoming label to a set of NHLFEs. MPLS uses theILM to determine the action to perform on incoming labeled packets.

FTNThe FEC-to-NHLFE (FTN) maps each FEC to a set of NHLFEs. MPLS uses FTN to determinethe label to apply and the action to perform on incoming unlabeled packets.

Penultimate Hop PoppingPenultimate Hop Popping (PHP) provides a mechanism for improving label process efficiencyat the LSP egress. With full PHP enabled, the egress LSR can save processing time on theouter label lookup by notifying its upstream neighbor to pop the outer label before forwardingthe packet.

Secure Router 2330/4134 supports three modes for Penultimate Hop Popping (PHP) behavior:

• Implicit null• Explicit null• PHP Disabled

Implicit nullIn implicit null mode, the Secure Router 2330/4134 router advertises the implicit null label (label3) for LSPs that it terminates. Label 3 indicates that the upstream router must remove the outerlabel before forwarding the packet to the egress router, without replacing it with another label.Upon receipt, the Secure Router 2330/4134 router does not have to process the outer label,

MPLS fundamentals

16 Configuration — MPLS October 2010

Page 17: NN47263-505 04.01 Configuration MPLS

and forwards the packet based on the next inner label or the destination address in theencapsulated IP header.

Figure 2: Implicit null

Explicit nullIn explicit null mode, the Secure Router 2330/4134 router advertises the explicit null label (label0) for LSPs that it terminates. The upstream router uses label 0 as the outgoing label for thepacket, which indicates to the Secure Router 2330/4134 router that it is the final hop on theLSP. Upon receipt, the Secure Router 2330/4134 router pops the label without performing alabel lookup, and forwards the packet based on the next inner label or the destination addressin the encapsulated IP header.

In explicit-null mode, the system marks the EXP bits in the explicit-null label to match the EXPbits of the popped label, so that Diff-Serv treatment is preserved at the egress LER.

Figure 3: Explicit null

PHP disabledIf PHP is disabled, the Secure Router 2330/4134 router advertises a normal label (from therange 2064-524288) for an LSP when sending a label mapping to the upstream router. Uponreceipt of a packet, the Secure Router 2330/4134 router performs a label lookup, then popsthe label and forwards the packet based on the next inner label (if present) or the destinationaddress in the encapsulated IP header.

Penultimate Hop Popping

Configuration — MPLS October 2010 17

Page 18: NN47263-505 04.01 Configuration MPLS

Because each egress LSP is assigned a different label, this option allows traffic statisticcollection for individual egress LSPs.

Figure 4: PHP disabled

LSP routesWhen you configure an LSP on an ingress router, the ingress router configures an associatedhost route toward the egress router. The host route address is the destination address of theLSP. The default administrative distance of the route is set to 10, which is higher than all routesother than direct interfaces and static routes.

The route is configured with a 32-bit mask, which ensures that the route is a longer match andtherefore more specific than all other subnet routes.

Routing traffic with policy-based redirectionTo route traffic to LSPs, you can also use the QoS policy-based redirect feature. This featureallows you to redirect user-configured traffic flows to specific LSPs. For details, seePerformance Management – Quality of Service (NN47263-601).

Types of LSPsThere are three types of LSP:

• Static LSP• LDP LSP• RSVP-signaled LSP

MPLS fundamentals

18 Configuration — MPLS October 2010

Page 19: NN47263-505 04.01 Configuration MPLS

Static LSPStatic LSPs are manually configured LSPs. No label distribution protocol is enabled. For eachLSR along the LSP path, you must manually configure LSP labels, similar to static routes. Thefollowing figure shows the label actions that each LSR must perform along the LSP path.

Figure 5: Static LSP

LDP LSPLDP allows routers to discover neighbors and to establish LDP sessions with them so that theycan exchange label mapping information. An LDP LSR identifies the best routes, as selected bythe underlying IGP, and binds a locally significant label to each, then propagates this bindingto neighbors.

RSVP-TE-signaled LSPsResource Reservation Protocol with traffic engineering extensions (RSVP-TE) is a labelsignaling protocol that allows you to set up traffic-engineered LSPs through the MPLS network.

RSVP-TE allows an ingress router to set up traffic-engineered LSPs (also called tunnels)through the MPLS network. The intermediate and egress routers accept RSVP-TE signalingmessages from the ingress router to set up and maintain the LSP and dynamically assignlabels.

Where LDP LSPs are dynamic, RSVP-TE tunnels are user-initiated: you need only configurethe ingress router. You can use RSVP-TE to create tunnels that avoid points of congestion inthe network.

RSVP-TE-signaled LSPs can be one of two types: explicit-path LSP or constrained-path LSP.

Explicit-path LSP

With explicit-path LSPs, you can manually specify the intermediate hops along the LSP. Eachhop in the explicit-path LSP is either strict or loose. If the hop is strict, the LSP must go to the

Types of LSPs

Configuration — MPLS October 2010 19

Page 20: NN47263-505 04.01 Configuration MPLS

specified address directly, without traversing any intermediary nodes. If the hop is loose, theRSVP-TE relies on IGP lookups to determine the best route to the specified address.

Constrained-path LSP

With constrained-path LSP, the router uses the Constrained Shortest Path First (CSPF)protocol to determine the LSP path. In this case, RSVP-TE and CSPF must be enabled on allrouters along the LSP path.

With CSPF LSPs, you can specify traffic engineering parameters that must be met by eachLSR in order to create the LSP.

Standards complianceThe Secure Router 2330/4134 implementation of MPLS complies with the following RFCs:

• RFC 2702, Requirements for Traffic Engineering Over MPLS

• RFC 3031, MPLS Architecture

• RFC 3032, Label Stack Encoding

• RFC 3036, LDP Specification

• RFC 3215, LDP State Machine

• RFC 2205, Resource ReSerVation Protocol (RSVP)--Version 1 Functional Specifications

• RFC 2209, RSVP—Version 1 Message Processing Rules

• RFC 2961, RSVP Refresh Overhead Reduction Extensions

• RFC 3209, RSVP-TE: Extensions to RSVP for LSP Tunnels

• RFC 3210, Applicability Statement for Extensions to RSVP for LSP-tunnels

• RFC 4090, Fast Reroute Extensions to RSVP-TE for LSP Tunnels

The Secure Router 2330/4134 implementation of MPLS pseudowire complies with thefollowing RFCs:

• draft-ietf-pwe3-arch-07.txt,sept-2004, PWE3 Architecture.

• draft-ietf-pwe3-requirements-08.txt,June-2004, Requirements for Pseudo-WireEmulation Edge-to-Edge

• draft-ietf-pwe3-control-protocol-06.txt,Sept-2004, Pseudowire Setup and Maintenanceusing LDP (draft-martini-l2circuit-trans-mpls-13.txt, June-2004)

MPLS fundamentals

20 Configuration — MPLS October 2010

Page 21: NN47263-505 04.01 Configuration MPLS

• draft-ietf-pwe3-ethernet-encap-06.txt,June-2004, Encapsulation Methods for Transportof Ethernet Frames Over IP/MPLS Networks (draft-martini-l2circuit-encap-mpls-06.txt,May-2004)

• draft-ietf-pwe3-hdlc-ppp-encap-mpls-03.txt,Oct-2004, Encapsulation Methods forTransport of PPP/HDLC Over IP and MPLS Networks

Standards compliance

Configuration — MPLS October 2010 21

Page 22: NN47263-505 04.01 Configuration MPLS

MPLS fundamentals

22 Configuration — MPLS October 2010

Page 23: NN47263-505 04.01 Configuration MPLS

Chapter 4: LDP fundamentals

Label Distribution Protocol (LDP) provides a mechanism for dynamic hop-by-hop label distributionbetween routers in an MPLS network. LDP assigns labels to IGP-learned routes and distributes theselabel bindings to its peers, to establish label switched paths (LSPs) through the network.

LDP overviewLDP allows routers to discover neighbors and to establish LDP sessions so they can exchangelabel mapping information. Each LDP router identifies the best routes, as selected by theunderlying IGP, and binds a locally significant label to each, then propagates this binding toneighbors.

LDP identifier and label spaceWhen a router running LDP communicates with its peers, it identifies itself with a unique LDPidentifier (ID). The LDP ID indicates the LSR’s IP address (that is, the LSR ID) and the labelspace from which the LSR assigns its labels. Thus, the LSR advertises its LDP ID in the format<LSR ID>:<label space>.

The Avaya Secure Router 2330/4134 LSR ID is the same as the node router ID. The routerID is a unique 32-bit address that identifies the router to routing protocols such as OSPF. Therouter ID is typically a local IP address, and therefore reachable by IP. The Secure Router2330/4134 also uses its router ID for the LDP transport address, required for the TCP sessionover which LDP runs. The transport address must be one of the node’s local IP addresses(preferably a loopback address) for LDP to operate; therefore, if LDP is running on the node,the router ID must be a local IP address.

The Secure Router 2330/4134 supports a per-platform, or global, label space 0.

LDP discoveryLDP discovery is the process by which LDP routers discover neighboring routers, for thepurpose of exchanging label-to-FEC binding information. LDP routers exchange LDP Hellomessages to form a Hello adjacency, prior to establishing an LDP session.

Configuration — MPLS October 2010 23

Page 24: NN47263-505 04.01 Configuration MPLS

Figure 6: LDP discovery

LDP uses two types of discovery to find LDP peers:

Basic discovery

LDP uses basic discovery to find directly-connected routers with which to exchange labelinformation. The router transmits multicast UDP Hello messages to all routers on the subnet.When the neighbor responds with Hello messages to the local router, the two routers form aHello adjacency.

Extended discovery

Extended discovery allows an LDP router to discover peers that are not directly connectedto it, and to establish LDP sessions with them. The router transmits unicast UDP Hellomessages to a specific peer router, which may or may not be directly connected to it. If thepeer responds to these targeted Hello messages, the pair form an extended Hello adjacencyand normal LDP session establishment procedures follow.

LDP sessionsWhen MPLS routers have formed an LDP Hello adjacency, they establish an LDP session.LDP sessions are bidirectional and allow LDP peers to learn each other’s label-to-FECbindings. The LDP session is identified by the pair of LDP IDs: the LDP ID of the local routerand LDP ID of the peer router.

If the Secure Router 2330/4134 connects to a peer node over multiple interfaces, the LDP IDpair (that is, local LDP ID, peer LDP ID) is the same for each Hello adjacency between the twonodes. When this occurs, only one LDP session is established between the two LSRs, with allHello adjacencies being part of that session. The LDP session remains active as long as atleast one Hello adjacency to the peer router is up; thus, a link failure does not impact the LDPcontrol path as long as there is at least one physical connection to the peer.

LDP fundamentals

24 Configuration — MPLS October 2010

Page 25: NN47263-505 04.01 Configuration MPLS

Figure 7: LDP sessions

LDP message typesThe following table describes the LDP message types.

Table 1: LDP message types

Discovery Secure Router 2330/4134 uses discovery messages toannounce its presence in a network by periodically transmittingmulticast UDP Hello messages to all routers on the subnet orunicast UDP Hello messages to a specific router.

Session Secure Router 2330/4134 uses session messages to establish,maintain, and terminate sessions between LDP peers. AfterMPLS routers have formed an LDP Hello adjacency, theyestablish an LDP session over Transmission Control Protocol(TCP). When the session is successfully established, the tworouters can exchange advertisement messages.

Advertisement Secure Router 2330/4134 uses advertisement messages toadvertise FEC-to-label bindings to LDP peers.

Notification Secure Router 2330/4134 sends LDP notification messages toreport errors and events.

• Error notifications signal fatal errors. If a router receives anerror notification from a peer for an LDP session, it terminatesthe LDP session by closing the TCP transport connection forthe session and discarding all label mappings learned throughthe session.

• Advisory notifications, which pass information to a routerabout the LDP session or the status of some previousmessage received from the peer.

LDP overview

Configuration — MPLS October 2010 25

Page 26: NN47263-505 04.01 Configuration MPLS

LDP operation modesLDP has several control modes that affect how labels are exchanged between LSRs:

• Label advertisement modes on page 26• Label retention mode on page 27• Label control mode on page 28

Label advertisement modesThe label advertisement mode determines when an LSR advertises a FEC-to-label binding toits LDP peers. LDP has two label advertisement modes: downstream unsolicited (DU) anddownstream-on-demand (DoD) mode. The Secure Router 2330/4134 only supports thedownstream unsolicited mode. For any single LDP adjacency, the LDP peers must agree ona label distribution mode.

Downstream-unsolicited label advertisement

With downstream-unsolicited label advertisement, each LSR advertises its FEC-to-labelassignments to upstream routers as soon as they are available; thus, upstream routers do nothave to send label mapping requests for FECs.

Downstream-unsolicited advertisement is typically used with the liberal label retention mode.

Figure 8: Downstream-unsolicited label advertisement

Downstream-on-demand label advertisement

The Secure Router 2330/4134 does not support downstream-on-demand label advertisement.The following information is provided for reference only.

With Downstream-on-demand label advertisement, LSRs only advertise a FEC-to-labelassignment in response to a specific request from an upstream router.

LDP fundamentals

26 Configuration — MPLS October 2010

Page 27: NN47263-505 04.01 Configuration MPLS

Downstream-on-demand advertisement is typically used with the conservative label retentionmode.

Figure 9: Downstream-on-demand label advertisement

Label retention modeThe label retention mode determines which labels an LSR retains in its Label Information Base(LIB), particularly those FEC-to-label bindings that are learned from neighbors that are not nexthops for the FEC.

LDP provides supports two label retention modes: liberal and conservative. The Secure Router2330/4134 only supports the liberal label retention mode.

Liberal label retention

In liberal label retention mode, the LSR accepts and retains all label mappings received fromLDP peers, regardless of whether the neighboring router is actually the next hop for the FEC.This means that the router can quickly adapt to routing changes in the network because italready has alternate labels for the same FEC; however, it requires that the LSR maintain amuch larger LIB and retain labels that it may never use.

Figure 10: Liberal label retention

LDP operation modes

Configuration — MPLS October 2010 27

Page 28: NN47263-505 04.01 Configuration MPLS

Conservative label retention

The Secure Router 2330/4134 does not support conservative label retention. The followinginformation is provided for reference only.

In conservative label retention mode, the LSR discards any label mappings it receives thatwere not originated by the current next hop for the FEC. This means that the router has fewerlabels to maintain in the LIB; however, if the next hop for a FEC changes, the router mustrequest a new label mapping from new next hop, resulting in slower network convergence.

Figure 11: Conservative label retention

Label control modeThe label control mode controls when labels are distributed between LDP peers when creatingan LSP. The Secure Router 2330/4134 supports both LDP label control modes: ordered andindependent.

Independent

In independent mode, an LSR advertises label mappings for FECs at any time, regardless ofwhether it is the egress for the FEC or has received a label mapping from the next hop for theFEC. FEC-to-label bindings are advertised as soon as the next hop has been recognized.

In independent downstream-on-demand mode, an LSR can answer requests for labelmappings immediately, without waiting for a label mapping from the next hop. In independentdownstream unsolicited mode, an LSR can advertise a label mapping for an FEC to neighborswhenever it is prepared to label-switch that FEC.

Ordered

In ordered mode, an LSR only advertises label mappings for an FEC when it is the egressrouter for the FEC, or when it has received a label mapping from the current next hop for the

LDP fundamentals

28 Configuration — MPLS October 2010

Page 29: NN47263-505 04.01 Configuration MPLS

FEC. If neither of these conditions are met, the LSR must wait for a label mapping from adownstream neighbor before it can map the FEC to a label and advertise the binding to anupstream neighbor. In this way, an LSP is set up from egress to ingress, hop-by-hop.

ACL configuration with LDPWith LDP, you can use ACL to modify the routes to be distributed to peering neighbors. Youcan configure ACL rules to permit or deny the advertisement of labels for specific routes to aconfigured list of neighbors. After the routes are redistributed, denied routes are no longeradvertised to the listed LDP neighbors.

LDP loop detectionLDP supports two mechanisms for LDP loop detection:

• Hop count limit• Path vector limit

The Secure Router 2330/4134 only supports the hop count limit mechanism for loop detection.

Hop count limitWith the hop count limit method, each LSR increments the hop count field in the LDP packetas it traverses the network. If the value in the hop count field exceeds a predetermined value(established by the router that initiates the LSP), the LSR assumes a routing loop and discardsthe packet.

Path vector limitThe Secure Router 2330/4134 does not support the path vector limit mechanism for loopdetection. The following information is provided for reference only.

With the path vector limit method, each LSR adds its router ID to the path vector field as itprocesses a packet. If an LSR sees its own router ID in the list of intermediate hops, or if thenumber of entries in the path vector field exceeds a predetermined value (established by therouter that initiates the LSP), the LSR assumes a routing loop and discards the packet.

ACL configuration with LDP

Configuration — MPLS October 2010 29

Page 30: NN47263-505 04.01 Configuration MPLS

LDP fundamentals

30 Configuration — MPLS October 2010

Page 31: NN47263-505 04.01 Configuration MPLS

Chapter 5: RSVP-TE fundamentals

Resource Reservation Protocol with traffic engineering extensions (RSVP-TE) is a label signaling protocolthat allows you to set up traffic-engineered LSPs through the MPLS network. You can set up multipleRSVP LSPs to the same destination with the same or different traffic engineering parameters.

RSVP-TE overviewRSVP-TE allows an ingress router to set up traffic-engineered LSPs (also called tunnels)through the MPLS network. You can use RSVP-TE to create tunnels that avoid points ofcongestion in the network or load balance across of available network resources. Where LDPLSPs are dynamic, RSVP-TE tunnels are user-initiated.

RSVP tunnels are persistent: that is, when an LSP goes down, the router attempts to re-establish the LSP, based on a configurable retry limit and retry interval. When the node reachesthe retry limit without restoring the LSP, no further attempts are made to establish the LSPuntil it is administratively disabled and re-enabled.

Control messagesRSVP-TE is a soft-state protocol. LSRs exchange periodic control messages to refresh stateinformation, and any non-refreshed states time out automatically. This allows RSVP-TE toadapt to changes in topology and resource availability, and to recover from any failures morequickly.

RSVP-TE uses two primary messages to set up and maintain tunnels: the Path message, torequest resources and label bindings, and the Resv message, to confirm available resourcesand distribute label-to-FEC bindings. You can control how often the Path and Resv messagesare sent, and how long the Avaya Secure Router 2330/4134 waits before removing forwardingstates and resource reservations after receiving a control message.

Table 2: RSVP-TE message types

Message DescriptionPath Requests resources and label mapping for a new LSP, or

refreshes path state information for an existing LSP.

Resv Reserves resources for a new LSP and specifies label mapping,or refreshes reservation state information for an existing LSP.

Configuration — MPLS October 2010 31

Page 32: NN47263-505 04.01 Configuration MPLS

Message DescriptionPathTear Removes path states in routers along an LSP; usually initiated

by the sender.

ResvTear Releases reservation states along an LSP; usually initiated bythe receiver.

PathErr Indicates a problem establishing a new path or refreshingexisting state information (advisory message only).

ResvErr Indicates a problem reserving resources for a new LSP, orrefreshing existing resource reservation information (advisorymessage only).

ResvConfirm Confirms that resources have been reserved for a new LSP.

RVSP-TE tunnel setupRSVP-TE tunnels are source-routed. The ingress LER determines the path through thenetwork to the destination, based on a user-provided list of explicit hops, or along the bestroute selected by the underlying IGP (calculated from local routing tables). LSRs exchangePath and Resv messages to set up and maintain RSVP-TE tunnels, using the Label Object inthe Resv messages for label distribution.

When setting up an RSVP-TE tunnel, the ingress LER sends a Path message to the egressLER, requesting resources and label mapping information. The Path message is propagateddownstream through the network, and stores a path state (indicating the previous and next-hop address) in each transit node as it travels to the egress LER.

The egress LER responds with a Resv message, confirming that resources are available forthe LSP. The Resv message travels upstream to the ingress router, along the same route asthe original Path message (in the reverse direction). The Resv message stores a reservationstate in each transit node, and specifies the local label binding for the LSP to each successiveupstream router. When the ingress LER receives the Resv message, the tunnel is established.

RSVP-TE fundamentals

32 Configuration — MPLS October 2010

Page 33: NN47263-505 04.01 Configuration MPLS

Figure 12: RSVP-TE tunnel setup

OSPF-TE and CSPFOSPF-TE is an extension to OSPF that can identify the shortest path to a destination nodethat can meet specific bandwidth requirements. It is used to identify and propagate bandwidth-constrained routes throughout the network.

Using the routes provided by OSPF-TE, the Secure Router 2330/4134 uses the CSPFalgorithm to compute the best paths for LSPs that are subject to various constraints such as:bandwidth, hop count, administrative groups, priority and explicit routes. When computingpaths for LSPs, CSPF considers not only the topology of the network and the attributes definedfor the LSP but also the links. It attempts to minimize congestion by intelligently balancing thenetwork load.

Using the information calculated with CSPF, the Secure Router 2330/4134 then uses RSVP-TE as the signaling protocol to set up and maintain the traffic-engineered LSPs through theMPLS network.

RSVP-TE resource reservation stylesResource reservation provides control over bandwidth allocation during LSP setup. SecureRouter 2330/4134 supports both RSVP-TE resource reservation styles:

• Fixed filter• Shared explicit

OSPF-TE and CSPF

Configuration — MPLS October 2010 33

Page 34: NN47263-505 04.01 Configuration MPLS

Fixed filterA fixed filter (FF) reservation creates a distinct resource reservation for each sender in aspecified list. Each reservation is specific to a sender, and is not shared with any other sender inthe session. Fixed filter reservation is appropriate for traffic flows that are independent but likelyto be transmitted at the same time (such as video applications).

RSVP-TE tunnels reserved with fixed filter (FF) style never share bandwidth with other LSPs.The tunnel consumes its own share of the bandwidth on all links traversed.

Figure 13: Fixed filter

Shared explicitA shared explicit (SE) reservation creates a single resource reservation that is shared by allsenders in a specified list.

RSVP-TE tunnels reserved with shared explicit (SE) style in the same RSVP session can sharebandwidth on common links. SE style is usually used when traffic can only flow on one of theLSPs in the session at a given time, for instance, for primary and backup LSPs, or whenperforming LSP optimization or modification. LSPs that belong to different sessions, even whenSE style is used, cannot share bandwidth.

Figure 14: Shared explicit

RSVP-TE fundamentals

34 Configuration — MPLS October 2010

Page 35: NN47263-505 04.01 Configuration MPLS

Priority of signaled LSPIn cases where there is insufficient bandwidth to accommodate the creation of a new LSP, theSecure Router 2330/4134 can remove less important existing LSPs to free up the necessarybandwidth for the new LSP. This can be done by preempting one or more of the signaled LSPs.To specify the relative priority for the existing LSP and the new LSP, you can configure thefollowing parameters:

Setup priorityThe setup priority determines if a new LSP can preempt an existing LSP. The setup priority ofthe new LSP must be higher than the hold priority of an existing LSP for the existing LSP tobe preempted.

Please note that for a trunk, the setup priority should not be higher than the hold priority.

Hold priorityThe hold priority determines the degree to which an LSP holds onto its reservation for a sessionafter the LSP has been set up successfully. When the hold priority is high, the existing LSP isless likely to give up its reservation.

Explicitly routed LSPsRSVP-TE tunnels can be configured to traverse specific nodes through the network. TheExplicit Route Object (ERO) in the Path message defines one or more hops in the LSP,specified by an IP address.

Each hop in the ERO is either strict or loose. If the hop is strict, the LSP must go to the specifiedaddress directly, without traversing any intermediary nodes. If the hop is loose, the RSVP-TE relies on IGP lookups to determine the best route to the specified address (either directlyor otherwise). If no ERO is specified, the tunnel destination is treated as a single loose hop.Secure Router 2330/4134 supports a combination of strict or loose hops in the ERO.

A hop can identify a link or a loopback address (such as a router ID). To ensure that an RSVP-TE tunnel takes a specific link, you must specify the IP address of the link interface on theneighboring router; otherwise, specify the router loopback address, so that the LSP can be re-routed in the event of a link failure.

Priority of signaled LSP

Configuration — MPLS October 2010 35

Page 36: NN47263-505 04.01 Configuration MPLS

Once established, explicitly routed RSVP-TE tunnels are pinned: changes in the networktopology (for example, when the IGP learns of a better route) have no impact on the LSP path. Ifthe LSP is torn down (for example, because of a link failure), the node attempts to re-establish the LSP and uses the most recent IGP information to setup the LSP path.

Route RecordingRoute recording describes the actual path taken by an LSP, as a list of all the nodes traversedfrom ingress to egress. When route recording is enabled, each node records its LSR ID in theRoute Record Object (RRO) of the Path message before forwarding it to the next hop.

Route recording is a useful diagnostic tool when examining the path of an LSP (particularly forLSPs with loose hops, that rely on the IGP for the best path), or for loop detection.

Refresh reductionDue to the soft-state nature of RSVP, LSRs must exchange control messages periodically torefresh installed state information in each node. Additionally, because control messages aresent as IP datagrams (with no guaranteed delivery), periodic refresh messages cover any lostmessages. However, as the number of RSVP-TE sessions increases, so does the volume ofcontrol traffic between nodes.

Refresh reduction allows you to reduce the amount of RSVP control traffic in the network. Toprovide RSVP refresh reduction, the Secure Router 2330/4134 supports reliable messaging.

Reliable messagingReliable messaging provides an acknowledgement mechanism between RSVP-TE neighborsto confirm that control messages have been delivered successfully. Since message loss canbe detected independently, RSVP does not have to rely on periodic refresh messages torecover from any dropped messages, and the refresh interval can be longer. This reduces theamount of control traffic between RSVP-TE neighbors.

A receiver acknowledges successful RSVP message delivery with either an ACK message(that references the original message’s ID) or piggy-backed in another RSVP message.

RSVP-TE fundamentals

36 Configuration — MPLS October 2010

Page 37: NN47263-505 04.01 Configuration MPLS

Fast reroute and node protectionFor an LSP to survive the failure of a node in the path, you can configure fast reroute one-to-one protection. Fast reroute protection provides an alternate path to a downstream router incase of a link failure. The alternate path uses a different interface to reach the samedownstream router. The upstream router signals the ingress router about the failure to maintainthe flow of traffic.

Figure 15: Fast reroute

If the failed LSR comes back up, the LSP reverts to the original protected path.

Node protectionThe Secure Router 2330/4134 also supports fast reroute with node protection. In this case,if an LSR fails, the alternate path initiated by the upstream router bypasses the failed routercompletely, reconnecting to the original LSP path at the next downstream router.

Figure 16: Fast reroute with node protection

Fast reroute and node protection

Configuration — MPLS October 2010 37

Page 38: NN47263-505 04.01 Configuration MPLS

Secondary LSP (global repair)The Secure Router 2330/4134 supports RSVP-TE LSP protection through primary andsecondary paths.

An LSP can have a primary path and (optionally) a secondary backup path. The secondarypath is always pre-established, thus eliminating the need to calculate a new route and signala new path during a failure. However, no traffic is allowed on the secondary LSP path until itis promoted to active LSP status.

You only need to configure the secondary LSP on the ingress router. If the primary LSP fails,the ingress router automatically reroutes traffic over to the secondary LSP. When the primaryLSP recovers, the traffic automatically reverts back to the primary LSP.

Figure 17: Primary and secondary LSP

Secondary LSP signalingThe Secure Router 2330/4134 can perform Secondary LSP signaling using either of 2independent methods:

• Sender-Template Identification method: In this method, a detour shares the RSVPSession object and LSPID with the protected LSP and changes the ingress IP addressin the RSVP PATH message. According to the RSVP resource sharing rules, this LSPcan be merged with the protected LSP as they have same session object.

• Path Specific method: In this method, a new RSVP object (DETOUR) is added to thePATH message to differentiate it from the protected LSP's path messages. Since, a detourhas the same session object as the protected LSP, it can share common networkresources.

RSVP-TE fundamentals

38 Configuration — MPLS October 2010

Page 39: NN47263-505 04.01 Configuration MPLS

Secondary LSP with fast rerouteFast reroute and secondary LSP are independent features which can be enabled for the LSP atthe same time. In this case, if the primary LSP goes down, the route switches first to the fastreroute. Then, if a secondary LSP is configured, the LSP switches to the secondary LSP asthe permanent LSP.

Fast reroute is typically used only as a temporary entity, as the detour LSP is not necessarilytraffic-engineering optimal, unlike the primary and secondary LSP, which are always optimalpaths.

Administrative groupsAdministrative groups are manually assigned attributes that describe the "color" of links, sothat links with the same color are in one class. These groups are used to implement differentpolicy-based LSP setups.

With RSVP-TE, you can specify the administrative groups to include or exclude in the primaryor secondary path for an LSP. The available options are:

• include-any:

all links must belong to at least one of the administrative groups listed in the include-any list.

• include-all

all links must belong to all of the administrative groups listed in the include-all list

• exclude-any

none of the links must have a color found in the list of groups.

MPLS QoSMPLS QoS provides support for global DSCP-to-EXP mapping on the ingress LER, and globalEXP-to-DSCP mapping on the egress LER. On the ingress LER, MPLS QoS also supportsflow-based EXP marking for inbound traffic, and class-based queueing for outbound traffic.

The following sections provide an overview of the supported MPLS QoS features. For detailedQoS configuration information, see Configuration – Traffic Management (NN47263-601).

Administrative groups

Configuration — MPLS October 2010 39

Page 40: NN47263-505 04.01 Configuration MPLS

Ingress LER- EXP markingIn order to give fair and expected QoS treatment for various traffic flows funneling through theMPLS LSP tunnels, each packet must be marked with the correct EXP value on the ingressLER. The following are the available methods of mapping/marking of the EXP value for packetson the ingress LER:

• Global DSCP-to-EXP Mapping• Flow-based EXP Marking

If provisioned, these methods can operate in tandem.

Global DSCP-to-EXP Mapping

In the ingress QoS processing stage of ingress LER, by default, every packet is marked withthe EXP value based on the global DSCP-to-EXP mapping table shown below. For any packet,if DSCP is not applicable, then the EXP value in the global DSCP-to-EXP table, correspondingto the DSCP value of 0, is marked.

Each MPLS per-EXP flow is serviced at the defined priority and bandwidth. The peak rateallows LSP flows to utilize the unused bandwidth up to the full interface bandwidth. By default,this table is used on the ingress LER to map DSCP code points to EXP values.

Table 3: Global DSCP to EXP mapping

Class DSCP EXP Bandwidth allocated per EXPwithin LSP (specified as % ofLSP, unless otherwise stated)

Critical ControlTraffic

Class Selector 7 7 CR: 10%, PR: 100% of interfaceTail Drop, Priority : 1

Network ControlTraffic

Class Selector 6 6 CR: 10%, PR: 100% of interfaceTail Drop: Priority: 2

Real Time EF 5 CR= 35%, PR=50%, Tail Drop,Priority: 3

Class 1 AF 4X 4 CR=10%, PR: 100% of interface,Priority: 6

Class 2 AF 3X 3 CR=10%, PR: 100% of interface

Class 3 AF 2X 2 CR=5%, PR: 100% of interface,Priority: 6

Class 4 AF 1X 1 CR=10%, PR: 100% of interfacePriority: 7

Best Effort Default 0 CR=10%, PR: 100% of interfacePriority: 8

RSVP-TE fundamentals

40 Configuration — MPLS October 2010

Page 41: NN47263-505 04.01 Configuration MPLS

Flow-based EXP Marking

This method of EXP marking is optional and is user driven. The flow-based EXP marking issupported on inbound traffic only. You can use multifield classification to define traffic classes,and specify EXP marking as the action on leaf classes.

Class-based queueing

MPLS QoS also supports class based queuing of per-EXP traffic, based on the EXP value ofthe data after applying the global DSCP-to-EXP mapping, and flow-based EXP marking, ifapplicable.

DSCP Marking on Egress LERIn order to give fair and expected QoS treatment for various traffic flows coming out of theMPLS LSP, each of the packets can remarked with proper DSCP code points in the egressLER. The following are the available methods of marking the DSCP code points for packetson the egress LER.

• Global EXP-to-DSCP marking• Flow-based DSCP marking

If provisioned, these methods can operate in tandem.

Global EXP-to-DSCP Marking

In the ingress QoS processing stage of egress LER, by default, every packet is re-marked withthe DSCP value based on the global EXP-to-DSCP mapping table.

The following table provides EXP-to-DSCP mapping per EXP class in a given LSP. By default,this table is used on the egress LER to map EXP values to DSCP code points.

Table 4: Global EXP to DSCP mapping

Class EXP DSCP

Critical Control Traffic 7 Class Selector 7

Network Control Traffic 6 Class Selector 6

Premium, Real time 5 EF

Platinum, Class 1 4 AF 41

Gold, Class 2 3 AF 31

Silver, Class 3 2 AF 21

MPLS QoS

Configuration — MPLS October 2010 41

Page 42: NN47263-505 04.01 Configuration MPLS

Bronze, Class 4 1 AF 11

Best Effort 0 Class Selector 0, Default

The EXP-to-DSCP functionality depends on the configured MPLS tunnel mode. The tunnelmodes control whether the DiffServ markings for IP packets remain independent from, or area function of, the MPLS label EXP values. These modes are only applicable when labels arepushed or popped. They have no influence on the label swapping on intermediate LSRs.

There are three tunnel modes that control the application of EXP values in various scenarios:

Uniform modeChanges made to the EXP value on the uppermost label are applied to all labels in the stack,including the IP packet.

In the egress LER, the changes to the EXP values along the MPLS network path are reflectedinto the packet by appropriately re-marking the DSCP value based on the global EXP-to-DSCP mapping table.

Pipe modeChanges made to the EXP value on the uppermost label are propagated to other MPLS labelsbut not to the IP packet. Here, the DSCP value in the IP packet remains unchanged, but thePHB at the egress LER is chosen based on the removed EXP value.

Short-pipe modeChanges made to the EXP value on the uppermost label are propagated to other MPLS labelsbut not to the IP packet. Here, the DSCP value in the IP packet remains unchanged, and thePHB at the egress LER is chosen based on the removed EXP value.

Flow-based DSCP Marking

This method of EXP marking is optional and is user driven. The flow-based DSCP marking issupported on inbound or outbound direction. You can use multifield classification to definetraffic classes and assign DSCP marking as an action. This method of marking is useful in theinbound and outbound directions of egress LER.

RSVP-TE fundamentals

42 Configuration — MPLS October 2010

Page 43: NN47263-505 04.01 Configuration MPLS

Chapter 6: MPLS Pseudowire fundamentals

MPLS pseudowire (also known as MPLS L2VPN or Martini VPN) provides the ability to transport Layer 2packets over MPLS-enabled Ethernet packet-switched networks. The MPLS pseudowire is a virtual point-to-point connection that can emulate Layer 2 protocols over MPLS tunnels.

You can configure the Avaya Secure Router 2330/4134 MPLS pseudowire to provide support for one ofthe following types of traffic:

• PPP over MPLS• Ethernet over MPLS• HDLC over MPLS

MPLS pseudowire provides a common infrastructure to encapsulate and transport the supported types ofLayer 2 traffic over the MPLS network.

Layer 2 virtual circuitsAn MPLS pseudowire consists of two Layer 2 virtual circuits, each operating over a singleMPLS LSP tunnel. To configure the pseudowire, two LSPs must be established between theendpoints. As each LSP can only carry unidirectional traffic, one virtual circuit is configured oneach LSP. From the perspective of each router, one virtual circuit carries the ingress traffic,and the other virtual circuit carries the egress traffic.

To provide a bidirectional path, you must configure one virtual circuit with the same ID on eachendpoint. The egress path and ingress path that are created with the same virtual circuit IDare then bound together into a single pseudowire.

After you specify the desired encapsulation (HDLC, PPP, Ethernet, or VLAN) end to end, thenthe pseudowire is established.

The following figure shows an Ethernet over MPLS Pseudowire emulating a VLAN betweentwo endpoints.

Configuration — MPLS October 2010 43

Page 44: NN47263-505 04.01 Configuration MPLS

Figure 18: Ethernet over MPLS

Virtual circuit labellingIn addition to the standard MPLS label used to route packets across the MPLS network, virtualcircuits support an additional VC label that identifies the egress Layer 2 interface that receivesthe VC traffic.

The egress LER binds the VC label to a user-specified egress interface. When the egressrouter receives a VC-labeled packet, it forwards the packet to the interface associated with theVC label. The egress LER propagates the label binding to the ingress LER.

Binding an attachment circuit to the pseudowireAt each endpoint, you must bind a local Layer 2 interface to the virtual circuit to identify thesource and destination for the virtual circuit traffic. This local interface, referred to as theattachment circuit, can be a PPP- or HDLC-enabled WAN bundle or one of the Ethernet ports(including SR4134 module Ethernet ports).

While the attachment circuit can be a module Ethernet port, on the SR4134, the underlyingLSPs on which the virtual circuit operates can only be configured on WAN interfaces or chassisEthernet ports.

The SR2330 has no such limitation.

LDP requirement for dynamic virtual circuitsLike MPLS LSPs, you can create Layer 2 virtual circuits dynamically or statically. With dynamicvirtual circuits, the LSP that is used to establish the virtual circuits can be a static LSP, RSVP-

MPLS Pseudowire fundamentals

44 Configuration — MPLS October 2010

Page 45: NN47263-505 04.01 Configuration MPLS

TE LSP, or an LDP LSP. However, to dynamically generate and transmit virtual circuit labelmapping messages between the peers, MPLS pseudowire uses only LDP. As a result, in orderto enable dynamic MPLS pseudowire, an LDP session must be configured between the peersregardless of the type of LSP that is used to establish the pseudowire.

With remote peers, a targeted LDP session is required. With directly connected peers, a localLDP session is sufficient.

If multiple LSPs are configured between the peers when a dynamic virtual circuit is enabled,the LER adheres to the following order of precedence to choose the LSP to use:

1. Static LSP

2. RSVP-TE LSP

3. LDP LSP

Static virtual circuitsTo create static pseudowires, you must specify static VC-FTN and VC-ILM entries.

The static VC-FTN entry specifies the source Layer 2 interface and outgoing LSP, while thestatic VC-ILM entry specifies the incoming LSP and destination Layer 2 interface. In this case,LDP is not required to establish the virtual circuits.

Multiple virtual circuitsOne MPLS LSP can support multiple unidirectional virtual circuits. As a result, you canconfigure multiple pseudowires over one pair of LSPs.

PPP over MPLSWith MPLS pseudowire, you can direct PPP traffic over an MPLS tunnel. This allows you totransmit PPP traffic between sites over Ethernet packet-switched networks.

The pseudowire encapsulates the Layer 2 PPP packets at the ingress and forwards them tothe egress router. The egress router removes the encapsulation and forwards the Layer 2packets.

MPLS does not forward the entire PPP packet across the pseudowire. The PPP control andaddress information (0xff03, which is statically present in each PPP packet) is stripped fromthe transported PPP packet. The pseudowire egress endpoint resets this information in thepacket before forwarding it to the destination interface.

PPP over MPLS

Configuration — MPLS October 2010 45

Page 46: NN47263-505 04.01 Configuration MPLS

HDLC over MPLSWith Release 10.2 and later, the Secure Router 2330/4134 supports HDLC over MPLSpseudowire. With this feature, you can transmit HDLC traffic between sites over Ethernetpacket-switched networks.

Ethernet over MPLSEthernet over MPLS is also referred to as Transparent LAN Services (TLS). With TLS, you canconnect two distant Ethernet networks together so that they function as a single logical Ethernetor VLAN domain.

With Ethernet over MPLS, there are no changes to the transported Ethernet packet. MPLSpseudowire operates as a transparent transport protocol. Therefore, the pseudowire does notperform MAC learning, Layer 2 look ups, nor any interpretation of the forwarded packet forbroadcasting.

VLAN RewriteTypically, when Ethernet over MPLS is emulating VLAN, the VLAN IDs at each end of the linkmust have the same value. The Secure Router 2330/4134 supports the VLAN rewrite feature,which allows you to use different VLAN IDs at each end of the link.

MPLS Pseudowire fundamentals

46 Configuration — MPLS October 2010

Page 47: NN47263-505 04.01 Configuration MPLS

Chapter 7: Static LSP configuration

Configure a static LSP to set up a manually-configured, static path through the MPLS network.

Static LSP configuration proceduresThe following task flow shows you the sequence of procedures you perform to configure astatic LSP. To link to the referenced procedures, see Static LSP configuration tasknavigation on page 48

Figure 19: Static LSP configuration procedures

Configuration — MPLS October 2010 47

Page 48: NN47263-505 04.01 Configuration MPLS

Static LSP configuration task navigation

• Configuring a static FTN entry on the ingress router on page 48

• Configuring static ILM entries on transit and egress routers on page 49

• Displaying the static FTN entry on page 49

• Displaying the static ILM entry on page 50

Configuring a static FTN entry on the ingress routerConfigure a static FTN entry on an ingress LER to set a static MPLS action for a specific FEC.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To configure a static FTN entry, enter:

[no] mpls static-ftn <FEC/Mask> <outgoing-label> <next-hop><outgoing-if-name>

Table 5: Variable definitions

Variable Value[no] Deletes the specified static FTN entry.

<FEC/Mask> Specifies the Forwarding Equivalence Class, with mask(A.B.C.D/M).

<outgoing-label> Specifies the outgoing label value:

• 0: explicit null

• 3: implicit null

• 16-1048575

<next-hop> Specifies the next hop IPv4 address.

<outgoing-if-name> Specifies the outgoing interface name.

Static LSP configuration

48 Configuration — MPLS October 2010

Page 49: NN47263-505 04.01 Configuration MPLS

Configuring static ILM entries on transit and egress routersConfigure a static ILM entry on a transit or egress LSR interface to set a static MPLS actionfor packets with a specific label.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To configure a static ILM entry, enter:

[no] mpls static-ilm <label-in> <if-name-in> [pop] | [swap<label-out> <next-hop> <if-name-out>]

Table 6: Variable definitions

Variable Value[no] Deletes the specified static ILM entry.

<label-in> Specifies the incoming label value. (16 - 1039)

<if-name-in> Specifies the incoming interface name.

[pop] Specifies to pop the incoming label.

swap Specifies to swap the incoming label.

<label-out> Specifies the outgoing label value for swap:

• 0: explicit null

• 3: implicit null

• 16-1048575

<next-hop> Specifies the next hop IP address.

<if-name-out> Specifies the outgoing interface name for swap:

Displaying the static FTN entryDisplay the static FTN entry to verify the configuration.

Procedure steps

To display the static FTN entry configurations, enter:

Configuring static ILM entries on transit and egress routers

Configuration — MPLS October 2010 49

Page 50: NN47263-505 04.01 Configuration MPLS

show mpls static-ftn

Displaying the static ILM entryDisplay the static ILM entry to verify the configuration.

Procedure steps

To display the static ILM entry configurations, enter:

show mpls static-ilm

Displaying static FTN statisticsDisplay the statistics for the MPLS static FTN.

Procedure steps

To display the static FTN entries, enter:

show mpls stats-ftn

Displaying static ILM statisticsDisplay the statistics for the MPLS static ILM.

Procedure steps

To display the static ILM entries, enter:

show mpls stats-ilm

Static LSP configuration

50 Configuration — MPLS October 2010

Page 51: NN47263-505 04.01 Configuration MPLS

Chapter 8: LDP LSP configuration

Configure an LDP LSP to set up a best effort path through the MPLS network.

LDP configuration proceduresThe following task flow shows you the sequence of procedures you perform to configure anLDP LSP. To link to the referenced procedures, see

Configuration — MPLS October 2010 51

Page 52: NN47263-505 04.01 Configuration MPLS

Figure 20: LDP configuration procedures

Important:If you configure ECMP using LDP LSPs, you must enable LDP (using the mpls protocol-ldp command) on all interfaces that are used in the ECMP configuration.

LDP LSP configuration

52 Configuration — MPLS October 2010

Page 53: NN47263-505 04.01 Configuration MPLS

LDP configuration task navigation

• Configuring loopback interface and router ID on page 53

• Enabling LDP at the router level on page 54

• Configuring targeted LDP peer adjacency on page 54

• Configuring LDP properties on page 57

• Enabling LDP on an interface on page 70

• Displaying LDP configuration and statistics on page 71

Configuring loopback interface and router IDConfigure a loopback interface with an IP address and assign the interface as the router ID toenable the configuration of MPLS properties on the router.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To specify a bundle name for the loopback interface, enter:

interface loopback <loopback-if-name>3. To configure the loopback address, enter:

ip address <loopback-ip> <subnet-mask>4. To exit from the loopback configuration, enter:

exit5. To configure the router-id, enter:

[no] router-id <router-id>Table 7: Variable definitions

Variable Value<loopback-if-name> Specifies the loopback interface name.

<loopback-ip> Specifies the loopback IP address and mask.

<subnet-mask> Specifies the subnet mask for the loopback IP.

[no] Deletes the specified router ID.

Configuring loopback interface and router ID

Configuration — MPLS October 2010 53

Page 54: NN47263-505 04.01 Configuration MPLS

Variable Value<router-id> Specifies the router ID. This value must be a valid loopback

address.

Enabling LDP at the router levelEnable LDP to allow configuration of LDP properties on the router.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To enable LDP, enter:

router ldp

Configuring targeted LDP peer adjacency

Specifying a targeted LDP peer for extended discoverySpecify a targeted LDP peer to send targeted hello messages to a specific IP address. Thisallows the router to establish an LDP session to a non-directly connected LSR.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To specify the targeted LDP peer, enter:

targeted-peer <targeted-peer-ip>Table 8: Variable definitions

Variable Value<targeted-peer-ip> Specifies the IPv4 address of the targeted peer.

LDP LSP configuration

54 Configuration — MPLS October 2010

Page 55: NN47263-505 04.01 Configuration MPLS

Variable ValueFor the targeted peer IP, specify the address which isconfigured as the transport address on the peer side(preferably a loopback address).

Configuring the global targeted LDP peer hello intervalConfigure the targeted peer hello interval for sending unicast hello packets through theinterface to the targeted peer.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the targeted peer hello interval, enter:

[no] targeted-peer-hello-interval <1-65535>Table 9: Variable definitions

Variable Value[no] Sets the targeted peer hello interval to the default value.

<1-65535> Specifies the targeted peer hello interval in seconds.

Configuring the interface targeted LDP peer hello intervalConfigure the targeted peer hello interval for sending hello packets through the interface to thetargeted peer.

The targeted LDP peer hello interval configure for an interface overrides the global value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the targeted peer hello interval, enter:

Configuring targeted LDP peer adjacency

Configuration — MPLS October 2010 55

Page 56: NN47263-505 04.01 Configuration MPLS

[no] ldp targeted-peer-hello-interval <1-65535>Table 10: Variable definitions

Variable Value<bundle-name> Specifies the name of the WAN bundle.

<0/1-0/4> Specifies the chassis Ethernet port number.

[no] Sets the targeted peer hello interval to the default value.

<1-65535> Specifies the targeted peer hello interval in seconds.

Configuring the global targeted LDP peer hold timeConfigure the targeted LDP peer hold time to set time that the router waits before rejecting anadjacency with targeted peers. For optimal performance, set this value to no less than threetimes the hello interval value for targeted peers.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the targeted peer hold time, enter:

[no] targeted-peer-hold-time <1-65535>Table 11: Variable definitions

Variable Value[no] Sets the hold time to the default value.

<1-65535> Specifies the hold time in seconds. The default is 45seconds.

Configuring the interface targeted LDP peer hold timeConfigure the targeted LDP peer hold time to set time that the router waits before rejecting anadjacency with targeted peers. For optimal performance, set this value to no less than threetimes the hello interval value for targeted peers.

The targeted LDP peer hold time you configure for an interface overrides the global value.

LDP LSP configuration

56 Configuration — MPLS October 2010

Page 57: NN47263-505 04.01 Configuration MPLS

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the targeted peer hold time, enter:

[no] ldp targeted-peer-hold-time <1-65535>Table 12: Variable definitions

Variable Value[no] Sets the hold time to the global value.

<1-65535> Specifies the hold time in seconds.

Configuring LDP properties

Configuring explicit-null labelsEnable explicit null labels on router. By default, implicit null labels are advertised on the egressroute.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure explicit null labels, enter:

[no] explicit-nullTable 13: Variable definitions

Variable Value[no] Disables explicit null labels.

Configuring LDP properties

Configuration — MPLS October 2010 57

Page 58: NN47263-505 04.01 Configuration MPLS

Configuring the transport address for a label spaceConfigure the transport address for a label space. The transport address is the address usedfor the TCP session over which LDP is running.

If you manually configure the transport address for the label space, the transport address mustbe a loopback address.

If you do not manually configure the transport address, LDP uses a physical interface addressas the transport address.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the transport address, enter:

[no] transport-address <transport-ip-address>Table 14: Variable definitions

Variable Value[no] Deletes the transport address.

<transport-ip-address> Specifies the transport IP address.

Configuring global loop detectionEnable loop detection using the hop count limit method to detect looping LSPs. Loop detectionensures that a loop is detected while establishing a label switched path and before any datais passed over that LSP.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure loop detection, enter, enter:

[no] loop-detection

LDP LSP configuration

58 Configuration — MPLS October 2010

Page 59: NN47263-505 04.01 Configuration MPLS

Table 15: Variable definitions

Variable Value[no] Disables loop-detection.

Configuring the global loop detection countConfigure the loop detection count to set the maximum hop-count value for loop detection.

An LSR that detects a maximum hop count behaves as if the containing message has traverseda loop. The use of the loop-detection-count ensures that a loop is detected while establishing alabel switched path before any data is passed over that LSP.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the loop detection count, enter, enter:

[no] loop-detection-count <1-255>Table 16: Variable definitions

Variable Value[no] Sets the loop detection count to the default value.

<1-255> Specifies the loop detection count.

Configuring global request retriesEnable request retries to allow repeated requests for a label when it has been rejected for avalid reason.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To enable request retries, enter, enter:

Configuring LDP properties

Configuration — MPLS October 2010 59

Page 60: NN47263-505 04.01 Configuration MPLS

[no] request-retryTable 17: Variable definitions

Variable Value[no] Disables request retries.

Configuring the global request retry timeoutConfigure the request retry timeout to set the interval between request retries.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the request retry timeout, enter:

[no] request-retry-timeout <1-65535>Table 18: Variable definitions

Variable Value[no] Sets the request retry timeout to the default value. The

default timeout is 5 seconds.

<1-65535> Specifies the interval between request retries in seconds.

Propagating the global release of labels to downstream routersThe label advertisement mode (downstream unsolicited) controls how labels are propagatedto upstream routers. You can enable the propagation of labels to next-hop routers even if theupstream router does not hold a label for the specified FEC. In this case, the LSR canpropagate the label to the Next Hop.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

LDP LSP configuration

60 Configuration — MPLS October 2010

Page 61: NN47263-505 04.01 Configuration MPLS

router ldp3. To propagate the release of labels to downstream routers, enter, enter:

[no] propagate-releaseTable 19: Variable definitions

Variable Value[no] Disables the release of labels to downstream routers.

Configuring the global label control modeSet the control mode for label processing.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the label control mode, enter:

[no] control-mode {independent | ordered}Table 20: Variable definitions

Variable Value[no] Sets the label control mode to the default value

(independent).

independent Independent processing sets the mode to instant replies: theLSR advertises label mappings to neighbors at any time.

ordered In ordered mode, an LSR only advertises label mappings foran FEC when it is the egress router for the FEC, or when ithas received a label mapping from the current next hop forthe FEC.

Applying ACL rules to LDPConfigure ACL rules to permit or deny the advertisement of labels for specific routes to aconfigured list of neighbors. After the routes are redistributed, denied routes are no longeradvertised to the listed LDP neighbors.

Configuring LDP properties

Configuration — MPLS October 2010 61

Page 62: NN47263-505 04.01 Configuration MPLS

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure label advertisement, enter, enter:

[no] advertise-labels [for any to none] | {for <prefix-acl>to [any | <peer-acl>] }

Table 21: Variable definitions

Variable Value[no] Specifies destinations that do not advertise their labels to

specified LDP neighbors. (When used together with for anyto none, this enables the distribution of all locally assignedlabels to all LDP neighbors.)

[for any to none] Prevents the distribution of any locally assigned labels to anyneighbors.

<prefix-acl> Prefix access control list that specifies the destinations thathave their labels advertised.

[any | <peer-acl>] Specifies the neighbors that receive label advertisements,using a peer access control list name. Enter any to specifyall neighbors.

Configuring the global label advertisement modeConfigure the label advertisement mode to control how the router advertises FEC-to-labelbindings to LDP peers.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the label advertisement mode, enter:

[no] advertisement-mode {downstream-unsolicited}

LDP LSP configuration

62 Configuration — MPLS October 2010

Page 63: NN47263-505 04.01 Configuration MPLS

Table 22: Variable definitions

Variable Value[no] Sets the default advertisement mode to the default value.

(Default: downstream-unsolicited.)

{downstream-unsolicited} Specifies downstream-unsolicited mode: the routerdistributes labels to peers without waiting for a labelrequest. This mode is typically used with the liberal labelretention mode.

Configuring the interface label advertisement modeConfigure the label advertisement mode to control when the interface advertises FEC-to-label bindings to LDP peers.

The label advertisement mode you configure for an interface overrides the globaladvertisement mode.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the label advertisement mode, enter:

[no] ldp advertisement-mode {downstream-unsolicited}Table 23: Variable definitions

Variable Value[no] Sets the interface label advertisement mode to the global

value.

{downstream-unsolicited} Specifies downstream-unsolicited mode: the routerdistributes labels to peers without waiting for a labelrequest. This mode is typically used with the liberal labelretention mode.

Configuring the global label retention modeSet the retention mode to be used for all labels exchanged through all interfaces.

Configuring LDP properties

Configuration — MPLS October 2010 63

Page 64: NN47263-505 04.01 Configuration MPLS

If an LDP session is already operational, any changes made to the retention mode apply only tolabels received after the router processes the mode change command. All previously receivedlabels remain unchanged.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the label retention mode, enter:

[no] label-retention-mode {liberal}Table 24: Variable definitions

Variable Value[no] Sets the interface label advertisement mode to the default

value.

{liberal} Specifies to retain all labels binding to FEC received fromlabel distribution peers, even if the LSR is not the current nexthop.

Configuring the interface label retention modeSet the retention mode to be used for all labels exchanged through the specified interface.

If an LDP session is already operational, any changes made to the retention mode apply only tolabels received after the router processes the mode change command. All previously receivedlabels remain unchanged.

The label retention mode you configure for an interface overrides the global value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the label retention mode, enter:

[no] ldp label-retention-mode {liberal}

LDP LSP configuration

64 Configuration — MPLS October 2010

Page 65: NN47263-505 04.01 Configuration MPLS

Table 25: Variable definitions

Variable Value[no] Sets the interface label retention mode to the global value.

{liberal} Specifies to retain all labels binding to FEC received fromlabel distribution peers, even if the LSR is not the current nexthop.

Configuring the global LDP hello intervalConfigure the interval for sending hello packets through LSR interfaces to create and maintainadjacencies.

Whenever a new router comes up, it sends out a hello packet to a specified, multicast addressannouncing itself to the network. Hello messages are sent to the All Routers Multicast Group(224.0.0.2). Receipt of a hello packet from another LSR creates a hello adjacency with thatLSR.

For optimum performance, set the hello-interval value to no more than one-third the hold-time value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the hello interval, enter:

[no] hello-interval <1-65535>Table 26: Variable definitions

Variable Value[no] Sets the hello interval to the default value (2 seconds).

<1-65535> Specifies the hello interval in seconds.

Configuring the interface LDP hello intervalConfigure the interval for sending hello packets through the interface to create maintainadjacencies.

Whenever a new router comes up, it sends out a hello packet to a specified, multicast addressannouncing itself to the network. Hello messages are sent to the All Routers Multicast Group

Configuring LDP properties

Configuration — MPLS October 2010 65

Page 66: NN47263-505 04.01 Configuration MPLS

(224.0.0.2). Receipt of a hello packet from another LSR creates a hello adjacency with thatLSR.

For optimum performance, set the hello-interval value to no more than one-third the hold timevalue.

The hello interval you configure for an interface overrides the global value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the hello interval, enter:

[no] ldp hello-interval <1-65535>Table 27: Variable definitions

Variable Value[no] Sets the hello interval to the global value.

<1-65535> Specifies the hello interval in seconds.

Configuring the global LDP hold timeConfigure the hold time value to set the maximum period that the LSR waits for a hello packetfrom a peer before it rejects an existing adjacency. The hold timer is reset every time a hellopacket is received from the peer in question.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the hold time, enter:

[no] hold-time <1-65535>Table 28: Variable definitions

Variable Value[no] Sets the hold time to the default value (15 seconds).

LDP LSP configuration

66 Configuration — MPLS October 2010

Page 67: NN47263-505 04.01 Configuration MPLS

Variable Value<1-65535> Specifies the hold time in seconds.

Configuring the interface LDP hold timeConfigure the hold time value to set the maximum period that the interface waits for a hellopacket from a peer before it rejects an existing adjacency. The hold time timer is reset everytime a hello packet is received from the peer in question.

The hold time you configure for an interface overrides the global value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the hold time, enter:

[no] ldp hold-time <1-65535>Table 29: Variable definitions

Variable Value[no] Sets the hold time to the global value.

<1-65535> Specifies the hold time in seconds.

Configuring the global keepalive intervalSet the interval at which the LSR sends keepalive messages to the peer in order to maintainan LDP session.

Each LSR must send keepalive messages at regular intervals to LDP peers to keep thesessions active. The keepalive interval determines the time-interval between successivekeepalive messages.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

Configuring LDP properties

Configuration — MPLS October 2010 67

Page 68: NN47263-505 04.01 Configuration MPLS

router ldp3. To configure the keepalive interval, enter:

[no] keepalive-interval <1-65535>Table 30: Variable definitions

Variable Value[no] Sets the keepalive interval to the default value (30 seconds).

<1-65535> Specifies the keepalive interval in seconds.

Configuring the interface keepalive intervalSet the interval at which the LSR sends keepalive messages to the peer in order to maintainan LDP session.

Each LSR must send keepalive messages at regular intervals to LDP peers to keep thesessions active. The keepalive interval determines the time-interval between successivekeepalive messages.

The keepalive interval you configure for an interface overrides the global value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the keepalive interval, enter:

[no] ldp keepalive-interval <1-65535>Table 31: Variable definitions

Variable Value[no] Sets the keepalive interval to the global value.

<1-65535> Specifies the keepalive interval in seconds.

Configuring the global keepalive timeoutConfigure the keepalive timeout to set the maximum period that the LSR waits for a keepalivemessage from a peer before the LDP session times out. The keepalive timer is reset every

LDP LSP configuration

68 Configuration — MPLS October 2010

Page 69: NN47263-505 04.01 Configuration MPLS

time a keepalive packet is received from the peer in question. For optimum performance, setthis value to no more than three times the keepalive interval value

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

router ldp3. To configure the keepalive timeout, enter:

[no] keepalive-timeout <1-65535>Table 32: Variable definitions

Variable Value[no] Sets the keepalive timeout to the default value. (30 seconds)

<1-65535> Specifies the keepalive timeout in seconds.

Configuring the interface keepalive timeoutConfigure the keepalive timeout to set the maximum period that the LSR waits for a keepalivemessage from a peer before the LDP session times out. The keepalive timer is reset everytime a keepalive packet is received from the peer in question. For optimum performance, setthis value to no more than three times the keepalive interval value

When you configure this property at the interface level, the configured value overrides the valueset using the global keepalive-timeout command.

The keepalive timeout you configure for an interface overrides the global value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the keepalive timeout, enter:

[no] ldp keepalive-timeout <1-65535>

Configuring LDP properties

Configuration — MPLS October 2010 69

Page 70: NN47263-505 04.01 Configuration MPLS

Table 33: Variable definitions

Variable Value[no] Sets the keepalive timeout to the global value.

<1-65535> Specifies the keepalive timeout in seconds.

Enabling LDP on an interfaceEnable LDP on the interface.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the interface, enter:

interface [bundle <wan_bundle_name> | ethernet <0/1-0/4> |vlan <vid>]

3. To enable MPLS on the interface, enter:

mpls ip4. To enable the LDP protocol for the interface, enter:

mpls protocol-ldp

Enabling auto-discovery of LDP peers

Configuring global multicast hellosEnable multicast hello exchange on all interfaces to enable auto-discovery of LDP peers ondirectly connected networks. When LDP is enabled, Multicast hellos are enabled by default.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose LDP configuration mode, enter:

LDP LSP configuration

70 Configuration — MPLS October 2010

Page 71: NN47263-505 04.01 Configuration MPLS

router ldp3. To enable multicast hellos on the interface, enter:

[no] multicast-hellosTable 34: Variable definitions

Variable Value[no] Disables multicast hellos on all interfaces.

Configuring interface multicast hellosEnable multicast hello exchange on an interface to enable auto-discovery of LDP peers ondirectly connected networks. Multicast hellos are enabled by default.

Enabling or disabling multicast hellos for an interface overrides the global state.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To enable multicast hellos on the interface, enter:

[no] ldp multicast-hellosTable 35: Variable definitions

Variable Value[no] Disables multicast hellos on the interface.

Displaying LDP configuration and statistics

Displaying LDP adjacencyProcedure steps

To display the LDP adjacency, enter:

Displaying LDP configuration and statistics

Configuration — MPLS October 2010 71

Page 72: NN47263-505 04.01 Configuration MPLS

show ldp adjacency

Displaying the IP access list of LDP advertise-labelsProcedure steps

To display the IP access list of LDP advertise-labels, enter:

show ldp advertise-labels

Displaying FECs known to the current LSRProcedure steps

To display the FECs known to the current LSR, enter:

show ldp fec [A.B.C.D/M]If the IP address is not specified, all FECs are displayed.

Displaying detailed LDP information for interfacesProcedure steps

To display the detailed LDP information for an interface, enter:

show ldp interface <interface-name>Table 36: Variable definitions

Variable Value<interface-name> Displays LDP information for the specified interface. If this

value is not specified, information for all interfaces isdisplayed.

Displaying LDP LSP configurationProcedure steps

To display the LDP LSP configuration, enter:

LDP LSP configuration

72 Configuration — MPLS October 2010

Page 73: NN47263-505 04.01 Configuration MPLS

show ldp lsp [detail]Table 37: Variable definitions

Variable Value[detail] Displays advertise-label information in addition to LDP LSP

information.

Displaying LDP LSP hosts corresponding to an FECProcedure steps

To display the configuration of the LDP LSP corresponding to a particular FEC, enter:

show ldp lsp fec <A.B.C.D/M> [detail]Table 38: Variable definitions

Variable Value<A.B.C.D/M> FEC with mask.

[detail] Displays advertise-label information in addition to LDP LSPinformation.

Displaying LDP LSP hostProcedure steps

To display the LDP LSP host, enter:

show ldp lsp host [detail]Table 39: Variable definitions

Variable Value[detail] Displays advertise-label information in addition to LDP LSP

host information.

Displaying LDP LSP prefixProcedure steps

To display the LDP LSP prefix, enter:

Displaying LDP configuration and statistics

Configuration — MPLS October 2010 73

Page 74: NN47263-505 04.01 Configuration MPLS

show ldp lsp prefix [detail]Table 40: Variable definitions

Variable Value[detail] Displays advertise-label information in addition to LDP LSP

prefix information.

Displaying LDP sessionProcedure steps

To display LDP session, enter:

show ldp session [<A.B.C.D> | detail]Table 41: Variable definitions

Variable Value<A.B.C.D> Displays information for established sessions with the peer

specified by this IP address. If this value is not specified,information for all peers is displayed.

detail Displays detailed information for all sessions establishedbetween the current LSR and other LSRs.

Displaying LDP packet statisticsProcedure steps

To display the LDP packet statistics, enter:

show ldp statistics

Displaying LDP advertise-labels statisticsProcedure steps

To display the LDP advertise-labels statistics, enter:

LDP LSP configuration

74 Configuration — MPLS October 2010

Page 75: NN47263-505 04.01 Configuration MPLS

show ldp statistics advertise-labels

Clearing LDP adjacenciesProcedure steps

To clear LDP adjacencies, enter:

clear ldp adjacency {<A.B.C.D>|all}Table 42: Variable definitions

Variable Value<A.B.C.D> LDP adjacency address.

all Clears all LDP adjacencies.

Clearing LDP statisticsProcedure steps

To clear LDP adjacencies, enter:

clear ldp statistics [advertise-labels for <prefix-list>]Table 43: Variable definitions

Variable Value[advertise-labels for <prefix-list>] Clears IP prefix list of advertise-labels.

Displaying LDP configuration and statistics

Configuration — MPLS October 2010 75

Page 76: NN47263-505 04.01 Configuration MPLS

LDP LSP configuration

76 Configuration — MPLS October 2010

Page 77: NN47263-505 04.01 Configuration MPLS

Chapter 9: RSVP-TE LSP configuration

Configure an RSVP-TE LSP to set up a traffic-engineered LSP through the MPLS network.

RSVP-TE configuration proceduresThe following task flow shows you the sequence of procedures you perform to configure anRSVP-TE LSP. To link to the referenced procedures, see RSVP-TE configuration tasknavigation on page 79

Configuration — MPLS October 2010 77

Page 78: NN47263-505 04.01 Configuration MPLS

Figure 21: RSVP-TE configuration procedures

RSVP-TE LSP configuration

78 Configuration — MPLS October 2010

Page 79: NN47263-505 04.01 Configuration MPLS

RSVP-TE configuration task navigation

• Configuring loopback interface and router ID on page 79

• Enabling RSVP-TE at the router level on page 80

• Enabling RSVP-TE at the interface level on page 80

• Creating an RSVP-TE LSP on page 81

• Configuring an explicit path LSP on page 82

• Configuring constrained path LSP properties on page 86

• Configuring Fast Reroute for constrained path LSP on page 96

• Configuring RSVP-TE LSP properties on page 101

• Configuring RSVP-TE global and interface properties on page 103

• Mapping routes to RSVP-TE LSPs on page 115

• Displaying RSVP-TE LSP configuration and statistics on page 116

• Displaying RSVP-TE configuration and statistics on page 119

Configuring loopback interface and router IDConfigure a loopback interface with an IP address and assign the interface as the router ID toenable the configuration of MPLS properties on the router.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To specify a bundle name for the loopback interface, enter:

interface loopback <loopback-if-name>3. To configure the loopback address, enter:

ip address <loopback-ip> <subnet-mask>4. To exit from the loopback configuration, enter:

exit5. To configure the router-id, enter:

[no] router-id <router-id>

Configuring loopback interface and router ID

Configuration — MPLS October 2010 79

Page 80: NN47263-505 04.01 Configuration MPLS

Table 44: Variable definitions

Variable Value<loopback-if-name> Specifies the loopback interface name.

<loopback-ip> Specifies the loopback IP address and mask.

<subnet-mask> Specifies the subnet mask for the loopback IP.

[no] Deletes the specified router ID.

<router-id> Specifies the router ID. This value must be a valid loopbackaddress.

Enabling RSVP-TE at the router levelEnable RSVP-TE to enable configuration of RSVP-TE properties on the router.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To enable RSVP-TE, enter:

router rsvp

Enabling RSVP-TE at the interface levelEnable RSVP-TE on the interface.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the interface, enter:

interface [bundle <wan_bundle_name> | ethernet<chassis_ethernet_port> | vlan <vid>]

3. To enable MPLS on the interface, enter:

mpls ip4. To enable the RSVP-TE protocol for the interface, enter:

mpls protocol-rsvp

RSVP-TE LSP configuration

80 Configuration — MPLS October 2010

Page 81: NN47263-505 04.01 Configuration MPLS

Creating an RSVP-TE LSP

Creating an RSVP-TE LSPCreate a new RSVP traffic-engineered LSP. Once the traffic-engineered LSP is minimallyconfigured with required attributes (ingress and egress IP addresses), an RSVP session iscreated for this LSP, which enables the exchange of messages and completes the LSP setup.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To configure the LSP name

[no] mpls traffic-eng-lsp <LSP-name>Table 45: Variable definitions

Variable Value[no] Removes the traffic-engineering LSP and all the configured

attributes, except the specified primary path.

<LSP-name> Specifies the name of the LSP.

Configuring the ingress address for the LSPSpecify the IPv4 address of the LSP ingress. This address is typically the router-id.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the traffic engineering LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To specify the IP address for tunnel ingress, enter:

from <ingress-IP>

Creating an RSVP-TE LSP

Configuration — MPLS October 2010 81

Page 82: NN47263-505 04.01 Configuration MPLS

Table 46: Variable definitions

Variable Value<LSP-name> Specifies the traffic engineered LSP name.

<ingress-IP> Specifies the IPv4 address for the LSP ingress router orinterface. The address specified is uses as the senderaddress in the sender template object in Path messages.

Configuring the egress router for the LSPWhen configuring a traffic-engineered LSP, you must specify the address of the egress router tocreate an RSVP session.

This is a mandatory step in the creation of a traffic-engineered LSP. If an egress router is notdefined, no RSVP-TE session can be created.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the egress address, enter:

[no] to <egress-IP>Table 47: Variable definitions

Variable Value<LSP-name> Specifies the traffic engineered LSP name.

[no] Deletes the specified LSP egress IP address.

<egress-IP> Specifies the IPv4 address for the LSP egress router.

Configuring an explicit path LSP

Disabling and enabling CSPF globallyBy default, CSPF is enabled for traffic-engineered LSPs. Disable CSPF when all nodes in thepath do not support the required traffic engineering extensions. You must then manually

RSVP-TE LSP configuration

82 Configuration — MPLS October 2010

Page 83: NN47263-505 04.01 Configuration MPLS

configure LSPs to use an explicit path. The LSP is then established only along the manuallyconfigured path.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To enable or disable CSPF, enter:

{no-cspf | cspf}

Disabling and enabling CSPF on RSVP-TE LSPsDisable or enable CSPF on a particular LSP. To enable CSPF on an LSP, CSPF must beglobally enabled.

CSPF is enabled by default for traffic-engineered LSPs.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure CSPF status, enter:

{primary | secondary} {no-cspf | cspf}Table 48: Variable definitions

Variable Valueprimary Specifies the primary LSP.

secondary Specifies the secondary LSP.

no-cspf Disables CSPF on the LSP.

cspf Sets CSPF status to the default setting (enabled).

Configuring an explicit path LSP

Configuration — MPLS October 2010 83

Page 84: NN47263-505 04.01 Configuration MPLS

Create the explicit route and define the hopsWhen all nodes in the path do not support the required traffic engineering extensions to enableCSPF, configure an RSVP-TE explicit route. When you configure the explicit route, you candefine all hops along the path, and specify for each hop whether it is loose or strict.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the traffic engineering path, enter:

mpls traffic-eng-path <path-name>3. To configure hop, enter:

[no] hop-address <hop-address> [loose|strict]Table 49: Variable definitions

Variable Value[no] Removes the specified hop.

<hop-address> IPv4 address of the hop.

loose Specifies loose hops: the route taken form one router to thenext need not be a direct path: messages exchangedbetween the two routers can pass through other routers.

strict Specifies strict hops: the route taken from one router to thenext must be a directly connected path. This ensures thatrouting is enforced on the basis of each link.

Associate the RSVP-TE explicit route with an LSPAfter you define the path in the RSVP-TE explicit route, you can associate the route with aprimary or secondary LSP.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls-traffic-eng-lsp <LSP-name>3. To associate an explicit route with the LSP, enter:

RSVP-TE LSP configuration

84 Configuration — MPLS October 2010

Page 85: NN47263-505 04.01 Configuration MPLS

[no] {primary | secondary} traffic-eng-path <path-name>Table 50: Variable definitions

Variable Value[no] Removes the configured explicit route.

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<path-name> Specifies the name of the path.

Specifying the Route Record List as an explicit routeYou can use the updated Route Record List as an Explicit Route (with all strict nodes) when apath message is sent out at the next refresh. Use the no parameter to disable the use of theRoute Record List as the explicit route.

The ERO list contains the hops to be taken to reach the egress from the current LSR. If CSPF isnot available, to place an ERO with all strict routes, use this command to modify the ERO afterreceiving the Resv message. The future Path messages have the ERO with all strict nodes,identifying each and every node to be traversed.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure route record list as an explicit route, enter:

[no] {primary | secondary} reuse-route-recordTable 51: Variable definitions

Variable Value[no] Disables the route record list as an explicit route.

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

Configuring an explicit path LSP

Configuration — MPLS October 2010 85

Page 86: NN47263-505 04.01 Configuration MPLS

Configuring constrained path LSP properties

Reserving bandwidth for RSVP-TE LSPsSpecify the bandwidth for the RSVP-TE LSP to ensure the LSP meets desired trafficrequirements.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To specify RSVP-TE LSP bandwidth, enter:

[no] [primary|secondary] {bandwidth <bandwidth> [k|m|g]}Table 52: Variable definitions

Variable Value[no] Removes the specified configuration.

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

{bandwidth <bandwidth> [k|m|g]}

1000 - 10000000000 bits. You can also specify the bandwidthin terms of kilobits (k) megabits (m) or gigabits (g). Forexample, for 1 megabit, enter 1m

Configuring the filter style for RSVP-TE LSPConfigure the filter to fixed or shared filter style for RSVP-TE LSP. Use the fixed filter style toprevent rerouting of an LSP and to prevent other LSPs from using the bandwidth reserved forthis LSP.

Procedure steps

1. To enter the configuration mode, enter:

RSVP-TE LSP configuration

86 Configuration — MPLS October 2010

Page 87: NN47263-505 04.01 Configuration MPLS

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the filter style, enter:

[no] {primary | secondary} filter {fixed | shared-explicit}Table 53: Variable definitions

Variable Valueprimary Specifies the primary LSP.

secondary Specifies the secondary LSP.

fixed Specifies a distinct reservation. A distinct reservation requestis created for data packets from this LSP.

shared-explicit Specifies a shared reservation environment. It creates asingle reservation into which flows from all LSPs arecombined.

Configuring retry limit for RSVP-TE LSPIf a session is in a nonexistent state due to the receipt of a Path Error message, it tries torecreate the LSP for the number of times specified by the retry-limit command.

Although the same retry command controls both the MPLS traffic engineering tunnel and thesession, the retry-limit value affects only the session and not the traffic-engineering tunnel. Ifthe traffic tunnel is in an incomplete state, the code keeps trying forever to bring it to a completestate, irrespective of the retry-limit value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure retry limit, enter:

[no] {primary | secondary} retry-limit <1-65535>Table 54: Variable definitions

Variable Valueprimary Specifies the primary LSP.

Configuring constrained path LSP properties

Configuration — MPLS October 2010 87

Page 88: NN47263-505 04.01 Configuration MPLS

Variable Valuesecondary Specifies the secondary LSP.

<1-65535> The number of times the system tries to set up the LSP.Default is 0 (indefinite).

Configuring retry timer for RSVP-TE LSPSpecify a retry interval for an RSVP-TE LSP. Use the no parameter to revert to the default.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the retry timer, enter:

[no] {primary | secondary} retry-timer <1-600>Table 55: Variable definitions

Variable Value[no] Reverts to the default value (30 seconds).

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<1-600> Time, in seconds, that the system waits before retrying LSPsetup.

Configuring setup priority for RSVP-TE LSPConfigure the setup priority to determine whether a new LSP can preempt an existing LSP.The setup priority of the new LSP must be higher than the hold priority of an existing LSP forthe existing LSP to be preempted.

For RSVP-TE LSP, do not configure the setup priority to be higher than the hold priority.

Procedure steps

1. To enter the configuration mode, enter:

RSVP-TE LSP configuration

88 Configuration — MPLS October 2010

Page 89: NN47263-505 04.01 Configuration MPLS

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the setup priority for RSVP-TE LSP, enter:

[no] {primary | secondary} setup-priority <0-7>Table 56: Variable definitions

Variable Value[no] Sets the setup priority to the default value: 7 (lowest).

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<0-7> Specifies the setup priority, from highest priority (0) to lowestpriority (7)

Configuring the hold priority for RSVP-TE LSPConfigure the hold priority value for the selected RSVP-TE LSP. The hold priority determinesthe degree to which an LSP holds onto its reservation for a session after the LSP has beenset up successfully. When the hold priority is high, the existing LSP is less likely to give up itsreservation.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the hold priority, enter:

[no] {primary | secondary} hold-priority <0-7>Table 57: Variable definitions

Variable Value[no] Sets the hold priority to the default value: 0 (highest).

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<0-7> Specifies the hold priority, from highest priority (0) to lowestpriority (7)

Configuring constrained path LSP properties

Configuration — MPLS October 2010 89

Page 90: NN47263-505 04.01 Configuration MPLS

Configuring CSPF retry limitSpecify the number of retries that CSPF performs for a request received from RSVP.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the CSPF retry limit, enter:

[no] {primary | secondary} cspf-retry-limit <1-65535>Table 58: Variable definitions

Variable Value[no] Sets the retry limit to the default value: 0 (indefinite).

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<1-65535> Specifies the number of times CSPF tries to perform arequest received from RSVP.

Configuring CSPF retry timerUse this command to specify the time between each retry that CSPF performs for a requestreceived from RSVP.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure CSPF retry timer, enter:

[no] {primary | secondary} cspf-retry-timer <1-600>

RSVP-TE LSP configuration

90 Configuration — MPLS October 2010

Page 91: NN47263-505 04.01 Configuration MPLS

Table 59: Variable definitions

Variable Value[no] Sets the retry timer to the default value: 0 (indefinite).

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<1-600> Timeout between successive retries, in seconds.

Configuring the hop limit for RSVP-TE LSPSpecify the hop limit for an RSVP-TE LSP to place a limit on the number of hops in the LSP.

If a primary path exists when you configure a hop limit, the hop limit is compared with thecurrent number of hops in the primary path. If the number of hops in the primary path exceedsthe configure hop limit, the existing session is torn down and no Path messages are sent out.

The hop limit data is sent to the CSPF server, if CSPF is being used.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the hop limit, enter:

[no] {primary | secondary} hop-limit <1-255>Table 60: Variable definitions

Variable Value[no] Sets the hop limit to the default value (255).

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<1-255> Specifies the acceptable number of hops.

Configuring label recordingConfigure label record to set whether to record all labels exchanged between RSVP enabledrouters during the reservation setup process. Label recording can help in debugging problems.

Configuring constrained path LSP properties

Configuration — MPLS October 2010 91

Page 92: NN47263-505 04.01 Configuration MPLS

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure label recording, enter:

[no] {primary | secondary} label-recordTable 61: Variable definitions

Variable Value[no] Disables label recording.

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

label-record Specifies to record all the labels exchanged for an LSP fromthe ingress to the egress.

Configuring route recordingYou can disable recording of the route taken by PATH and RESV messages, which confirmthe establishment of reservations and identify errors. Route recording is enabled by default.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure route recording, enter:

{primary|secondary} {no-record-route | record-route}Table 62: Variable definitions

Variable Valueprimary Specifies the primary LSP.

secondary Specifies the secondary LSP.

no-record-route Disables route recording.

record-route Enables route recording.

RSVP-TE LSP configuration

92 Configuration — MPLS October 2010

Page 93: NN47263-505 04.01 Configuration MPLS

Creating an MPLS administrative groupCreate administrative groups to classify links or interfaces. Administrative groups aremeaningful only when CSPF is enabled. You can use these groups to implement differentpolicy-based LSP setups. Each interface can be a member of one or more, or no, administrativegroups.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To create an administrative group, enter:

[no] mpls admin-group <admin-group-name> <0-31>Table 63: Variable definitions

Variable Value[no] Deletes the specified administrative group.

<admin-group-name> Specifies the name or color of the administrative group.

<0-31> Specifies the value of the administrative group to be added(0-31).

Adding an interface to an administrative groupAssign an interface to an administrative group to classify the interfaces.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [bundle <bundle-name> | ethernet <0/1-0/4> | vlan<vid>]

3. To assign the interface to an administrative group, enter:

[no] mpls admin-group <admin-group-name>

Configuring constrained path LSP properties

Configuration — MPLS October 2010 93

Page 94: NN47263-505 04.01 Configuration MPLS

Table 64: Variable definitions

Variable Value[no] Removes the interface from the specified administrative

group.

<admin-group-name> Specifies the name of the administrative group.

Including administrative groups in an RSVP-TE LSPConfigure the include-any parameter to set the administrative groups to include in an LSP. Tobe added to the LSP, links must belong to at least one of the administrative groups listed in theinclude-any list.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the administrative groups to include in the LSP, enter:

[no] {primary | secondary} include-any <admin-group-name>Table 65: Variable definitions

Variable Value[no] Removes a previously configured group from the specified

list.

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<admin-group-name> Specifies the administrative group name.

Excluding administrative groups from an RSVP-TE LSPSpecify the administrative groups to be excluded from an LSP.

If you specify an exclude-any list, any link that belongs to even one of the groups specifiedin the exclude list cannot be chosen for the LSP.

RSVP-TE LSP configuration

94 Configuration — MPLS October 2010

Page 95: NN47263-505 04.01 Configuration MPLS

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the administrative groups to exclude, enter:

[no] {primary | secondary} exclude-any <admin-group-name>Table 66: Variable definitions

Variable Value[no] Removes the specified group from the exclude-any list.

primary Specifies the primary LSP.

secondary Specifies the secondary LSP.

<admin-group-name> Specifies the name of the administrative group to excludefrom the LSP.

Disabling affinityDisable the use of sending out session attribute objects with resource affinity data.

With affinity enabled, the LSP can match desired attributes, represented by affinity bits, to linkattributes. This allows the LSP to include (include-any) or exclude (exclude-any) the configuredadministrative groups in the LSP.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure affinity, enter:

{primary | secondary} {no-affinity | affinity}Table 67: Variable definitions

Variable Valueprimary Specifies the primary LSP.

secondary Specifies the secondary LSP.

Configuring constrained path LSP properties

Configuration — MPLS October 2010 95

Page 96: NN47263-505 04.01 Configuration MPLS

Variable Valueno-affinity Disables affinity.

affinity Enables affinity.

Configuring Fast Reroute for constrained path LSP

Enabling and disabling one-to-one fast reroute protectionEnable the local repair of explicit routes for which this router is a transit node. Use the noparameter with this command to disable local repair of explicit routes.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure one-to-one fast reroute protection, enter:

[no] primary fast-reroute protection one-to-oneTable 68: Variable definitions

Variable Value[no] Disables one-to-one fast reroute protection.

Configuring fast reroute node protectionSet node protection to bypass the failed node completely during fast reroute.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

RSVP-TE LSP configuration

96 Configuration — MPLS October 2010

Page 97: NN47263-505 04.01 Configuration MPLS

mpls traffic-eng-lsp <LSP-name>3. To configure node protection, enter:

[no] primary fast-reroute node-protectionTable 69: Variable definitions

Variable Value[no] Disables node protection.

Configuring fast reroute bandwidthConfigure bandwidth for fast reroute.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the fast reroute bandwidth, enter:

[no] primary fast-reroute bandwidth <bandwidth>Table 70: Variable definitions

Variable Value[no] Deletes the fast reroute bandwidth configuration.

<bandwidth> Specifies the fast reroute bandwidth, from 1 to 10000000000bits. You can also specify the bandwidth in units of kilobits,megabits, or gigabits (k, m, or g). For example, to specify 10kilobits, enter 10k.

Specifying the administrative groups to include in the fast rerouteSpecify the administrative groups to include in the fast reroute set up. To be added to thealternate route, links must belong to at least one of the administrative groups listed in theinclude-any list.

Procedure steps

1. To enter the configuration mode, enter:

Configuring Fast Reroute for constrained path LSP

Configuration — MPLS October 2010 97

Page 98: NN47263-505 04.01 Configuration MPLS

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the administrative groups to include, enter:

[no] primary fast-reroute include-any <groupname>Table 71: Variable definitions

Variable Value[no] Deletes the specified group from the include-any list.

<groupname> Specifies the administrative groups to include in the fastreroute set up.

Excluding administrative groups from the fast-rerouteSpecify the administrative groups to be excluded from the fast reroute set up.

When you specify the exclude-any list, any link that belongs to even one of the groups specifiedin the exclude list cannot be chosen for the alternate route.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the administrative groups to exclude, enter:

[no] primary fast-reroute exclude-any <groupname>Table 72: Variable definitions

Variable Value[no] Deletes the specified group from the exclude-any list.

<groupname> Specify the administrative group to be excluded from the fastreroute set up.

RSVP-TE LSP configuration

98 Configuration — MPLS October 2010

Page 99: NN47263-505 04.01 Configuration MPLS

Configuring fast reroute setup priorityConfigure the setup priority to determine whether the alternate path can preempt an existingLSP. The setup priority of the alternate path must be higher than the hold priority of an existingLSP for the existing LSP to be preempted.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure fast reroute setup priority, enter:

[no] primary fast-reroute setup-priority <0-7>Table 73: Variable definitions

Variable Value[no] Sets the setup priority to the default value: 7 (lowest).

<0-7> Specifies the fast-reroute setup priority, from highest priority(0) to lowest priority (7)

Configuring fast reroute hold prioritySet the hold priority for the detour LSP

Configure the hold priority value for the alternate path. The hold priority determines the degreeto which the alternate path holds onto its reservation for a session after the path has beenset up successfully. When the hold priority is high, the existing path is less likely to give up itsreservation.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the hold priority, enter:

[no] primary fast-reroute hold-priority <0-7>

Configuring Fast Reroute for constrained path LSP

Configuration — MPLS October 2010 99

Page 100: NN47263-505 04.01 Configuration MPLS

Table 74: Variable definitions

Variable Value[no] Sets the hold priority to the default value: 0 (highest).

<0-7> Specifies the fast reroute hold priority, from highest priority(0) to lowest priority (7)

Configuring fast reroute hop limitSpecify the fast reroute hop limit to place a limit on the number of hops in the alternate path.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the fast reroute hop limit, enter:

[no] primary fast-reroute hop-limit <1-255>Table 75: Variable definitions

Variable Value[no] Sets the configured hop limit to the default value (255).

<1-255> Specifies the maximum number of hops for fast reroute.

Configuring detour LSP identification methodSpecify the detour LSP identification method, either path-specific or sender-template.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure the LSP detour identification method, enter:

[no] detour-identification {path | sender-template}

RSVP-TE LSP configuration

100 Configuration — MPLS October 2010

Page 101: NN47263-505 04.01 Configuration MPLS

Table 76: Variable definitions

Variable Value[no] Sets the detour LSP identification method to the default value

(sender-template).

path Sets path specific detour LSP identification method. In thismethod, a new RSVP object (DETOUR) is added to the PATHmessage to differentiate it from the protected LSP's pathmessages. Since, a detour has the same session object asthe protected LSP, it might share common networkresources.

sender-template Sets sender-template specific detour LSP identificationmethod. In this method, a detour shares the RSVP Sessionobject and LSPID with the protected LSP and changes theingress IP address in the RSVP PATH message. Accordingto the RSVP resource sharing rules, this LSP can be mergedwith the protected LSP as they have same session object.

Configuring RSVP-TE LSP properties

Configuring the extended tunnel ID in RSVP-TE messagesConfigure the extended tunnel identifier used in RSVP messages. The extended tunnel IDspecifies a unique 4 octet identifier for all sessions. If no extended tunnel ID is specified, theLSR-ID for the router is used as the extended tunnel ID for all LSPs.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the extended tunnel ID, enter:

[no] ext-tunnel-id <A.B.C.D>Table 77: Variable definitions

Variable Value[no] Deletes the extended tunnel ID.

Configuring RSVP-TE LSP properties

Configuration — MPLS October 2010 101

Page 102: NN47263-505 04.01 Configuration MPLS

Variable Value<A.B.C.D> IPv4 representation for extended tunnel ID.

Configuring the creation and tear-down method for the RSVP-TELSP

Configure the method of creating and tearing down sessions (primary and secondary) whenattributes for the MPLS traffic-engineering LSP are modified.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To configure the LSP update method, enter:

update-type {make-before-break | break-before-make }Table 78: Variable definitions

Variable Valuemake-before-break Specifies that a new LSP is created for each attribute update.

Once the new LSP becomes operational, the original LSP istorn down. (Default value)

break-before-make Specifies that, for each attribute update, the existing LSP istorn down and then re-created with the new attributes.

Restarting the RSVP-TE LSPIf the creation of an RSVP-TE LSP fails, you must restart the LSP setup procedure.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. Restart the LSP, enter:

RSVP-TE LSP configuration

102 Configuration — MPLS October 2010

Page 103: NN47263-505 04.01 Configuration MPLS

traffic-eng-lsp-restart

Configuring hello exchanges with a specific neighborUse this command to explicitly specify a neighbor to exchange Hello messages with. Any Hellomessages from a neighbor that is not explicitly specified will be rejected. Use the no parameterto remove an IPv4 neighbor from the system.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure hello exchanges with a specific neighbor, enter:

[no] neighbor <neighbor-IP-address>Table 79: Variable definitions

Variable Value[no] Removes an IPv4 neighbor from the system.

<neighbor-IP-address> IPv4 address of the neighbor.

Configuring RSVP-TE global and interface properties

Configuring the RSVP-TE source addressSpecify the source loopback address for IPv4 packets being sent out by the RSVP daemon.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To specify the source address, enter, enter:

Configuring RSVP-TE global and interface properties

Configuration — MPLS October 2010 103

Page 104: NN47263-505 04.01 Configuration MPLS

[no] from <loopback-IP-address>Table 80: Variable definitions

Variable Value[no] Deletes the specified loopback address.

<loopback-IP-address> Loopback IPv4 address.

Configuring explicit-null labelsEnable explicit null labels on the router. By default, implicit null labels are advertised on theegress router.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure explicit null labels, enter:

[no] explicit-nullTable 81: Variable definitions

Variable Value[no] Disable explicit null labels.

Configuring Penultimate-Hop-PoppingWith the PHP state set to enabled on the router (the default state), an egress router sendseither implicit null or explicit null labels for LSPs. If you disable PHP using the no-php command,the egress router sends neither implicit null nor explicit null labels. Rather, it sends non-reserved labels (labels from the label pool range allotted to RSVP) to the upstream router.

Use the show rsvp command to display the status of Penultimate-Hop-Popping.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

RSVP-TE LSP configuration

104 Configuration — MPLS October 2010

Page 105: NN47263-505 04.01 Configuration MPLS

router rsvp3. To configure PHP, enter:

[php | no-php ]Table 82: Variable definitions

Variable Valuephp Re-enables penultimate-hop-popping on the router.

no-php Disables penultimate-hop-popping on the router.

Configuring loop detectionConfigure the loop detection mode to detect looping LSPs. Loop detection ensures that a loopis detected while establishing a label switched path and before any data is passed over thatLSP.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To enable or disable loop detection, enter:

[no-loop-detection | loop-detection]Table 83: Variable definitions

Variable Valueloop-detection Enables loop detection.

no-loop-detection Disables loop detection.

Configuring MPLS tunnel-modeConfigure the MPLS tunnel mode to determine the relationship between label EXP and IPpacket DSCP values.

Procedure steps

1. To enter the configuration mode, enter:

Configuring RSVP-TE global and interface properties

Configuration — MPLS October 2010 105

Page 106: NN47263-505 04.01 Configuration MPLS

configure terminal2. To specify the mpls tunnel-mode, enter, enter:

[no] mpls tunnel-mode {pipe | short-pipe | uniform}Table 84: Variable definitions

Variable Value[no] Sets the MPLS tunnel mode to the default value (uniform).

pipe Specifies that changes made to the EXP value on theuppermost label are propagated to other MPLS labels but notto the IP packet. Here, the DSCP value in the IP packetremains unchanged, but the PHB is chosen based on theremoved EXP value.

short-pipe Specifies that changes made to the EXP value on theuppermost label are propagated to other MPLS labels but notto the IP packet. Here, the DSCP value in the IP packetremains unchanged, and the PHB is chosen based on theremoved EXP value.

uniform Specifies that changes made to the EXP value on theuppermost label are applied to all labels in the stack,including the IP packet.

Enabling the receipt of Hello messages globallyEnable the receipt of Hello messages from peers connected through all RSVP interfaces.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure the hello receipt, enter:

[no] hello-receiptTable 85: Variable definitions

Variable Value[no] Disables hello receipt.

RSVP-TE LSP configuration

106 Configuration — MPLS October 2010

Page 107: NN47263-505 04.01 Configuration MPLS

Enabling the receipt of Hello messages on the interfaceEnable the receipt of Hello messages from peers connected through this interface.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the hello receipt, enter:

[no] rsvp hello-receiptTable 86: Variable definitions

Variable Value[no] Disables hello receipt.

Configuring the global Hello intervalEnable the sending of Hello packets on all interfaces and set the interval value betweensuccessive Hello packets to neighbors.

Whenever a new router comes up, it sends out a hello packet to a specified, multicast addressannouncing itself to the network. Hello messages are sent to the All Routers Multicast Group(224.0.0.2). Receipt of a hello packet from another LSR creates a hello adjacency with thatLSR.

For optimum performance, set the hello-interval value to no more than one-third the hold-time value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure the hello interval, enter:

[no] hello-interval <1-65535>

Configuring RSVP-TE global and interface properties

Configuration — MPLS October 2010 107

Page 108: NN47263-505 04.01 Configuration MPLS

Table 87: Variable definitions

Variable Value<1-65535> Specifies the hello interval in seconds.

Configuring the Hello interval and enabling Hello transmission onthe interface

Enable the sending of Hello packets on the interface and set the interval value betweensuccessive Hello packets to neighbors.

For optimum performance, set the Hello interval value to no more than one-third the hold timevalue.

The hello interval you configure for an interface overrides the global value.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the hello interval, enter:

[no] rsvp hello-interval <1-65535>Table 88: Variable definitions

Variable Value<1-65535> Specifies the hello interval in seconds.

[no] Sets the hello interval to the default value (2 seconds).

Configuring the global hello timeoutConfigure the global hello timeout to specify the interval that the LSR waits for a Hello messagefrom a connected peer before the LSR resets all sessions shared with this particular peer.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

RSVP-TE LSP configuration

108 Configuration — MPLS October 2010

Page 109: NN47263-505 04.01 Configuration MPLS

router rsvp3. To configure the Hello timeout, enter:

[no] hello-timeout <1-65535>Table 89: Variable definitions

Variable Value[no] Sets the Hello timeout to the default value (10 seconds).

<1-65535> Specifies the Hello timeout in seconds.

Configuring the interface hello timeoutConfigure the hello timeout on the interface to specify the interval that the interface waits fora Hello message from a connected peer before the interface resets all sessions shared withthis particular peer.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the Hello timeout, enter:

[no] rsvp hello-timeout <1-65535>Table 90: Variable definitions

Variable Value[no] Sets the hello timeout to the default value (10 seconds).

<1-65535> Specifies the hello timeout in seconds.

Configuring the global RSVP keep multiplierConfigure the keep multiplier to set the constant for calculating a valid reservation lifetime for anLSP for messages exchanged on this interface.

The refresh time and keep multiplier are two interrelated timing parameters used to calculatethe valid Reservation Lifetime for an LSP. Use the following formula to calculate the reservationlifetime for an LSP: L >= (K + 0.5)* 1.5 * R K = keep-multiplier R = refresh timer Refreshmessages are sent periodically so that the neighbors do not timeout.

Configuring RSVP-TE global and interface properties

Configuration — MPLS October 2010 109

Page 110: NN47263-505 04.01 Configuration MPLS

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure the keep multiplier, enter:

[no] keep-multiplier <1-255>Table 91: Variable definitions

Variable Value[no] Sets the keep multiplier to the default value (3).

<1-255> Sets the keep multiplier value.

Configuring the interface RSVP keep multiplierConfigure the keep multiplier to set the constant for calculating a valid reservation lifetime for anLSP for messages exchanged on this interface.

The refresh time and keep multiplier are two interrelated timing parameters used to calculatethe valid Reservation Lifetime for an LSP. Use the following formula to calculate the reservationlifetime for an LSP: L >= (K + 0.5)* 1.5 * R K = keep-multiplier R = refresh timer Refreshmessages are sent periodically so that the neighbors do not timeout.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the keep multiplier, enter:

[no] rsvp keep-multiplier <1-255>Table 92: Variable definitions

Variable Value[no] Sets the keep multiplier to the global value.

<1-255> Sets the keep multiplier value.

RSVP-TE LSP configuration

110 Configuration — MPLS October 2010

Page 111: NN47263-505 04.01 Configuration MPLS

Configuring the global RSVP refresh timeThe refresh time and keep multiplier are two interrelated timing parameters used to calculatethe valid Reservation Lifetime for an LSP. Refresh time regulates the interval between Refreshmessages which include Path and Reservation Request (Resv) messages. Refresh messagesare sent periodically so that the reservation does not timeout in the neighboring nodes. Eachsender and receiver host sends Path and Resv messages, downstream and upstreamrespectively, along the paths.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure the refresh time, enter:

[no] refresh-time <1-65535>Table 93: Variable definitions

Variable Value[no] Sets the global RSVP refresh time to the default value.

<1-65535> Sets the global RSVP refresh time.

Configuring the interface RSVP refresh timeThe refresh time and keep multiplier are two interrelated timing parameters used to calculatethe valid Reservation Lifetime for an LSP. Refresh time regulates the interval between Refreshmessages which include Path and Reservation Request (Resv) messages. Refresh messagesare sent periodically so that the reservation does not timeout in the neighboring nodes. Eachsender and receiver host sends Path and Resv messages, downstream and upstreamrespectively, along the paths.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the refresh time, enter:

Configuring RSVP-TE global and interface properties

Configuration — MPLS October 2010 111

Page 112: NN47263-505 04.01 Configuration MPLS

[no] rsvp refresh-time <1-65535>Table 94: Variable definitions

Variable Value[no] Sets the interface RSVP refresh time to the global value.

<1-65535> Sets the interface RSVP refresh time.

Configuring the global refresh reduction advertisementEnable Refresh Reduction capability advertisement to allow the LSR to advertise the refreshreduction capability.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure refresh reduction advertisement, enter:

[no] refresh-reductionTable 95: Variable definitions

Variable Value[no] Disables refresh reduction capability advertisement.

Configuring the interface refresh reduction advertisementEnable Refresh Reduction capability advertisement to allow an interface to advertise therefresh reduction capability.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure refresh reduction advertisement, enter:

RSVP-TE LSP configuration

112 Configuration — MPLS October 2010

Page 113: NN47263-505 04.01 Configuration MPLS

[no] rsvp refresh-reductionTable 96: Variable definitions

Variable Value[no] Disable refresh reduction capability advertisement on the

interface.

Configuring global message acknowledgementEnable message acknowledgement to enable the reliable messaging form of refresh reductionfor all messages being sent to the neighbors that have been detected on the LSR.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure message acknowledgement, enter:

[no] message-ackTable 97: Variable definitions

Variable Value[no] Disables message acknowledgement.

Configuring interface message acknowledgementEnable message acknowledgement to enable the reliable messaging form of refresh reductionfor all messages being sent to the neighbors that have been detected on the specified interface.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure message acknowledgement, enter:

[no] rsvp message-ack

Configuring RSVP-TE global and interface properties

Configuration — MPLS October 2010 113

Page 114: NN47263-505 04.01 Configuration MPLS

Table 98: Variable definitions

Variable Value[no] Disables message acknowledgement.

Configuring the global acknowledgement wait timeoutConfigure the acknowledgement wait timeout for reliable messaging for all neighbors detectedon the LSR.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To choose RSVP configuration mode, enter:

router rsvp3. To configure the acknowledgement wait timeout, enter:

[no] ack-wait-timeout <1-65535>Table 99: Variable definitions

Variable Value[no] Sets the acknowledgement wait timeout to the default value.

(10 seconds)

<1-65535> Specifies the acknowledgement wait timeout value inseconds.

Configuring the interface acknowledgement wait timeoutConfigure the acknowledgement wait timeout for reliable messaging for all neighbors detectedon the specified interface.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select an MPLS interface, enter:

interface [ bundle <bundle-name> | ethernet <0/1-0/4>]3. To configure the acknowledgement wait timeout

RSVP-TE LSP configuration

114 Configuration — MPLS October 2010

Page 115: NN47263-505 04.01 Configuration MPLS

[no] rsvp ack-wait-timeout <1-65535>Table 100: Variable definitions

Variable Value[no] Sets the acknowledgement wait timeout to the default value.

(10 seconds)

<1-65535> Specifies the acknowledgement wait timeout value inseconds.

Mapping routes to RSVP-TE LSPsMap routes to a given RSVP-TE LSP to forward traffic to the LSP.

If the primary LSP goes down, all the mapped routes can automatically use a secondary LSP asa backup for the primary LSP, if the secondary LSP is configured.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the LSP, enter:

mpls traffic-eng-lsp <LSP-name>3. To map a route to the LSP, enter:

[no] map-route <ipaddr/mask>Table 101: Variable definitions

Variable Value[no] Removes the route mapping.

<ipaddr/mask> Specifies the IP address to be mapped. The IP address andmask can be in format A.B.C.D X.X.X.X or A.B.C.D/X.

Mapping routes to RSVP-TE LSPs

Configuration — MPLS October 2010 115

Page 116: NN47263-505 04.01 Configuration MPLS

Displaying RSVP-TE LSP configuration and statistics

Displaying session-related information for configured LSPsUse this command to display the session-related information for configured LSPs.

Procedure steps

To display the session-related information for LSPs, enter:

show mpls traffic-eng-lsp session [up|down] [detail]Table 102: Variable definitions

Variable Valueup Displays sessions that are currently operational.

down Displays sessions that are currently not operational.

[detail] Displays detailed session-related information.

Displaying LSP session countUse this command to display the count of existing sessions on the router.

Procedure steps

To display the LSP session count, enter:

show mpls traffic-eng-lsp session count

Displaying session-related information for egress routerUse this command to display the session-related information for an egress router.

Procedure steps

To display the session-related information for egress router, enter:

RSVP-TE LSP configuration

116 Configuration — MPLS October 2010

Page 117: NN47263-505 04.01 Configuration MPLS

show mpls traffic-eng-lsp session egress [up|down] [detail]Table 103: Variable definitions

Variable Valueup Displays sessions that are currently operational.

down Displays sessions that are currently not operational.

[detail] Displays detailed session-related information.

Displaying session-related information for specific egress routerUse this command to display the session-related information for a specified egress router.

Procedure steps

To display the session-related information for the specified router, enter:

show mpls traffic-eng-lsp session egress <A.B.C.D>Table 104: Variable definitions

Variable Value<A.B.C.D> IPv4 address of the router being specified as the egress

router.

Displaying session-related information for ingress routerUse this command to display the session-related information for an ingress router.

Procedure steps

To display the session-related information for ingress router, enter:

show mpls traffic-eng-lsp session ingress [up|down] [detail]Table 105: Variable definitions

Variable Valueup Displays sessions that are currently operational.

down Displays sessions that are currently not operational.

[detail] Displays detailed session-related information.

Displaying RSVP-TE LSP configuration and statistics

Configuration — MPLS October 2010 117

Page 118: NN47263-505 04.01 Configuration MPLS

Displaying session-related information for specific ingress routerUse this command to display the session-related information for a specified ingress router.

Procedure steps

To display the session-related information for the specified router, enter:

show mpls traffic-eng-lsp session ingress <A.B.C.D>Table 106: Variable definitions

Variable Value<A.B.C.D> IPv4 address of the router being specified as the ingress

router.

Displaying session-related information for specific sessionsUse this command to display the information only for sessions with a specified name.

Procedure steps

To display the session-related information for specific sessions, enter:

show mpls traffic-eng-lsp session <lsp-name> [primary |secondary]

Table 107: Variable definitions

Variable Value<lsp-name> Specifies the name of the LSP to be displayed.

primary Displays primary sessions.

secondary Displays secondary sessions.

Displaying session-related information for transit routerUse this command to display the session-related information for the transit or intermediaterouter.

Procedure steps

To display the session-related information for specific sessions, enter:

RSVP-TE LSP configuration

118 Configuration — MPLS October 2010

Page 119: NN47263-505 04.01 Configuration MPLS

show mpls traffic-eng-lsp session transit [up | down] [detail]Table 108: Variable definitions

Variable Valueup Displays sessions that are currently operational.

down Displays sessions that are currently not operational.

[detail] Displays detailed session-related information.

Clearing traffic-engineered LSP dataUse this command to clear data for MPLS traffic-engineered LSPs.

Procedure steps

To clear enter:

clear mpls traffic-eng-lsp [ingress | non-ingress | all | <LSP-name>]

Table 109: Variable definitions

Variable Valueingress Clears data for ingress LSP.

non-ingress Clears data for non-ingress LSP.

all Clears data for all configured LSPs.

<LSP-name> Clears data for the specifies LSP.

Displaying RSVP-TE configuration and statistics

Displaying RSVP-TE interface informationProcedure steps

To display the RSVP-TE interface information, enter:

Displaying RSVP-TE configuration and statistics

Configuration — MPLS October 2010 119

Page 120: NN47263-505 04.01 Configuration MPLS

show rsvp interface <interface-name>Table 110: Variable definitions

Variable Value<interface-name> Displays RSVP-TE information for the specified interface. If

this value is not specified, information for all interfaces isdisplayed.

Displaying RSVP-TE neighborsProcedure steps

To display the list of IPv4 RSVP neighbors, enter:

show rsvp neighbor <A.B.C.D>Table 111: Variable definitions

Variable Value<A.B.C.D> Specifies the IPv4 address of the neighbor.

Displaying next-hop data cached in RSVP-TEProcedure steps

To display the current next-hops being cached by RSVP-TE

show rsvp nexthop-cache

Displaying RSVP-TE statisticsUse this command to display the counts for various messages exchanged by the daemon. Thisdisplays the list of packet types, the number of sent packets and the number of receivedpackets.

Procedure steps

To display the RSVP-TE statistics, enter:

RSVP-TE LSP configuration

120 Configuration — MPLS October 2010

Page 121: NN47263-505 04.01 Configuration MPLS

show rsvp statistics

Displaying RSVP-TE summary refresh dataProcedure steps

To display the summary refresh data, enter:

show rsvp summary-refresh

Displaying RSVP-TE versionUse this command to display the version of the RSVP daemon. Current RSVP version is 1.

Procedure steps

To display the RSVP version, enter:

show rsvp version

Displaying traffic engineering pathUse this command to display the configured MPLS traffic engineering paths and theirconfigured hops. Specify the path name to show hops related to a specific path. If no pathname is specified all the mpls traffic engineering paths are displayed.

Procedure steps

To display the traffic engineering path, enter:

show mpls traffic-eng-path <path-name>Table 112: Variable definitions

Variable Value<path-name> Specifies the path name.

Displaying MPLS tunnel modeUse this command to display the tunnel mode information.

Procedure steps

To display the MPLS tunnel mode, enter:

Displaying RSVP-TE configuration and statistics

Configuration — MPLS October 2010 121

Page 122: NN47263-505 04.01 Configuration MPLS

show mpls tunnel-mode

Displaying all configured MPLS administrative groupsProcedure steps

To display all the configured administrative groups, enter:

show mpls admin-groups

Clearing RSVP sessionsProcedure steps

To clear RSVP sessions, enter:

clear rsvp session {<session-tunnel-id> | all}Table 113: Variable definitions

Variable Value<session-tunnel-id> Specifies the session tunnel ID to clear.

all Clears all RSVP sessions configured.

Clearing RSVP statisticsProcedure steps

To clear all RSVP statistics, enter:

clear rsvp statistics

RSVP-TE LSP configuration

122 Configuration — MPLS October 2010

Page 123: NN47263-505 04.01 Configuration MPLS

Chapter 10: MPLS Pseudowire configuration

Configure an MPLS Pseudowire to provide a virtual point-to-point connection that can connect yourEthernet or PPP networks over an MPLS tunnel.

Pseudowire configuration proceduresThe following task flow shows you the sequence of procedures you perform to configure anMPLS pseudowire. To link to the referenced procedures, see Pseudowire configuration tasknavigation on page 125

Configuration — MPLS October 2010 123

Page 124: NN47263-505 04.01 Configuration MPLS

Figure 22: Pseudowire configuration procedures

MPLS Pseudowire configuration

124 Configuration — MPLS October 2010

Page 125: NN47263-505 04.01 Configuration MPLS

Pseudowire configuration task navigation

• Configuring a pseudowire Layer 2 virtual circuit on page 125

• Binding an Ethernet interface to a Layer 2 virtual circuit on page 126

• Binding a VLAN interface to a Layer 2 virtual circuit on page 126

• Binding a WAN interface to a Layer 2 virtual circuit on page 127

• Static LSP configuration on page 47

• LDP LSP configuration on page 51

• RSVP-TE LSP configuration on page 77

• Configuring a static FTN entry for ingress virtual circuit on page 128

• Configuring a static ILM entry for egress virtual circuit on page 128

• Enabling LDP at the router level on page 54

• Configuring targeted LDP peer adjacency on page 54

Configuring a pseudowire Layer 2 virtual circuit

Creating a Layer 2 virtual circuitCreate a Layer 2 virtual circuit.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To configure a Layer 2 virtual circuit, enter:

[no] mpls l2-circuit <VC-name> <VC-ID> <peer-ip> [<VC-groupname>]

Table 114: Variable definitions

Variable Value<VC-name> Virtual circuit name.

<VC-ID> Virtual circuit ID: 1-1000000.

Configuring a pseudowire Layer 2 virtual circuit

Configuration — MPLS October 2010 125

Page 126: NN47263-505 04.01 Configuration MPLS

Variable Value<peer-ip> IPv4 address for the virtual circuit end point.

[<VC-groupname>] Virtual circuit group name identifier. Not currently supported.

Binding an Ethernet interface to a Layer 2 virtual circuitBind an interface (attachment circuit) to an MPLS Layer 2 virtual circuit. This specifies thesource interface where virtual circuit traffic is sent and received. You can choose to bind WANbundles running HDLC or PPP or any Ethernet ports (including ports on Ethernet modules).However, on the Secure Router 4134, the virtual circuit peer must be reachable through a WANinterface or a chassis Ethernet port, otherwise, the pseudowire cannot be established. TheAvaya Secure Router 2330 has no such limitation.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the interface, enter:

interface ethernet <slot/port>3. To configure the interface as a Layer 2 switchport, enter:

switchport4. To configure the Layer 2 interface mode as L2VPN, enter:

switchport mode l2vpn5. To bind the interface to the Layer 2 circuit, enter:

mpls l2-circuit <VC-name>6. Configure the encapsulation for the bound interface:

encapsulation {ethernet | vlan}

Binding a VLAN interface to a Layer 2 virtual circuitUse the following procedure to bind a VLAN interface to a Layer 2 virtual circuit.

Procedure steps

1. To enter the configuration mode, enter:

MPLS Pseudowire configuration

126 Configuration — MPLS October 2010

Page 127: NN47263-505 04.01 Configuration MPLS

configure terminal2. To select the interface, enter:

interface vlan vlan<vid>3. To bind the interface to the Layer 2 circuit, enter:

mpls l2-circuit <VC-name>4. Configure the encapsulation for the bound interface:

encapsulation {ethernet | vlan}

Binding a WAN interface to a Layer 2 virtual circuitBind an interface (attachment circuit) to an MPLS Layer 2 virtual circuit. This specifies thesource interface where virtual circuit traffic is sent and received. In addition to Ethernet ports,with the Secure Router 2330/4134, you can bind WAN bundles running HDLC or PPP.

To bind a bundle to the Layer 2 virtual circuit, you must first encapsulate the bundle with HDLCor PPP. Then, after you bind the bundle to the circuit, you must also set the encapsulationfor the bound WAN interface to HDLC or PPP, as required.

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To select the interface, enter:

interface bundle <wan-bundle>3. Configure a link for the bundle:

link [t1 | e1 | ct3 | ds3 | serial | hssi] <slot/port>4. Configure the encapsulation for the bundle:

encapsulation {hdlc | ppp}5. To bind the interface to the Layer 2 circuit, enter:

mpls l2-circuit <VC-name>6. To configure the encapsulation for the bound virtual circuit interface, enter:

encapsulation {hdlc | ppp}

Binding a WAN interface to a Layer 2 virtual circuit

Configuration — MPLS October 2010 127

Page 128: NN47263-505 04.01 Configuration MPLS

Configuring a static FTN entry for ingress virtual circuitCreate an MPLS Layer 2 Virtual Circuit static FTN entry for an interface. Note: The interfacemust be bound to the Virtual Circuit ID specified before this command is executed

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To configure a static FTN entry for a Layer 2 virtual circuit, enter:

[no] mpls static-l2-circuit-ftn <VC-ID> <label-out> <peer-ip> <incoming-l2-if-name> <outgoing-if-name>

Table 115: Variable definitions

Variable Value<VC-ID> Virtual circuit ID: 1-1000000.

<label-out> Outgoing label for the FEC.

<peer-ip> IPv4 address for the virtual circuit peer.

<incoming-l2-if-name> Specifies the incoming Layer 2 interface name.

<outgoing-if-name> Specifies the outgoing MPLS tunnel interface name.

Configuring a static ILM entry for egress virtual circuitUse this command to create an MPLS Layer 2 Virtual Circuit static ILM entry in the ILM tableto which the incoming interface specified is bound. Upon receipt of a labeled packet on anMPLS-enabled router, a lookup is done based on the incoming label in the ILM table. If a matchis found, the packet is forwarded directly to the bound Layer 2 interface (without furtheranalysis).

Procedure steps

1. To enter the configuration mode, enter:

configure terminal2. To configure a static ILM entry for a Layer 2 virtual circuit, enter:

[no] mpls static-l2-circuit-ilm <VC-ID> <label-in> <peer-ip><incoming-if-name> <outgoing-l2-if-name>

MPLS Pseudowire configuration

128 Configuration — MPLS October 2010

Page 129: NN47263-505 04.01 Configuration MPLS

Table 116: Variable definitions

Variable Value<VC-ID> Virtual circuit ID: 1-1000000.

<label-in> Incoming VC label: 1040-2063.

<peer-ip> IPv4 address for the virtual circuit peer.

<incoming-if-name> Specifies the incoming MPLS tunnel interface name.

<outgoing-l2-if-name> Specifies the outgoing Layer 2 interface name.

Displaying the pseudowire configuration and statistics

Displaying the static Layer 2-circuit FTN entryDisplay the static Layer 2-circuit FTN entry.

Procedure steps

To display the static Layer 2-circuit FTN entry, enter:

show mpls static-l2-circuit-ftn

Displaying the static L2-circuit ILM entryDisplay the static L2-circuit ILM entry.

Procedure steps

To display the static Layer 2-circuit ILM entry, enter:

show mpls static-l2-circuit-ilm

Displaying the Layer 2 virtual circuit summary informationDisplay the Layer 2 virtual circuit summary information.

Procedure steps

To display the Layer 2-circuit virtual circuit summary, enter:

Displaying the pseudowire configuration and statistics

Configuration — MPLS October 2010 129

Page 130: NN47263-505 04.01 Configuration MPLS

show ldp mpls-l2-circuit [<VC-ID>] [detail]

Displaying Layer 2 virtual circuit dataUse this command to display the MPLS Layer 2 Virtual Circuit data.

Procedure steps

To display the Layer 2 virtual circuit data, enter:

show mpls l2-circuit [<VC-name>]

Displaying Layer 2 virtual circuit group dataUse this command to display the MPLS Layer 2 Virtual Circuit group data.

Procedure steps

To display the Layer 2 virtual circuit group data

show mpls l2-circuit-group [<VC-group-name>]

Displaying Layer 2 virtual circuit statisticsDisplay the Layer 2 virtual circuit statistics.

Procedure steps

To display the Layer 2 virtual circuit statistics, enter:

show mpls stats-vc

Displaying Layer 2 virtual circuit tableDisplay the Layer 2 virtual circuit table.

Procedure steps

To display the Layer 2 virtual circuit table, enter:

show mpls table-vc

MPLS Pseudowire configuration

130 Configuration — MPLS October 2010

Page 131: NN47263-505 04.01 Configuration MPLS

Chapter 11: Common procedures

The following sections describe common procedures that you use while configuring MPLS.

• Displaying MPLS-enabled interfaces on page 131• Displaying interface statistics on page 131• Displaying originating LSP statistics on page 131• Displaying MPLS forwarding table on page 132• Displaying incoming label map table on page 132

Displaying MPLS-enabled interfacesUse this command to display the summarized information of the MPLS-enabled interfaces.

Procedure steps

To display the MPLS-enabled interfaces, enter:

show mpls interface

Displaying interface statisticsUse this command to display the MPLS interface statistics.

Procedure steps

To display the interface statistics, enter:

show mpls stats-interface

Displaying originating LSP statisticsUse this command to display the originating LSP statistics

Configuration — MPLS October 2010 131

Page 132: NN47263-505 04.01 Configuration MPLS

Procedure steps

To display the originating LSP statistics, enter:

show mpls stats-lsp

Displaying MPLS forwarding tableUse this command to display all the LSPs originating from this router. It also displays codesindicating the selected FTN (FEC to Next-Hop-Label-Forwarding-Entry).

Procedure steps

To display the MPLS forwarding table, enter:

show mpls table-forwarding

Displaying incoming label map tableUse this command to display the MPLS Incoming Label Map table.

Procedure steps

To display the incoming label map table, enter:

show mpls table-ilm

Clearing MPLS statisticsUse this command to clear MPLS statistics.

Procedure steps

To clear MPLS statistics, enter:

clear mpls statistics [ftn | ilm | interface | lsp | vc]Table 117: Variable definitions

Variable Valueftn Clears FTN Statistics

ilm Clears ILM Statistics

Common procedures

132 Configuration — MPLS October 2010

Page 133: NN47263-505 04.01 Configuration MPLS

Variable Valueinterface Clears MPLS Interface Statistics

lsp Clears Originating LSP Statistics

vc Clears VC Statistics

Clearing MPLS statistics

Configuration — MPLS October 2010 133

Page 134: NN47263-505 04.01 Configuration MPLS

Common procedures

134 Configuration — MPLS October 2010

Page 135: NN47263-505 04.01 Configuration MPLS

Chapter 12: Configuration examples

Static LSP configurationThe following figure shows a sample static LSP configuration.

Figure 23: Static LSP configuration

Refer to the following sections for instructions to configure the static LSPs shown in thisexample.

Static LSP configuration on Secure Router 4134 1Configure the LSPs on Secure Router 4134 1.

Procedure steps

1. To enter configuration mode, enter:

configure terminal2. To configure an IP address for Ethernet 0/2, enter:

Configuration — MPLS October 2010 135

Page 136: NN47263-505 04.01 Configuration MPLS

interface ethernet 0/2 ip address 192.168.1.1 16 exit3. To configure an MPLS static FTN entry on Secure Router 4134 1:

mpls static-ftn 192.168.2.0/24 1000 192.168.0.1 ethernet0/24. Configure an MPLS static ILM entry on Secure Router 4134 1:

mpls static-ilm 1020 ethernet0/2 swap 1030 192.168.2.2ethernet5/4

5. To display the configured static FTN entry, enter:

show mpls static-ftn6. To display the configured static ILM entry, enter:

show mpls static-ilm

LSP configuration on Secure Router 4134 2Configure the LSPs on Secure Router 4134 2.

Procedure steps

1. To enter configuration mode, enter:

configure terminal2. To configure an IP address for Ethernet 0/3, enter:

interface ethernet 0/3 ip address 192.168.0.1 16 exit3. To configure an MPLS static FTN entry on Secure Router 4134 2, enter:

mpls static-ftn 192.168.3.0/24 1020 192.168.1.1 ethernet0/34. To configure an MPLS static ILM entry on Secure Router 4134 2, enter:

mpls static-ilm 1000 ethernet0/2 swap 1010 192.168.3.2ethernet5/5

5. To display the configured static FTN entry, enter:

show mpls static-ftn6. To display the configured static ILM entry, enter:

show mpls static-ilm

Configuration examples

136 Configuration — MPLS October 2010

Page 137: NN47263-505 04.01 Configuration MPLS

LDP-based LSP configuration

Figure 24: LDP-based LSP

Procedure steps

1. Configuring loopback address:

interface loopback 0ip address 192.168.0.10 32exit

2. Configure the router-id:

router-id 192.168.0.103. Configure LDP at router level:

router ldp explicit-null exit4. Configure LDP at interface level

interface bundle WAN1link t1 2/1encapsulation pppip address 192.168.0.1 16

5. Enable MPLS at interface level:

mpls ip6. Enable LDP at interface level:

LDP-based LSP configuration

Configuration — MPLS October 2010 137

Page 138: NN47263-505 04.01 Configuration MPLS

mpls protocol-ldpexit

7. Configure OSPF:

router ospf 1redistribute connectednetwork 192.168.0.0/16 area 0exit

RSVP-TE LSP configurationThe following figure shows a sample RSVP-TE configuration.

Figure 25: RSVP-TE LSP configuration

Refer to the following sections for instructions on how to configure the RSVP-TE LSPs for theSR4134 1 and SR4134 2 shown in the preceding figure.

LSP1 configuration on SR4134 1Configure LSP1 on SR4134 1.

Procedure steps

1. To enter configuration mode, enter:

Configuration examples

138 Configuration — MPLS October 2010

Page 139: NN47263-505 04.01 Configuration MPLS

configure terminal2. To configure a loopback address, enter:

interface loopback 0ip address 192.168.1.10 255.255.255.255exit

3. To configure the router-id, enter:

router-id 192.168.1.104. To configure RSVP at the router level, enter:

router rsvpexit

5. To configure interface properties for LSP1, enter:

interface ethernet 0/2ip address 192.168.1.1 16

6. To enable MPLS at the interface level, enter:

mpls ip7. To enable RSVP at the interface level, enter:

mpls protocol-rsvpexit

8. To configure RSVP LSP1, enter:

mpls traffic-eng-lsp LSP19. To specify the source address (usually the router-id), enter:

from 192.168.1.1010. To specify the tunnel destination address, enter:

to 192.168.0.2111. To map a route (FEC) to the LSP, enter:

map-route 10.3.0.0 16exit

12. To configure OSPF on the router, enter:

router ospf 1redistribute connectednetwork 192.168.1.0/16 area 0exit

RSVP-TE LSP configuration

Configuration — MPLS October 2010 139

Page 140: NN47263-505 04.01 Configuration MPLS

LSP2 configuration on SR4134 2Configure LSP2 on SR4134 2.

Procedure steps

1. To enter configuration mode, enter:

configure terminal2. To configure a loopback address, enter:

interface loopback 1ip address 192.168.0.21 255.255.255.255exit

3. To configure the router-id, enter:

router-id 192.168.0.214. To configure RSVP at router level, enter:

router rsvpexit

5. To configure interface properties for LSP2, enter:

interface ethernet 0/3ip address 192.168.0.1 16

6. To enable MPLS at the interface level, enter:

mpls ip7. To enable RSVP at the interface level, enter:

mpls protocol-rsvpexit

8. To configure RSVP LSP2, enter:

mpls traffic-eng-lsp LSP29. To specify the source address (usually the router-id), enter:

from 192.168.0.2110. To specify the tunnel destination address, enter:

to 192.168.1.1011. To map route to the LSP, enter:

map-route 10.3.1.0 16

Configuration examples

140 Configuration — MPLS October 2010

Page 141: NN47263-505 04.01 Configuration MPLS

exit12. To configure OSPF on the router, enter:

router ospf 2redistribute connectednetwork 192.168.0.0/16 area 1exit

Configuring fast reroute for SR4134 1Enable fast reroute to recover from the failure of a node in the path of LSP1.

Procedure steps

1. To enter configuration mode, enter:

configure terminal2. To configure the RSVP LSP with one-to-one fast reroute:

mpls traffic-eng-lsp LSP1primary fast-reroute protection one-to-oneexit

Configuring fast reroute for SR4134 2Enable fast reroute to recover from the failure of a node in the path of LSP2.

Procedure steps

1. To enter configuration mode, enter:

configure terminal2. To configure the RSVP LSP with one-to-one fast reroute:

mpls traffic-eng-lsp LSP2primary fast-reroute protection one-to-oneexit

Configuring policy-based redirection into an RSVP-TE LSPConfigure policy-based redirection to direct traffic entering the Secure Router 4134 1 to LSP1.

RSVP-TE LSP configuration

Configuration — MPLS October 2010 141

Page 142: NN47263-505 04.01 Configuration MPLS

Procedure steps

1. To enter configuration mode, enter:

configure terminal2. To configure an Ethernet module QoS policy map and class for redirection, enter:

qos modulepolicy-map rsvp-lspclass-map pbr-interface

3. To configure rules to classify packets to be re-directed to the specified interface,enter:

match ipv4 src-address 10.1.2.0/244. To redirect packets matching the class to a specific RSVP LSP, enter:

pbr-redirect lsp LSP1pop

5. To apply the policy map to an Ethernet module interface, enter:

interface ethernet 6/12qos moduleservice-policy input rsvp-lsp

6. To display the policy configuration, enter:

show qos module policy-map rsvp-lsp

Ethernet over RSVP-TE pseudowire configurationThe following figure shows a sample configuration for Ethernet over RSVP-TE LSPpseudowire.

Configuration examples

142 Configuration — MPLS October 2010

Page 143: NN47263-505 04.01 Configuration MPLS

Figure 26: Pseudowire over RSVP

Refer to the following sections for instructions to configure the pseudowire connections shownin this example.

Ethernet over pseudowire configuration for SR4134 1Procedure steps

1. Configure RSVP as stated in the preceding RSVP LSP example to establish a PSNtunnel.

2. To configure an MPLS pseudowire virtual circuit, enter:

mpls l2-circuit PW1 100 192.168.0.213. To configure an Ethernet interface as an attachment circuit for the MPLS virtual

circuit, enter:

interface ethernet 5/4switchportswitchport mode l2vpnmpls l2-circuit PW1

4. To specify the encapsulation for the virtual circuit, enter:

encapsulation ethernetexitexit

Ethernet over RSVP-TE pseudowire configuration

Configuration — MPLS October 2010 143

Page 144: NN47263-505 04.01 Configuration MPLS

Ethernet over pseudowire configuration for SR4134 2Procedure steps

1. Configure RSVP as stated in the preceding RSVP LSP example to establish a PSNtunnel.

2. To configure an MPLS pseudowire virtual circuit, enter:

mpls l2-circuit PW1 100 192.168.1.103. To configure an Ethernet interface as an attachment circuit for the MPLS virtual

circuit, enter:

interface ethernet 5/5switchportswitchport mode l2vpnmpls l2-circuit PW1

4. To specify the encapsulation for the virtual circuit, enter:

encapsulation ethernetexitexit

PPP over RSVP-TE pseudowire configurationThe following figure shows a sample configuration for PPP over RSVP-TE LSP pseudowire.

Configuration examples

144 Configuration — MPLS October 2010

Page 145: NN47263-505 04.01 Configuration MPLS

Figure 27: Pseudowire over RSVP

Refer to the following sections for instructions to configure the pseudowire connections shownin this example.

PPP over pseudowire configuration for SR4134 1Procedure steps

1. Configure RSVP as stated in the preceding RSVP LSP example to establish a PSNtunnel.

2. To configure an MPLS L2-circuit Pseudowire, enter:

mpls l2-circuit PW1 100 192.168.0.213. To configure the WAN1 PPP bundle interface as the attachment circuit interface,

enter:

interface bundle WAN1link t1 2/1encapsulation pppmpls l2-circuit PW1

4. To specify the encapsulation for the virtual circuit to PPP, enter:

encapsulation pppexitexit

PPP over RSVP-TE pseudowire configuration

Configuration — MPLS October 2010 145

Page 146: NN47263-505 04.01 Configuration MPLS

PPP over pseudowire configuration for SR4134 2Procedure steps

1. Configure RSVP as stated in the preceding RSVP LSP example to establish a PSNtunnel.

2. To configure an MPLS L2-circuit PW:

mpls l2-circuit PW1 100 192.168.1.103. To configure the WAN2 PPP bundle interface as the attachment circuit interface,

enter:

interface bundle WAN2link t1 2/2encapsulation pppmpls l2-circuit PW1

4. To specify the encapsulation for the virtual circuit to PPP, enter:

encapsulation pppexitexit

HDLC over MPLS pseudowireThe following figure shows a sample configuration for HDLC over RSVP-TE LSP pseudowire.

Figure 28: HDLC over MPLS pseudowires

A pseudowire is setup between SR 2330/4134 1 and SR 2330/4134 2. The RSVP-TE LSPsare used between the two routers, acting as the PSN. In SR 2330/4134 1, traffic from source

Configuration examples

146 Configuration — MPLS October 2010

Page 147: NN47263-505 04.01 Configuration MPLS

interface WAN bundle (WAN1) is tunneled through PW1 and LSP1 to SR 2330/4134 2. ThePW1 and LSP1 use the chassis Ethernet Interface 0/4 for signaling.

HDLC over pseudowire configuration for SR4134 1Procedure steps

1. To enter configuration mode, enter:

configure terminal2. To configure the loopback interface, enter:

interface loopback 0ip address 1.1.1.1/32exit

3. To configure the router ID, enter:

router-id 1.1.1.14. To enable LDP, enter:

router ldp exit5. To enable RSVP, enter:

router rsvp exit6. To configure an MPLS L2-circuit PW, enter:

mpls l2-circuit PW1 100 2.2.2.2 control-word7. To configure the WAN interface as the attachment circuit interface, enter:

interface bundle WAN1link t1 2/1encapsulation hdlcmpls-l2-circuit PW1encapsulation hdlcexit

8. To configure the Ethernet interface IP address and enable MPLS and RSVP on theinterface, enter:

interface ethernet 0/4ip address 90.2.15.100/16mpls ipmpls protocol-rsvp

HDLC over MPLS pseudowire

Configuration — MPLS October 2010 147

Page 148: NN47263-505 04.01 Configuration MPLS

exit9. To configure RSVP LSP1, enter:

mpls label-switching-lsp LSP1to 2.2.2.2exit

10. To configure OSPF, enter:

router ospf 1network redistribute connectednetwork 90.2.0.0/16 area 0exit

Static L2VPN pseudowire configurationThe following figure shows a sample static pseudowire configuration for PPP over MPLS.

Figure 29: Static pseudowire

Refer to the following sections for instructions on how to configure the static pseudowireconnections shown in this example.

Configuration examples

148 Configuration — MPLS October 2010

Page 149: NN47263-505 04.01 Configuration MPLS

SR4134 1 configurationProcedure steps

1. Configure an underlying LSP to SR4134 2, either using RSVP-TE, LDP, or staticLSP, as described in the preceding examples.

2. To configure an MPLS Layer 2-circuit PW, enter:

mpls l2-circuit PW1 100 192.168.0.213. To configure the WAN1 PPP bundle interface, enter:

interface bundle WAN1link t1 2/2encapsulation pppexit

4. To configure an MPLS static Layer 2-VPN FTN entry, enter:

mpls static-l2-circuit-ftn 100 1050 192.168.0.21 WAN1ethernet0/2

5. To configure an MPLS static Layer 2-VPN ILM entry, enter:

mpls static-l2-circuit-ilm 100 1040 192.168.0.21 ethernet0/2WAN1

6. To display the configured static Layer 2-VPN FTN entry, enter:

show mpls static-l2-circuit-ftn7. To display the configured static Layer 2-VPN ILM entry, enter:

show mpls static-l2-circut-ilm

SR4134 2 configurationProcedure steps

1. Configure an underlying LSP to SR4134 1, either using RSVP-TE, LDP, or staticLSP, as described in the preceding examples.

2. To configure an MPLS Layer 2-circuit PW, enter:

mpls l2-circuit PW1 100 192.168.1.103. To configure the WAN2 PPP bundle, enter:

interface bundle WAN2link t1 2/2

Static L2VPN pseudowire configuration

Configuration — MPLS October 2010 149

Page 150: NN47263-505 04.01 Configuration MPLS

encapsulation pppexit

4. To configure an MPLS static Layer 2-VPN FTN entry, enter:

mpls static-l2-circuit-ftn 100 1040 192.168.0.10 WAN2ethernet0/3

5. To configure an MPLS static Layer 2-VPN ILM entry, enter:

mpls static-l2-circuit-ilm 100 1050 192.168.0.10 ethernet0/3WAN2

6. To display the configured static Layer 2-VPN FTN entry, enter:

show mpls static-l2-circuit-ftn7. To display the configured static Layer 2-VPN ILM entry, enter:

show mpls static-l2-circut-ilm

Configuration examples

150 Configuration — MPLS October 2010