noncollinear optical parametric amplifiers for ultra ...1024 w/cm2 omega ep target chamber kdp...

27
J. Bromage, R. G. Roides S.-W. Bahk, J. B. Oliver, C. Mileham, C. Dorrer, and J. D. Zuegel University of Rochester Laboratory for Laser Energetics 6th International Symposium on Ultrafast Photonic Technologies (ISUPT) 2013 Rochester, NY 21–22 October 2013 Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers 10 J, 1.5 ns, 160 nm 200 PW 10 24 W/cm 2 OMEGA EP target chamber KDP Type II Polarizer KDP Type II Polarizer Existing OMEGA EP will be used to pump OMEGA EP-OPAL Beamline 2 Beamline 3 Beamline 4 Beamline 1 Compressor 3 kJ, 15 fs Ultra-broadband front end DKDP DKDP

Upload: others

Post on 14-Feb-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

J. Bromage, R. G. Roides S.-W. Bahk, J. B. Oliver, C. Mileham, C. Dorrer, and J. D. ZuegelUniversity of RochesterLaboratory for Laser Energetics

6th International Symposium on Ultrafast Photonic Technologies

(ISUPT) 2013Rochester, NY

21–22 October 2013

Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers

10 J, 1.5 ns,160 nm

200 PW 1024 W/cm2

OMEGA EPtarget chamber

KDPType II Polarizer

KDPType II Polarizer

Existing OMEGA EP will be usedto pump OMEGA EP-OPAL

Beamline 2

Beamline 3

Beamline 4

Beamline 1

Compressor

3 kJ, 15 fs

Ultra-broadbandfront end

DKDP

DKDP

Page 2: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Optical parametric chirped-pulse amplification (OPCPA) offers the potential for intensities exceeding 1024 W/cm2

Summary

• LLE is developing the technologies necessary for an ultra-intense OPCPA system pumped by OMEGA EP

• Large DKDP1 crystals can provide ~200 nm of gain, centered at 910 nm

– sufficient bandwidth to support ~15-fs pulses

– pumped by existing kilojoule Nd:glass lasers

– grown in large sizes, so they can scale-up energy to kilojoule level

• A midscale optical parametric amplifier line (OPAL) is under construction

– 15 fs, 7.5 J, 1022 W/cm2

– demonstrate technologies that are scalable to a kilojoule system

1Deuterated potassium dihydrogen phosphate E22262

Page 3: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Many people (internal and external) have contributed to this project

Laser development and optical engineering: S.-W. Bahk I. A. Begishev J. Bunkenburg C. Dorrer R. K. Jungquist T. J. Kessler E. Kowaluk L. McIntire C. Mileham M. Millecchia S. F. B. Morse A. V. Okishev J. B. Oliver R. G. Roides J. D. Zuegel

Mechanical: G. Gates J. Magoon G. Martin J. Martin M. J. Shoup III R. Taylor

Electrical: W. A. Bittle G. Kick R. G. Peck

System: A. Agliata C. Rees

Experimental: D. H. Froula D. Haberberger D. D. Meyerhofer J. F. Myatt P. M. Nilson C. Stoeckl

External: N. Anderson (Semrock) J. Fini (OFS) S. Hädrich (Jena) M. Kirchner (KMLabs) E. Riedle (LMU) J. Rothhardt (Jena) C. Hall (QED)

Page 4: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

An ultra-intense OPCPA extension to OMEGA EP would reach focused intensities approaching 1024 W/cm2

This laser would be a world-class tool for fundamental science at new intensity regimes.

Monoenergetic c for nuclear science

Protons – relativistic above 1021 W/cm2

Laser

Gammaphotons

~3 × 1014 atm

Protons

Laserpulse

Electrons – accelerated to & 1 GeV

Trappedelectrons

++++++

–––––

––++++

++++++++

Laser pulse

Ionizationfront

Instantaneouselectrondensity

mP - plasma wavelength

Attosecondpulse

Filter

Plasma

Incidentpulse

Attosecond pulses from relativisticmirrors for QED studies

–––

––––– –––

Electronbeam

EzEzEz

E20943a

Page 5: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Noncollinear optical parametric amplifiers (NOPA’s) amplify pulses using a nonlinear three-wave process

Nonlinearcrystal |(2)

IdlerSignal

PumpAmplified

signalSignal

bandwidth

(Angles exaggeratedfor clarity)

a kP

kI" ,kS" ,

• Energy conservation:

• Momentum conservation:(use crystal birefringence)

I"' ' '~ ~ ~+P S

k k kI"' ' '+P S“phase matching”

X

E20591b

Page 6: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Noncollinear optical parametric amplifiers (NOPA’s) amplify pulses using a nonlinear three-wave process

Nonlinearcrystal |(2)

IdlerSignal

PumpAmplified

signalSignal

bandwidth

(Angles exaggeratedfor clarity)

a kP

kI" ,kS" ,

• Energy conservation:

• Momentum conservation:(use crystal birefringence)

• Noncollinear angle for maximum bandwidth:(matches group velocities of signal and idler)

I"' ' '~ ~ ~+P S

k k kI"' ' '+P S“phase matching”

k kcos I

IbbS

S22

22

~ ~X =e eo o

X

E20591c

Page 7: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Noncollinear optical parametric amplifiers (NOPA’s) amplify pulses using a nonlinear three-wave process

Nonlinearcrystal |(2)

IdlerSignal

PumpAmplified

signalSignal

bandwidth

(Angles exaggeratedfor clarity)

a kP

kI" ,kS" ,

• Energy conservation:

• Momentum conservation:(use crystal birefringence)

• Noncollinear angle for maximum bandwidth:(matches group velocities of signal and idler)

• Ultra-broadband phase matching occurs when stationary to second order:

I"' ' '~ ~ ~+P S

k k kI"' ' '+P S“phase matching”

k kcos I

IbbS

S22

22

~ ~X =e eo o

k kkcosSI

I

Imagic2

2

2

2 2

S S2

2

2

222

~ ~ ~XX+ =f f cp p m

X

E20591d

Page 8: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Ultra-broadband phase matching occurs at an inflection point in the phase-matching curves

1050

1000

950

900

850

800

750

Sig

nal

wav

elen

gth

(n

m)

Pump internal angle (°)

Phase-matchingcurves for different aPhase-matchingcurves for different a

Phase-matching for DKDPPhase-matching for DKDP

a = 0.56°a = 0.56° 0.68°0.68° 0.80°0.80° 0.92°0.92°1.03°1.03°

36.7 36.8 36.9 37.0 37.1 37.2 37.3

E22263

Page 9: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Ultra-broadband phase matching occurs at an inflection point in the phase-matching curves

1050

1000

950

900

850

800

750

Sig

nal

wav

elen

gth

(n

m)

Pump internal angle (°)

Locus ofstationarypoints

Locus ofstationarypoints Inflection

pointInflectionpoint

Phase-matchingcurves for different aPhase-matchingcurves for different a

Phase-matching for DKDPPhase-matching for DKDP

a = 0.56°a = 0.56° 0.68°0.68° 0.80°0.80° 0.92°0.92°1.03°1.03°

36.7 36.8 36.9 37.0 37.1 37.2 37.3

E22263a

Page 10: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

NOPA’s have many advantages for ultra-intense lasers over traditional gain media (e.g., Ti:sapphire)

Property Benefit

Broadband gain (>170 nm) Pulse widths <12 fs

High gain (>104) Amplifiers only few centimeters thick

Large crystals (>40 cm) Scale beam size for kilojoule pumping

Idler removes excess energy Minimal thermal issues

Unidirectional gain (a) No transverse amplified spontaneous emission (ASE)

(b) No gain for retroreflections

E20592a

Page 11: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

NOPA properties place tighter requirements on the pump lasers

Property Requirement

Instantaneous gain Must match pump pulse to signal

Phase-matched process Coherent pump with low divergence

E20592b

Page 12: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

• Many crystal options • Only KDP and DKDP can be grown large enough for multijoule OPA’s

Small-scale NOPA (~mm, ~mJ)

PumpPump

Signal

Signal (chirped)

Large-scale NOPA (~m, ~kJ)

The optimum crystal choice depends on the scale of the amplifier, which is set by the aperture and pump energy

E18612a

Page 13: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

• Many crystal options

• A number of pump technologies are available (Ti:Sa, Yb, Nd, etc.)

• Only KDP and DKDP can be grown large enough for multijoule OPA’s

• Kilojoule pump sources are more limited (Nd:glass, iodine)

Small-scale NOPA (~mm, ~mJ)

PumpPump

Signal

Signal (chirped)

Large-scale NOPA (~m, ~kJ)

The optimum crystal choice depends on the scale of the amplifier, which is set by the aperture and pump energy

E18612b

Page 14: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

• Many crystal options

• A number of pump technologies are available (Ti:Sa, Yb, Nd, etc.)

• Light wave synthesizer (MPQ)

– 4.5 fs, 18 TW, 1020 W/cm2

• Only KDP and DKDP can be grown large enough for multijoule OPA’s

• Kilojoule pump sources are more limited (Nd:glass, iodine)

• Several labs working in this area– Rutherford Appleton

Laboratory, UK– Institute of Applied Physics,

Russia

Small-scale NOPA (~mm, ~mJ)

PumpPump

Signal

Signal (chirped)

Large-scale NOPA (~m, ~kJ)

The optimum crystal choice depends on the scale of the amplifier, which is set by the aperture and pump energy

E18612d

Page 15: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Of the many types of nonlinear media, three crystals are widely used for ultra-broadband NOPA’s

Property BBO LBO DKDP

Name b-barium borate

Lithium triborate

Potassium dihydrogen phosphate

Effective nonlinearity (deff, pm/V) 2.2 0.82 0.23

Pump-signal angle(a, internal, mP = 527 nm, mS = 910 nm) 2.2° 1.39° 0.91°

Crystal length (small-signal gain = 104, IP = 5 GW/cm2) 4.5 mm 11.5 mm 37.0 mm

Gain bandwidth (FWHM, small-signal gain = 104) 185 nm 245 nm 178 nm

Maximum aperture size ~20 mm ~50 mm ~500 mm

E22264

Page 16: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

For larger-aperture OPCPA, DKDP provides broadband gain when pumped by frequency-doubled Nd:glass lasers

DKDP gain (small signal)mP = 526.5 nm

Pump-signal angle = 0.91°

–1000 –500 0 500 1000

1050

1000

950

900

850

800

Pump angle deviation (nrad)

0

2

4

6

8

10×104

Signalspectrumcenteredat 910 nm

500 nrad 500 nrad

180 nm180 nm

Sig

nal

wav

elen

gth

(n

m)

Sm

all-

sig

nal

gai

n(I

P =

4 G

W/c

m2 ,

L =

50

mm

)

E22267

Page 17: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Focal intensities of 1024 W/cm2 are possible with an OPAL system pumped by OMEGA EP

40 × 370 mm, square

14 × 370 mm, square

10 J, 1.5 ns, 160 nm 6 kJ 1.5 ns

2.5 kJ

200 PW 1024 W/cm2

OMEGA EPtarget chamber

60%, 1.4-m × 1.4-m beam300 mJ/cm2

KDPType II Polarizer

5.0 kJ

4 kJ 1.5 ns

6 kJ 1.5 ns

KDPType II Polarizer

An existing OMEGA EP beamline willbe used to pump OMEGA EP-OPAL

Beamline 2

Beamline 3

Beamline 4

Beamline 1

Compressor

3 kJ, 15 fs

Ultra-broadbandfront end

DKDP

DKDP

527 nm810 to 1010 nm1053 nm

E20382c

Page 18: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

The MTW-OPAL system is being built as a stepping- stone to develop and demonstrate scalable technologies

527 nm810 to 1010 nm1053 nm

YAG1.0 nJ

600 nJ

400 nJ

12.5 J

5 mJ

0.5 mJ

300 mJ

7.5 J, 15 fs,1022 W/cm2

Built

Underconstruction

Completedconceptual design

Nd:YLF: 1.5 ns, 2 J, 5 Hz

Nd:glass: 1.5 ns, 60 J, 1 shot/20 min

Fiber CPA: 250 fs, 500-kHz

BBO

BBO

Stretch to1.5 ns

BBO

DKDP

BBO

White light

Compressto 15 fs

Opticalsync

1.7 nJ

4.0 nJ

7 mJ

35 mJ

Nd:YLF: 10 ps, 50 mJ, 5 Hz

Multi-Terawatt laser (MTW)

E22268

Page 19: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

The MTW-OPAL system is being built as a stepping- stone to develop and demonstrate scalable technologies

527 nm810 to 1010 nm1053 nm

YAG1.0 nJ

600 nJ

400 nJ

12.5 J

5 mJ

0.5 mJ

300 mJ

7.5 J, 15 fs,1022 W/cm2

Built

Underconstruction

Completedconceptual design

Nd:YLF: 1.5 ns, 2 J, 5 Hz

Nd:glass: 1.5 ns, 60 J, 1 shot/20 min

Fiber CPA: 250 fs, 500-kHz

BBO

BBO

Stretch to1.5 ns

BBO

DKDP

BBO

White light

Compressto 15 fs

Opticalsync

1.7 nJ

4.0 nJ

7 mJ

35 mJ

Nd:YLF: 10 ps, 50 mJ, 5 Hz

Multi-Terawatt laser (MTW)

E22268a

Page 20: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

The MTW-OPAL system is being built as a stepping- stone to develop and demonstrate scalable technologies

527 nm810 to 1010 nm1053 nm

YAG1.0 nJ

600 nJ

400 nJ

12.5 J

5 mJ

0.5 mJ

300 mJ

7.5 J, 15 fs,1022 W/cm2

Built

Underconstruction

Completedconceptual design

Nd:YLF: 1.5 ns, 2 J, 5 Hz

Nd:glass: 1.5 ns, 60 J, 1 shot/20 min

Fiber CPA: 250 fs, 500-kHz

BBO

BBO

Stretch to1.5 ns

BBO

DKDP

BBO

White light

Compressto 15 fs

Opticalsync

1.7 nJ

4.0 nJ

7 mJ

35 mJ

Nd:YLF: 10 ps, 50 mJ, 5 Hz

Multi-Terawatt laser (MTW)

E22268b

Page 21: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

The MTW-OPAL system is being built as a stepping- stone to develop and demonstrate scalable technologies

527 nm810 to 1010 nm1053 nm

YAG1.0 nJ

600 nJ

400 nJ

12.5 J

5 mJ

0.5 mJ

300 mJ

7.5 J, 15 fs,1022 W/cm2

Built

Underconstruction

Completedconceptual design

Nd:YLF: 1.5 ns, 2 J, 5 Hz

Nd:glass: 1.5 ns, 60 J, 1 shot/20 min

Fiber CPA: 250 fs, 500-kHz

BBO

BBO

Stretch to1.5 ns

BBO

DKDP

BBO

White light

Compressto 15 fs

Opticalsync

1.7 nJ

4.0 nJ

7 mJ

35 mJ

Nd:YLF: 10 ps, 50 mJ, 5 Hz

Multi-Terawatt laser (MTW)

E22268c

Page 22: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

The MTW-OPAL system is being built as a stepping- stone to develop and demonstrate scalable technologies

527 nm810 to 1010 nm1053 nm

YAG1.0 nJ

600 nJ

400 nJ

12.5 J

5 mJ

0.5 mJ

300 mJ

7.5 J, 15 fs,1022 W/cm2

Built

Underconstruction

Completedconceptual design

Nd:YLF: 1.5 ns, 2 J, 5 Hz

Nd:glass: 1.5 ns, 60 J, 1 shot/20 min

Fiber CPA: 250 fs, 500-kHz

BBO

BBO

Stretch to1.5 ns

BBO

DKDP

BBO

White light

Compressto 15 fs

Opticalsync

1.7 nJ

4.0 nJ

7 mJ

35 mJ

Nd:YLF: 10 ps, 50 mJ, 5 Hz

Multi-Terawatt laser (MTW)

E22268d

Page 23: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

A new 1430-ft2 laboratory for MTW-OPAL was recently completed next to the MTW laser and the UFE installed

MTW-OPAL will be integrated with the existing MTW Laser System to maximize experimental flexibility.

E22251b

MTW–OPAL

MTW laser

LDL–Annex

Laser DevelopmentLaboratory (LDL)

HEIGHT=37.5"HEIGHT=37.5"

Page 24: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

MTW-OPAL is at the midpoint of its development

Today

20132009 201720152011

15 fs7.5 J

1021 W/cm2

Contrast >1010

OPAL demoContrast > 1012

Pulse width = 13 fs 200-nm stretcherand compressor

Prototypetesting

Phasecontrol

Systemdesign

Coatingdevelopment

–50 50–1000.0

0 100Time (fs)

Po

wer

(ar

bit

rary

)

0.5

1.0Measured Fourier

limit

–100–200Delay (ps)

0

Cro

ss-c

orr

elat

ion

(d

B)

–120

–80

–40

0

Detection noise floor

810 nm910 nm1010 nm

G1

G2 SecondaryPrimary

Flatmirror

Joule-scale DKDPamplifiers, pumped

by MTW

E22271

Page 25: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

Summary/Conclusions

Optical parametric chirped-pulse amplification (OPCPA) offers the potential for intensities exceeding 1024 W/cm2

MTW-OPAL is a stepping stone to the full-scale system, and will provide a focal point for collaborative development and femtosecond experiments.

• LLE is developing the technologies necessary for an ultra-intense OPCPA system pumped by OMEGA EP

• Large DKDP1 crystals can provide ~200 nm of gain, centered at 910 nm

– sufficient bandwidth to support ~15-fs pulses

– pumped by existing kilojoule Nd:glass lasers

– grown in large sizes, so they can scale-up energy to kilojoule level

• A midscale optical parametric amplifier line (OPAL) is under construction

– 15 fs, 7.5 J, 1022 W/cm2

– demonstrate technologies that are scalable to a kilojoule system

1Deuterated potassium dihydrogen phosphate E22262

Page 26: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

The Light Wave Synthesizer 20 (LWS-20) at MPQ is currently the most intense quasi-single-cycle system

• Pulse width: 4.5 fs

• Energy: 80 mJ

• Peak power: 18 TW

• Intensity: ~1020 W/cm2 (f/1.5)

D. Herrmann et al. Opt. Exp. 18, 18752 (2010).

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Sig

nal

inte

nsi

ty (

arb

itra

ry u

nit

s)

Sp

ectr

al p

has

e (r

ad)

Wavelength (nm)

600 700 800 900 1000–3

–2

1

0

1

2

3

3~pump

2~pump

–20 –10 0 10

Tem

po

ral i

nte

nsi

ty (

arb

itra

ry u

nit

s)

FWHM:4.5 fsFWHM:4.5 fs

Time (fs)

20

MeasuredFourier limit

IntensityPhase

Temporal intensity Spectral intensity and phase

• Uses four BBO-based NOPA stages

• Bandwidth from 575 to 1020 nm using two-color pumping*

• Repetition rate: 10 Hz

E22266

Page 27: Noncollinear Optical Parametric Amplifiers for Ultra ...1024 W/cm2 OMEGA EP target chamber KDP Polarizer Type II KDP Polarizer Type II Existing OMEGA EP will be used to pump OMEGA

PEARL-101 Vulcan 10 Petawatt2

• Institute of Applied Physics, Russia

• Goal: 100 J in 20 fs

• Upgrading 0.56-PW system (PEARL – PEtawatt pARametric Laser)

• Generate 910-nm pulse by seeding a NOPA with an angularly dispersed “idler” at 1250 nm

• Rutherford Appleton Laboratory, UK

• Goal: 300 J in 30 fs

• Front end produces 1-J, 150-nm-wide pulses

• Generate 910-nm pulse using the idler from a chirped-collinear geometry

Ultra-intense OPCPA systems using DKDP are being developed at several facilities

Pump laser527 nm

Cr:forsterite1250 nm

Pump laser400 nm

Ti:sapphire720 nm

Tune angular dispersion

910 nm 910 nm

DKDPTune pump chirp

LBO

i(~)

z2

1 V. V. Lozhkarev et al., Laser Phys. Lett. 4, 421 (2007). 2 Y. Tang et al., Opt. Lett. 33, 2386 (2008).E20944