non-deterministic matrices for semi-canonical …non-deterministic matrices for semi-canonical...

49
Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University IEEE 42nd International Symposium on Multiple-Valued Logic ISMVL-2012 May 14-16, Victoria, BC, Canada

Upload: others

Post on 05-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Semi-canonicalDeduction Systems

Ori Lahav

The Blavatnik School of Computer ScienceTel Aviv University

IEEE 42nd International Symposium on Multiple-Valued Logic ISMVL-2012May 14-16, Victoria, BC, Canada

Page 2: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Using Multiple Valuesfor

Characterizing Sequent Systems

Page 3: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Sequent Systems

Sequent systems are formal calculi that manipulate sequents.

Sequents are objects of the form Γ⇒ ∆, where Γ and ∆ are finite setsof formulas.

Intuition:

Γ⇒ ∆ !∧

Γ ⊃∨

Page 4: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

LK [Gentzen 1934]

Identity Rules

(id) A⇒ A (cut)Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

Weakening Rules

(W ⇒)Γ⇒ ∆

Γ,A⇒ ∆(⇒W )

Γ⇒ ∆

Γ⇒ A,∆

Logical Rules

(⊃ ⇒)Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆(⇒⊃)

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

(∧ ⇒)Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆(⇒ ∧)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧ B,∆

Theorem

T `cl A iff { ⇒ B | B ∈ T } `LK ⇒ A

Page 5: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

LK [Gentzen 1934]

Identity Rules

(id) A⇒ A (cut)Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

Weakening Rules

(W ⇒)Γ⇒ ∆

Γ,A⇒ ∆(⇒W )

Γ⇒ ∆

Γ⇒ A,∆

Logical Rules

(⊃ ⇒)Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆(⇒⊃)

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

(∧ ⇒)Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆(⇒ ∧)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧ B,∆

Theorem

T `cl A iff { ⇒ B | B ∈ T } `LK ⇒ A

Page 6: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Canonical Rules [Avron,Lev 2001]

Logical Rules

(⊃ ⇒)Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆(⇒⊃)

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

(∧ ⇒)Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆(⇒ ∧)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧ B,∆

Logical rules of an “ideal” type:

Exactly one connective is introduced

The active formulas of the premises are immediate subformulas of theprincipal formula

Context-independence

(;⇒)Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ; B ⇒ ∆(⇒;)

Γ⇒ B,∆

Γ⇒ A ; B,∆

Page 7: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Canonical Rules [Avron,Lev 2001]

Logical Rules

(⊃ ⇒)Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆(⇒⊃)

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

(∧ ⇒)Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆(⇒ ∧)

Γ⇒ A,∆ Γ⇒ B,∆

Γ⇒ A ∧ B,∆

Logical rules of an “ideal” type:

Exactly one connective is introduced

The active formulas of the premises are immediate subformulas of theprincipal formula

Context-independence

(;⇒)Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ; B ⇒ ∆(⇒;)

Γ⇒ B,∆

Γ⇒ A ; B,∆

Page 8: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Canonical Systems

A Canonical System =

The two identity rules+

The two weakening rules+

A (finite) set of canonical rules

Prominent Examples:

LK

Primal Logic [Gurevich,Neeman 2009] (; instead of ⊃)

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicsemantics.

Page 9: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Canonical Systems

A Canonical System =

The two identity rules+

The two weakening rules+

A (finite) set of canonical rules

Prominent Examples:

LK

Primal Logic [Gurevich,Neeman 2009] (; instead of ⊃)

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicsemantics.

Page 10: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices by Example

∧ f t

f f ft f t

v(A ∧ B) = ∧(v(A), v(B))

∧ f t

f {f} {f,t}t {f,t} {t}

v(A ∧ B) ∈ ∧(v(A), v(B))

-

-

-

-

-

--

-

∧?

∧in3

in2

in1

out1

out2

Page 11: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices by Example

∧ f t

f f ft f t

v(A ∧ B) = ∧(v(A), v(B))

∧ f t

f {f} {f,t}t {f,t} {t}

v(A ∧ B) ∈ ∧(v(A), v(B))

-

-

-

-

-

--

-

?

∧in3

in2

in1

out1

out2

Page 12: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices by Example

∧ f t

f f ft f t

v(A ∧ B) = ∧(v(A), v(B))

∧ f t

f {f} {f,t}t {f,t} {t}

v(A ∧ B) ∈ ∧(v(A), v(B))

-

-

-

-

-

--

-

?

∧in3

in2

in1

out1

out2

Page 13: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices by Example

∧ f t

f f ft f t

v(A ∧ B) = ∧(v(A), v(B))

∧ f t

f {f} {f,t}t {f,t} {t}

v(A ∧ B) ∈ ∧(v(A), v(B))

-

-

-

-

-

--

-

?

∧in3

in2

in1

out1

out2

Page 14: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 15: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 16: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 17: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 18: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 19: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 20: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 21: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 22: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 23: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 24: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Non-deterministic Matrices for Canonical Systems

Theorem (Avron,Lev 2001)

Every (consistent) canonical system has two-valued non-deterministicmatrix.

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆Γ⇒ A ⊃ B,∆

⊃ f tf {6f,t} {6f,t}t {f, 6t} {6f,t}

⊃ f tf {t} {t}t {f} {t}

Γ⇒ A,∆ Γ,B ⇒ ∆Γ,A ; B ⇒ ∆

Γ⇒ B,∆Γ⇒ A ; B,∆

; f tf {f,t} {6f,t}t {f, 6t} {6f,t}

; f tf {f,t} {t}t {f} {t}

Page 25: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

What is the Role of the Identity Rules?

Identity Rules

(id) A⇒ A (cut)Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

A Canonical System =

The two identity rules+

The two weakening rules+

A (finite) set of canonical rules

A Semi-canonical System =

Any subset of the identity rules+

The two weakening rules+

A (finite) set of canonical rules

Discarding (cut) is useful for the study of cut-admissibility

Discarding (id) is useful for proof-theoretic analysis of logicprogramming [Hosli, Jager 1994]

Page 26: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

What is the Role of the Identity Rules?

Identity Rules

(id) A⇒ A (cut)Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

A Canonical System =

The two identity rules+

The two weakening rules+

A (finite) set of canonical rules

A Semi-canonical System =

Any subset of the identity rules+

The two weakening rules+

A (finite) set of canonical rules

Discarding (cut) is useful for the study of cut-admissibility

Discarding (id) is useful for proof-theoretic analysis of logicprogramming [Hosli, Jager 1994]

Page 27: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

What is the Role of the Identity Rules?

Identity Rules

(id) A⇒ A (cut)Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

A Canonical System =

The two identity rules+

The two weakening rules+

A (finite) set of canonical rules

A Semi-canonical System =

Any subset of the identity rules+

The two weakening rules+

A (finite) set of canonical rules

Discarding (cut) is useful for the study of cut-admissibility

Discarding (id) is useful for proof-theoretic analysis of logicprogramming [Hosli, Jager 1994]

Page 28: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

What is the Role of the Identity Rules?

Identity Rules

(id) A⇒ A (cut)Γ,A⇒ ∆ Γ⇒ A,∆

Γ⇒ ∆

A Canonical System =

The two identity rules+

The two weakening rules+

A (finite) set of canonical rules

A Semi-canonical System =

Any subset of the identity rules+

The two weakening rules+

A (finite) set of canonical rules

Discarding (cut) is useful for the study of cut-admissibility

Discarding (id) is useful for proof-theoretic analysis of logicprogramming [Hosli, Jager 1994]

Page 29: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Semantics of Semi-canonical Systems

Identity Rules

(id) A⇒ A (cut)A⇒ ⇒ A

Using only t and f:Every valuation is model of A⇒ ANo valuation is a model both of A⇒ and of ⇒ A

Idea:Without (id) - add a value ⊥

v(A) =⊥ ⇐⇒ v is not a model of A⇒ A

Without (cut) - add a value >

v(A) = > ⇐⇒ v is a model of both A⇒ and ⇒ A

Page 30: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Semantics of Semi-canonical Systems

Identity Rules

(id) A⇒ A (cut)A⇒ ⇒ A

Using only t and f:Every valuation is model of A⇒ ANo valuation is a model both of A⇒ and of ⇒ A

Idea:Without (id) - add a value ⊥

v(A) =⊥ ⇐⇒ v is not a model of A⇒ A

Without (cut) - add a value >

v(A) = > ⇐⇒ v is a model of both A⇒ and ⇒ A

Page 31: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Semantics of Semi-canonical Systems

The Truth-Values

q⊥

qf qtq>

��

@@��

@@

v is a model of Γ⇒ ∆ if v(A) ≥ f for someA ∈ Γ or v(A) ≥ t for some A ∈ ∆

v(A) =⊥ ⇐⇒ v is not a model of A⇒ A

v(A) = > ⇐⇒ v is a model of both A⇒ and ⇒ A

(id) =⇒ omit ⊥(cut) =⇒ omit >

Page 32: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Semantics of Semi-canonical Systems

The Truth-Values

q⊥

qf qtq>

��

@@��

@@ v is a model of Γ⇒ ∆ if v(A) ≥ f for some

A ∈ Γ or v(A) ≥ t for some A ∈ ∆

v(A) =⊥ ⇐⇒ v is not a model of A⇒ A

v(A) = > ⇐⇒ v is a model of both A⇒ and ⇒ A

(id) =⇒ omit ⊥(cut) =⇒ omit >

Page 33: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Semantics of Semi-canonical Systems

The Truth-Values

q⊥

qf qtq>

��

@@��

@@ v is a model of Γ⇒ ∆ if v(A) ≥ f for some

A ∈ Γ or v(A) ≥ t for some A ∈ ∆

v(A) =⊥ ⇐⇒ v is not a model of A⇒ A

v(A) = > ⇐⇒ v is a model of both A⇒ and ⇒ A

(id) =⇒ omit ⊥(cut) =⇒ omit >

Page 34: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Semantics of Semi-canonical Systems

The Truth-Values

q⊥

qf qtq>

��

@@��

@@ v is a model of Γ⇒ ∆ if v(A) ≥ f for some

A ∈ Γ or v(A) ≥ t for some A ∈ ∆

v(A) =⊥ ⇐⇒ v is not a model of A⇒ A

v(A) = > ⇐⇒ v is a model of both A⇒ and ⇒ A

(id) =⇒ omit ⊥(cut) =⇒ omit >

Page 35: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

What are the Truth-Tables?

Theorem

Some simple semi-canonical systems (e.g. LK−(id) or LK−(cut)) do nothave a finite (ordinary) matrix.

Theorem

Every (consistent) semi-canonical system has a three or four valuednon-deterministic matrix.

In fact, we provide a method to obtain such a matrix.

Page 36: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

What are the Truth-Tables?

Theorem

Some simple semi-canonical systems (e.g. LK−(id) or LK−(cut)) do nothave a finite (ordinary) matrix.

Theorem

Every (consistent) semi-canonical system has a three or four valuednon-deterministic matrix.

In fact, we provide a method to obtain such a matrix.

Page 37: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

What are the Truth-Tables?

Theorem

Some simple semi-canonical systems (e.g. LK−(id) or LK−(cut)) do nothave a finite (ordinary) matrix.

Theorem

Every (consistent) semi-canonical system has a three or four valuednon-deterministic matrix.

In fact, we provide a method to obtain such a matrix.

Page 38: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Example: Implication without (id) and (cut)

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}f {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}t {⊥, f,t,>} {6⊥, f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}> {6⊥, 6f,t,>} {6⊥, 6f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {t,>} {t,>}f {t,>} {t,>} {t,>} {t,>}t {⊥, f,t,>} {f,>} {t,>} {>}> {t,>} {>} {t,>} {>}

Page 39: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Example: Implication without (id) and (cut)

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}f {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}t {⊥, f,t,>} {6⊥, f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}> {6⊥, 6f,t,>} {6⊥, 6f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {t,>} {t,>}f {t,>} {t,>} {t,>} {t,>}t {⊥, f,t,>} {f,>} {t,>} {>}> {t,>} {>} {t,>} {>}

Page 40: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Example: Implication without (id) and (cut)

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}f {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}t {⊥, f,t,>} {6⊥, f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}> {6⊥, 6f,t,>} {6⊥, 6f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {t,>} {t,>}f {t,>} {t,>} {t,>} {t,>}t {⊥, f,t,>} {f,>} {t,>} {>}> {t,>} {>} {t,>} {>}

Page 41: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Example: Implication without (id) and (cut)

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}f {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}t {⊥, f,t,>} {6⊥, f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}> {6⊥, 6f,t,>} {6⊥, 6f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {t,>} {t,>}f {t,>} {t,>} {t,>} {t,>}t {⊥, f,t,>} {f,>} {t,>} {>}> {t,>} {>} {t,>} {>}

Page 42: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Example: Implication without (id) and (cut)

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}f {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}t {⊥, f,t,>} {6⊥, f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}> {6⊥, 6f,t,>} {6⊥, 6f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {t,>} {t,>}f {t,>} {t,>} {t,>} {t,>}t {⊥, f,t,>} {f,>} {t,>} {>}> {t,>} {>} {t,>} {>}

Page 43: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Example: Implication without (id) and (cut)

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}f {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}t {⊥, f,t,>} {6⊥, f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}> {6⊥, 6f,t,>} {6⊥, 6f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {t,>} {t,>}f {t,>} {t,>} {t,>} {t,>}t {⊥, f,t,>} {f,>} {t,>} {>}> {t,>} {>} {t,>} {>}

Page 44: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Example: Implication without (id) and (cut)

Γ⇒ A,∆ Γ,B ⇒ ∆

Γ,A ⊃ B ⇒ ∆

Γ,A⇒ B,∆

Γ⇒ A ⊃ B,∆

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}f {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>} {6⊥, 6f,t,>}t {⊥, f,t,>} {6⊥, f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}> {6⊥, 6f,t,>} {6⊥, 6f, 6t,>} {6⊥, 6f,t,>} {6⊥, 6f, 6t,>}

⊃ ⊥ f t >⊥ {⊥, f,t,>} {⊥, f,t,>} {t,>} {t,>}f {t,>} {t,>} {t,>} {t,>}t {⊥, f,t,>} {f,>} {t,>} {>}> {t,>} {>} {t,>} {>}

Page 45: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Proof-Theoretic Applications

Semantics of (id)-free and/or (cut)-free systems makes it possible to obtainsimple semantic proofs of proof-theoretic properties, e.g.:

1 Cut-admissibility

` Γ⇒ ∆ =⇒ `cf Γ⇒ ∆

2 Axiom Expansion

A⇒ A ; B ⇒ B ` A � B ⇒ A � B

Page 46: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Related Works

[Schutte 1960],[Girard 1987] - semantics of LK − (cut).

[Hosli, Jager 1994] - semantics of LK − (id).

Our framework is a unified approach: both logics can be defined byfinite valued non-deterministic matrices.

Page 47: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Conclusions and Extensions

We provided simple and modular semantic characterization for anatural family of sequent calculi.

Two essential components:multiple values non-determinism

Application: semantic proofs of proof-theoretic properties

Similar ideas can be applied for:

Many-sided systemsSequent systems for intuitionistic logic and modal logics

Page 48: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Conclusions and Extensions

We provided simple and modular semantic characterization for anatural family of sequent calculi.

Two essential components:multiple values non-determinism

Application: semantic proofs of proof-theoretic properties

Similar ideas can be applied for:

Many-sided systemsSequent systems for intuitionistic logic and modal logics

Page 49: Non-deterministic Matrices for Semi-canonical …Non-deterministic Matrices for Semi-canonical Deduction Systems Ori Lahav The Blavatnik School of Computer Science Tel Aviv University

Thank you!