non-equilibrium energy flow: from shocks to ... · from shocks to rarefactionwaves joe bhaseen tscm...

49
Non-Equilibrium Energy Flow: From Shocks to Rarefaction Waves Joe Bhaseen TSCM Group King’s College London “Workshop on Non-Equilibrium Physics and Holography” St John’s, Oxford 15 th July 2016

Upload: others

Post on 08-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Non-Equilibrium Energy Flow:From Shocks to Rarefaction Waves

Joe Bhaseen

TSCM Group

King’s College London

“Workshop on Non-Equilibrium Physics and Holography”

St John’s, Oxford

15th July 2016

Page 2: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Strings, Cosmology & Condensed Matter

Benjamin Doyon Koenraad Schalm Andy Lucas

Ben Simons Julian Sonner

Jerome Gauntlett Toby Wiseman

King’s, Leiden, Harvard, Cambridge, Imperial

Page 3: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium
Page 4: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Outline

• Motivation from condensed matter

• Gauge-gravity duality

• Far from equilibrium dynamics

• Energy flow and Non-Equilibrium Steady States (NESS)

• Einstein equations, hydrodynamics, transport

• Current status and future developments

MJB, Benjamin Doyon, Andrew Lucas, Koenraad Schalm

“Energy flow in quantum critical systems far from equilibrium”

Nature Physics 11, 509 (2015)

Andrew Lucas, Koenraad Schalm, Benjamin Doyon, MJB

“Shock waves, rarefaction waves and non-equilibrium steady states

in quantum critical systems”; Phys. Rev. D 94, 025004 (2016)

Page 5: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Progress in AdS/CMT

Transport Coefficients

Viscosity, Conductivity, Hydrodynamics, Bose–Hubbard, Graphene

Strange Metals

Non-Fermi liquids, instabilities, cuprates

Holographic Duals

Superfluids, Fermi liquid, O(N), Luttinger liquid

Quantum Information

Entanglement entropy

Non-Equilibrium

Quenches, Steady States, Turbulence, Thermalization

Page 6: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Utility of Gauge-Gravity Duality

Quantum dynamics Classical Einstein equations

Finite temperature Black holes

Real time approach to finite temperature quantum

dynamics in interacting systems, with the possibility of

anchoring to 1 + 1 and generalizing to higher dimensions

Non-Equilibrium Beyond linear response

Organizing principles out of equilibrium

Page 7: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Quantum Quenches

Simple protocol

Parameter in H abruptly changed

H(g) → H(g′)

System prepared in state |Ψg〉 but time evolves under H(g′)

Quantum quench to a CFT

Calabrese & Cardy, PRL 96, 136801 (2006)

Spin chains, BCS, AdS/CFT ...

Thermalization

Page 8: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

ExperimentWeiss et al “A quantum Newton’s cradle”, Nature 440, 900 (2006)

Non-Equilibrium 1D Bose Gas

Integrability and Conservation Laws

Page 9: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Heavy Ion Collisions

Heavy Ions: Results from the Large Hadron Collider, arXiv:1201.4264

Page 10: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Non-Equilibrium High Energy Physics

Thermalization in Strongly Coupled Gauge Theories

Chesler & Yaffe (2009), de Boer & Keski Vakkuri (2011),

Buchel, Lehner, & Myers (2012),

Craps, Lindgren, Taliotis, Vanhoof, & Zhang (2014) ...

Quantum Quenches

Aparıcio & Lopez (2011), Albash & Johnson (2011), Basu & Das (2012),

Das, Galante, & Myers (2014) ...

Hydrodynamics

Minwalla, Bhattacharyya, Hubeny, Kovtun, Rangamani ...

Page 11: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Non-Equilibrium AdS/CMT

Current Noise

Sonner and Green, “Hawking Radiation and Nonequilibrium Quantum

Critical Current Noise”, PRL 109, 091601 (2013)

Hawking Radiation

Quenches in Holographic Superfluids

MJB, Gauntlett, Simons, Sonner & Wiseman, “Holographic Superfluids

and the Dynamics of Symmetry Breaking” PRL (2013)

Quasi-Normal-Modes

Amado, Kaminski, Landsteiner (09); Murata, Kinoshita, Tanahashi (10);

Witczak-Krempa, Sørensen, Sachdev (13)

Superfluid Turbulence

Chesler, Liu and Adams, “Holographic Vortex Liquids and Superfluid

Turbulence, Science 341, 368 (2013)

Fractal Horizons

Page 12: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Three Dynamical RegimesBhaseen, Gauntlett, Simons, Sonner & Wiseman, “Holographic

Superfluids and the Dynamics of Symmetry Breaking” PRL (2013)

(I) Damped Oscillatory to SC

〈O(t)〉 ∼ a+ be−kt cos[l(t− t0)]

(II) Over Damped to SC

〈O(t)〉 ∼ a+ be−kt

(III) Over Damped to N

〈O(t)〉 ∼ be−kt

Asymptotics described by black hole quasi normal modes

Far from equilibrium → close to equilibrium

Page 13: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Quasi Normal Modes

|〈O(t)〉| ≃ |〈O〉f +Ae−iωt|

Three regimes and an emergent T∗

Page 14: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Cold Atom Experiments

Endres et al, “The ‘Higgs’ Amplitude Mode at the Two-Dimensional

Superfluid-Mott Insulator Transition”, Nature 487, 454 (2012)

Time-dependent experiments can probe excitations

What is the pole structure in other correlated systems?

Page 15: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Cold Atom Experiments

Endres et al, “The ‘Higgs’ Amplitude Mode at the Two-Dimensional

Superfluid-Mott Insulator Transition”, Nature 487, 454 (2012)

Excitation spectrum in a trap

Page 16: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Thermalization

Condensed matter and high energy physics

RTL T

Why not connect two strongly correlated systems together

and see what happens?

Page 17: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

AdS/CFT

Energy flow may be studied within pure Einstein gravity

S = 116πGN

dd+2x√−g(R− 2Λ)

z

gµν ↔ Tµν

Page 18: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Einstein Centenary

The Field Equations of General Relativity (1915)

Rµν − 12Rgµν + Λgµν = 8πG

c4 Tµν

http://en.wikipedia.org/wiki/Einstein field equations

gµν metric Rµν Ricci curvature R scalar curvature

Λ cosmological constant Tµν energy-momentum tensor

Coupled Nonlinear PDEs

Schwarzchild Solution (1916) RS = 2MGc2 Black Holes

Page 19: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Non-Equilibrium CFTBernard & Doyon, Energy flow in non-equilibrium conformal field

theory, J. Phys. A: Math. Theor. 45, 362001 (2012)

Two critical 1D systems (central charge c)

at temperatures TL & TR

T TL R

Join the two systems together

TL TR

Alternatively, take one critical system and impose a step profile

Local Quench

Page 20: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Steady State Energy FlowBernard & Doyon, Energy flow in non-equilibrium conformal field

theory, J. Phys. A: Math. Theor. 45 362001 (2012)

If systems are very large (L ≫ vt) they act like heat baths

For times t ≪ L/v a steady heat current flows

TL TR

Non-equilibrium steady state

J =cπ2k2

B

6h (T 2L − T 2

R)

Universal result out of equilibrium

Direct way to measure central charge; velocity doesn’t enter

Sotiriadis and Cardy. J. Stat. Mech. (2008) P11003

Stefan–Boltzmann

Page 21: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Heuristic Interpretation of CFT Result

J =∑

m

dk

2π~ωm(k)vm(k)[nm(TL)− nm(TR)]Tm(k)

vm(k) = ∂ωm/∂k nm(T ) = 1eβ~ωm−1

J = f(TL)− f(TR)

Consider just a single mode with ω = vk and T = 1

f(T ) =∫∞

0dk2π

~v2keβ~vk−1

=k2BT 2

h

∫∞

0dx x

ex−1 =k2BT 2

hπ2

6 x ≡ ~vkkBT

Velocity cancels out

J =π2k2

B

6h (T 2L − T 2

R)

For a 1+1 critical theory with central charge c

J =cπ2k2

B

6h (T 2L − T 2

R)

Page 22: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Energy Current Fluctuations

Bernard & Doyon, Energy flow in non-equilibrium conformal field

theory, J. Phys. A: Math. Theor. 45, 362001 (2012)

Generating function for all moments

F (z) ≡ limt→∞

t−1 ln〈ez∆tQ〉

Exact Result

F (z) = cπ2

6h

(

zβl(βl−z) − z

βr(βr+z)

)

F (z) = cπ2

6h

[

z(

1β2l

− 1β2r

)

+ z2(

1β3l

+ 1β3r

)

+ . . .]

〈J〉 = cπ2

6h k2B(T2L − T 2

R) 〈δJ2〉 ∝ cπ2

6h k3B(T3L + T 3

R)

Poisson Process∫∞

0e−βǫ(ezǫ − 1)dǫ = z

β(β−z)

Page 23: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Non-Equilibrium Fluctuation RelationsBernard & Doyon, Energy flow in non-equilibrium conformal field theory,

J. Phys. A: Math. Theor. 45, 362001 (2012)

F (z) ≡ limt→∞

t−1 ln〈ez∆tQ〉 = cπ2

6h

(

z

βl(βl − z)− z

βr(βr + z)

)

F (−z) = F (z + βl − βr)

Irreversible work fluctuations in isolated driven systems

Crooks relation P (W )

P (−W )= eβ(W−∆F )

Jarzynski relation 〈e−βW 〉 = e−β∆F

Entropy production in non-equilibrium steady states

P (S)P (−S) = eS

Esposito et al, “Nonequilibrium fluctuations, fluctuation theorems, and

counting statistics in quantum systems”, RMP 81, 1665 (2009)

Page 24: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Linear ResponseBernard & Doyon, Energy flow in non-equilibrium conformal field

theory, J. Phys. A: Math. Theor. 45, 362001 (2012)

J =cπ2k2

B

6h (T 2L − T 2

R)

TL = T +∆T/2 TR = T −∆T/2 ∆T ≡ TL − TR

J =cπ2k2

B

3h T∆T ≡ g∆T g = cg0 g0 =π2k2

BT3h

Quantum of Thermal Conductance

g0 =π2k2

BT3h ≈ (9.456× 10−13 WK−2)T

Free Fermions

Fazio, Hekking and Khmelnitskii, PRL 80, 5611 (1998)

Wiedemann–Franz κσT = π2

3e2 σ0 = e2

h κ0 =π2k2

BT3h

Conformal Anomaly

Cappelli, Huerta and Zemba, Nucl. Phys. B 636, 568 (2002)

Page 25: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Experiment

Schwab, Henriksen, Worlock and Roukes, Measurement of the

quantum of thermal conductance, Nature 404, 974 (2000)

Quantum of Thermal Conductance

Page 26: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

ExperimentS. Jezouin et al, “Quantum Limit of Heat Flow Across a Single

Electronic Channel”, Science 342, 601 (2013)

Electrons heated up by a known Joule power JQ

JQ = nJeQ(TΩ, T0) + Je−ph

Q (TΩ, T0)

JeQ: increase of power to keep TΩ constant when a channel is opened

JeQ(TΩ, T0) =

π2k2B6h

(T 2Ω − T 2

0 )

Page 27: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Experiment

S. Jezouin et al, “Quantum Limit of Heat Flow Across a Single

Electronic Channel”, Science 342, 601 (2013)

JeQ(TΩ,T0)

T 2Ω−T 2

0= (1.06± 0.07)× π2k2

B

6h

Page 28: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Lattice Models

RLT T

Quantum Ising Model

H = J∑

〈ij〉 Szi S

zj + Γ

i Sxi

Γ = J/2 Critical c = 1/2

Anisotropic Heisenberg Model (XXZ)

H = J∑

〈ij〉

(

Sxi S

xj + Sy

i Syj +∆Sz

i Szj

)

−1 < ∆ < 1 Critical c = 1

Page 29: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Time-Dependent DMRG

Karrasch, Ilan and Moore, Non-equilibrium thermal transport and

its relation to linear response, Phys. Rev. B 88, 195129 (2013)

0

0.04

0.08

0 5 10 15

t

0

0.03

0.06

<J E

(n,t)

>-0.08

0

0.08

0.16

-20 0 20n

-0.2

0

h(n,

t)

λ=1

∆=−0.85, λ=1

TR=5

TR=0.67

TR=0.2TL=0.5

b=0

∆=0.8, λ=1, b=0

b=0.1b=0.2

b=0.4TL=∞TR=0.48

t=4

t=10

TL=∞TR=0.48

∆=0.5, b=0

λ=0.8λ=0.6

TL=0.5TR=5

n=2n=0

(a)

(b)

(c)

Dimerization Jn =

1 n odd

λ n even∆n = ∆ Staggered bn = (−1)nb

2

Page 30: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Time-Dependent DMRG

Karrasch, Ilan and Moore, Non-equilibrium thermal transport and

its relation to linear response, Phys. Rev. B 88, 195129 (2013)

0 1 2 3 4 5

TR

-0.1

0

0.1

<J E

(t→

∞)>

0 1 2 3 4 5

-0.2

0

0.2

(a)

TL=∞

TL=1

TL=0.5

TL=0.2

∆=0.5

∆=2

TL=∞ TL=2 TL=1TL=0.5 TL=0.25curves collapse if

shifted vertically!

TL=0.125

0.1 1

TR

10-3

10-2

10-1

<J E

(t→

∞)> ∆=0, exact

∆=0, DMRG

0 0.1 0.2

0.105

0.11

0.115

0 0.4 0.8

0.56

0.6

0.64

(b) vertical shift ofcurves in (a)

c=1.01

fit toa+cπ/12 T2

~T2

∆=0.5

∆=2

~T−1

quantumIsing model

c=0.48

limt→∞〈JE(n, t)〉 = f(TL)− f(TR) f(T ) ∼

T 2 T ≪ 1

T−1 T ≫ 1

Page 31: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

AdS/CFT

Steady State Region

Spatially Homogeneous

Page 32: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Solutions of Einstein Equations

S = 116πGN

dd+2x√−g(R− 2Λ) Λ = −d(d+ 1)/2L2

Unique homogeneous solution = boosted black hole

ds2 =L2

z2

[

dz2

f(z)− f(z)(dt cosh θ − dx sinh θ)2+

(dx cosh θ − dt sinh θ)2 + dy2⊥]

f(z) = 1−(

zz0

)d+1

z0 = d+14πT

Fefferman–Graham Coordinates

〈Tµν〉s = Ld

16πGNlimZ→0

(

ddZ

)d+1 Z2

L2 gµν(z(Z))

z(Z) = Z/R− (Z/R)d+2/[2(d+ 1)zd+10 ] R = (d!)1/(d−1)

Page 33: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Boost SolutionLorentz boosted stress tensor of a finite temperature CFT

Perfect fluid

〈Tµν〉s = ad Td+1 (ηµν + (d+ 1)uµuν)

ηµν = diag(−1, 1, · · · , 1), uµ = (cosh θ, sinh θ, 0, . . . , 0)

〈T tx〉s = 12ad T

d+1(d+ 1) sinh 2θ

ad = (4π/(d+ 1))d+1Ld/16πGN

One spatial dimension

a1 = Lπ4GN

c = 3L2GN

TL = Teθ TR = Te−θ 〈Ttx〉 = cπ2k2B

6h (T 2L − T 2

R)

Run past a thermal state with temperature T =√TLTR

Page 34: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Steady State Density Matrix

〈O...〉 = Tr(ρsO...)

Tr(ρs)

ρs = e−βE cosh θ+βPx sinh θ

β =√βLβR e2θ = βR

βL

Lorentz boosted thermal density matrix

Describes all the cumulants of the energy transfer process

The non-equilibrium steady state (NESS)

is a Lorentz boosted thermal state

Page 35: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

One DimensionTime evolution shows light-cone propagation

Conservation of Tµν and tracelessness in d = 1 imply that the

dynamics can be factorized into left- and right-moving components

〈T tx(x, t)〉 = F (x− t)−F (x+ t), 〈T tt(x, t)〉 = F (x− t)+F (x+ t)

Sharp “shock waves” moving at the speed of light

Initial energy density on the left and the right yields

F (x) = cπ12

[

T 2LΘ(−x) + T 2

RΘ(x)]

Steady state energy current 〈T tx〉s = cπ12 (T

2L − T 2

R)

Full evolution can also be obtained from Einstein equations

Page 36: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Higher Dimensions

Idealized Shock Waves

Energy-Momentum conservation across the shocks

Page 37: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Shock Solutions

Rankine–Hugoniot

Energy-Momentum conservation ∂µTµν = 0 across shock

〈T tx〉s = ad

(

T d+1L − T d+1

R

uL + uR

)

Invoking boosted steady state gives uL,R in terms of TL,R:

uL = 1d

χ+dχ+d−1 uR =

χ+d−1

χ+d χ ≡ (TL/TR)(d+1)/2

Steady state region is a boosted thermal state with T =√TLTR

Boost velocity (χ− 1)/√

(χ+ d)(χ+ d−1) Agrees with d = 1

Shock waves are non-linear generalizations of sound waves

EM conservation: uLuR = c2s , where cs = v/√d is speed of sound

cs < uR < v cs < uL < c2s/v reinstated microscopic velocity v

Page 38: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Numerics I

∂µTµν = 0

Excellent agreement with predictions

Page 39: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Numerics II

∂µTµν = 0

Excellent agreement far from equilibrium

Asymmetry in propagation speeds

Page 40: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Perturbations

Longitudinal perturbations (d = 2)

Transverse perturbations (d = 2)

Page 41: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Perturbations

Longitudinal & transverse perturbations (d = 2)

Spatially averaged profiles approach homogeneous results

Page 42: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Perturbations

Longitudinal perturbations (d = 3)

Transverse perturbations (d = 3)

Page 43: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Rarefaction Waves

Left-moving idealized sharp shock wave needs to be treated as a

smoothly varying rarefaction wave

Lucas, Schalm, Doyon and MJB; arXiv:1512.09037

PRD 94, 025004 (2016)

Spillane and Herzog; arXiv:1512.09071

Page 44: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Comparison

Rarefaction-shock provides a better fit to simulation data

Page 45: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Comparison

Rarefaction-shock (blue) two-shock (red)

Close agreement for energy transport across the interface

Rarefaction-shock provides a better fit to simulation data

New regime for TL > ΓTR

Γ = 3.459 (d = 2) Γ = 2.132 (d = 3)

Readily generalized to other equations of state

Page 46: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Regimes

ξ = xt

Page 47: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Charged Fluid

ξ = xt

Charge “surfs” on the energy flow

Page 48: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

http://traveller.easyjet.com/emagazine/2471/june-2016/

Page 49: Non-Equilibrium Energy Flow: From Shocks to ... · From Shocks to RarefactionWaves Joe Bhaseen TSCM Group ... anchoring to 1+1 and generalizing to higher dimensions Non-Equilibrium

Conclusions

Average energy flow in arbitrary dimension

Lorentz boosted thermal state

Energy current fluctuations

Exact generating function of fluctuations

Work in Progress

Other types of charge noise Non-Lorentz invariant situations

Unitary Fermi gas Fluctuation theorems

Acknowledgements

B. Benenowski, D. Bernard, P. Chesler, A. Green

D. Haldane C. Herzog, D. Marolf, B. Najian, C.-A. Pillet

S. Sachdev, A. Starinets

100 years after the advent of General Relativity

Einstein still has an enormous amount to teach us