nonequilibrium green's function (negf) method in thermal...

54
2371-1 Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries Jian-Sheng WANG 15 - 24 October 2012 National University of Singapore Dept. of Physics, 11754 Singapore Nonequilibrium Green's function (NEGF) method in thermal transport and some applications

Upload: phamdung

Post on 12-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

2371-1

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries

Jian-Sheng WANG

15 - 24 October 2012

National University of Singapore Dept. of Physics, 11754

Singapore

Nonequilibrium Green's function (NEGF) method in thermal transport and some applications

Nonequilibrium Green’s function (NEGF) method in thermal transport and some

applications

Jian-Sheng Wang National University of Singapore

ICTP workshop 2012 2

Outline of the talk

ವ Introduction ವ Method of nonequilibrium Green’s functions ವ Applications

ವ Thermal currents in1D chain and nanotubes

ವ Transient problems

ವ Full counting statistics

3

Fourier’s law for heat conduction

TJ

Fourier, Jean Baptiste Joseph, Baron (1768-1830)

[ ] ( ) i tf f t e dt

4

Thermal conductance

area section cross :tyconductivi :econductanc :

leadright andleft of re temperatu:,densitycurrent : current, thermal: where

,

)(

S

TTJI

SJISL

TTI

RL

RL

ICTP workshop 2012 5

Thermal transport of a junction

Left Lead, TL

Right Lead, TR

Junction

semi-infinite leads

ICTP workshop 2012 6

Models

1 1 , , , ,2 2

,

1 13 4

LC CRL C R n

T T

aC T CC j

C C C C C C Cn ijk i j k ijkl i j k l

ijk ijkl

H H H H H H H

H p p u K u u m x L C R

H u V u u u

H T u u u T u u u u

Left Lead, TL

Right Lead, TR

Junction

ICTP workshop 2012 7

Force constant matrix

RR

RRR

RR

RC

CRCCL

LC

LL

LL

L

kkkkk

kkV

VKV

Vkkkk

k

1110

011110

0100

1110

0100

01

0

00

00

0

KR

ICTP workshop 2012 8

Definitions of Green’s functions

ವ Greater/lesser Green’s function

ವ Time-ordered/anti-time ordered Green’s function

ವ Retarded/advanced Green’s function

( , ') ( ) ( ') ( ', )jk j k kjiG t t u t u t G t t

)',()'()',()'()',(),',()'()',()'()',(

ttGttttGttttGttGttttGttttG

t

t

GGttttGGGttttG

a

r

)'()',(,)'()',(

See text books, e.g., H. Haug and A.-P. Jauho, or J. Rammer, or S. Datta, or Di Ventra

ICTP workshop 2012 9

Contour-ordered Green’s function

( )

0 , , '

( , ') ( ) ( ')

Tr ( ) C

jk C j k

i H d

C j k

iG T u u

t T u u e

t0

Contour order: the operators earlier on the contour are to the right.

ICTP workshop 2012 10

Relation to the real-time Green’s functions

'

( , ), or ,

( , ') ( , ') or

,,

t

t

t t

t t

G GG G t t

G G

G G G GG G G G

G G G G

t0

t+

t

ICTP workshop 2012 11

Equations for Green’s functions (in ballistic systems)

0)',()',(

)'()',()',(

)'()',()',(

)'()',()',(

)',()',()',(

,,2

2

2

2

,,,,2

2

'''

2

2

2

2

ttGKttGt

IttttGKttGt

IttttGKttGt

IttttGKttGt

IGKG

tt

tartar

ICTP workshop 2012 12

Solution for Green’s functions 2

, , , ,2

2 , , , ,

1, , 2

12

( , ') ( , ') ( ')

using Fourier transform:[ ] [ ]

[ ] ( ) ( )

[ ] [ ] ( ) , 0

( ),

r a t r a t

r a t r a t

r a t

r a

r a

t r

G t t KG t t t t It

G KG I

G I K c K d K

G G i I K

G f G G G e GG G G

c and d can be fixed by initial/boundary condition.

ICTP workshop 2012 13

Transform to interaction picture

( '') ''

0 , , '

( '') ''

( , ') ( ) ( ')

Tr ( )

Tr ( ) ( ')

C

InC

jk j k

i H d

C j k

i H dI II C j k

iG u u

t T u u e

T u u e

t0

ICTP workshop 2012 14

Perturbative expansion of contour ordered Green’s function

( '') ''

2

1 1 1 1 2 2

3

1 2 3 1 2 3

( , ') ( ) ( ')

1( ) ( ') 1 ( ) ( ) ( )2!

1 1( ) ( ') ( ) ( ') ( , , ) ( ) ( ) ( )2 3

ni H d

jk C j k

C j k n n n

C j k C j k lmn l m nl

iG T u u e

i i iT u u H d H d H d

i iT u u T u u T u u u 1 2 3

4 5 6 4 5 6 4 5 6

01 2 3 4 5 6

1 2 5 3 6 4

1 ( , , ) ( ) ( ) ( )3

( , ') ... ( ) ( ') ( ) ( ) ( ) ( ) ( ) ( )

(Wick's theorem)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( '

mn

opq o p qopq

jk C j k l m n o p q

C j l C m p C n q C o k

d d d

T u u u d d d

G T u u u u u u u u

T u u T u u T u u T u u )

See, e.g., A. L. Fetter & J. D. Walecka.

ICTP workshop 2012 15

Diagrammatic representation of the expansion

0 0 1 1 2 2 1 2( , ') ( , ') ( , ) ( , ) ( , ')conn n connG G G G d d

= + 2i + 2i

+ 2i

= +

ICTP workshop 2012 16

Diagrammatic representation of the nonlinear self-energy

ICTP workshop 2012 17

Explicit expression for self-energy

' ' ', 0, 0,

'' '' '', ' 0, 0,

, ''

4

'[ ] 2 [ '] [ ']2

'2 '' [0] [ ']2

( )

n jk jlm rsk lr mslmrs

jkl mrs lm rslmrs

ijk

di T T G G

di T T G G

O T

ICTP workshop 2012

General expansion rule

1 2 1 2

0

1 2 1 2

( , ')( , , )

( , , , ) ( ) ( ) ( )n n

ijk i j k

j j j n C j j j n

GT

iG T u u u

Single line

3-line vertex

n-double line vertex

ICTP workshop 2012 19

Junction systems ವ Three types of Green’s functions: ವ g for isolated systems when leads and centre are decoupled ವ G 0 for ballistic system ವ G for full nonlinear system

t = 0 t =

HL+HC+HR

HL+HC+HR +V

HL+HC+HR +V +Hn

g G0

G

Governing Hamiltonians

Green’s function

Equilibrium at T

Nonequilibrium steady state established

ICTP workshop 2012 20

Three regions

RCLuuTiG

uuu

uuuu

u

TC

CL

L

L

R

C

L

,,,,)'()()',(

,, 2

1

ICTP workshop 2012 21

Dyson equations and solutions 0 0

0 0

120

0 0 0

110

0

,

( ) , 0

(Keldysh equation)

( ) ,

( ) ( )

( )

CL LC CR RCC C L R

n

r C r

r a

r r rn

r a r r a an n n

r an

G g g G V g V V g VG G G G

G i I K

G G G

G G

G G G I G G I GG G

ICTP workshop 2012 22

Energy current (Meir-Wingreen)

1 Tr [ ]2

1 Tr [ ] [ ] [ ] [ ]2

T LCLL L C

LCCL

r aL L

dHI u V udt

V G d

G G d

ICTP workshop 2012 23

Landauer/Caroli formula

0

Tr2

,2

,

( )

r aLL CC L CC R L R

r a

L RL

r aL L R R

a r r aL R

dH dI G G f fdt

i

I II

G G G i f fG G iG G

ICTP workshop 2012 24

Ballistic transport in a 1D chain ವ Force constant matrix

ವ Equation of motion

kkkk

kkkkkkkk

k

K

0020

202

0

0

0

0

1 0 1(2 ) , , 1,0,1, 2,j j j ju ku k k u ku j

ICTP workshop 2012 25

Solution of g ವ Surface Green’s function 2

0

0

0

0

1 20

( ) , 0

2 02 0

0 20 0

, 0,1,2, ,

(( ) 2 ) / 0, | | 1

RR

R

jRj

i K g I

k k kk k k k

Kk k k k

k

g jk

i k k k

ICTP workshop 2012 26

Lead self energy and transmission

2 1

| |

1

20 0

0 00 0 0 00 0 0

0 0 0

( ) ,

1, 4[ ] Tr

0, otherwise

L

r CL R

j krjk

r aL R

k

G K

Gk

k k kT G G

T[ ]

1

ICTP workshop 2012 27

Heat current and “universal” thermal conductance

max

min

0

2 2

0

[ ]2

1lim ,2 1

, 0, 03

L R

L L R

LT T

L R

B

dI T f f

I f d fT T T e

k T k Th

Rego and Kirczenow, 1998.

ICTP workshop 2012 28

1D nonlinear model Three-atom

junction with cubic nonlinearity (FPU- ). From JSW, Wang, Zeng, PRB 74, 033408 (2006). Cross + from QMD: JSW, Wang, Lü, Eur. Phys. J. B, 62, 381 (2008).

ICTP workshop 2012 29

Carbon nanotube, nonlinear effect

The transmissions in a one-unit-cell carbon nanotube junction of (8,0) at 300K. From J-S Wang, J Wang, N Zeng, Phys. Rev. B 74, 033408 (2006).

ICTP workshop 2012 30

Transient problems

1 2

0

0

0

,1 2

2

, 0( )

, 0

( , )( ) Im

L R

T LRL R

RL

Lt t t

H H HH t

H tH u V u t

G t tI t kt

ICTP workshop 2012 31

Dyson equation on contour from 0 to t

1 1 1

1 2 1 1 2 2,

( , ') ( ) ( ')

( ) ( ) ( ')

RL R RL L

C

R RL L LR RL

C C

G d g V g

d d g V g V G

Contour C

ICTP workshop 2012 32

Transient thermal current

The time-dependent current when the coupling is suddenly switched on. (a) Current flow out of left lead, (b) out of right lead. Dots are what predicted from Landauer formula. T=300K, k =0.625 eV/(Å2u) with a small onsite k0=0.1k. From E. C. Cuansing and J.-S. Wang, Phys. Rev. B 81, 052302 (2010). See also PRE 82, 021116 (2010).

ICTP workshop 2012 33

Finite lead problem

Top ඍ��QR�RQVLWH��k0=0), (a) NL = NR = 100, (b) NL=NR=50, temperature T=10, 100, 300 K (black, red, blue). TL=1.1T, TR = 0.9T. Right ඎ��ZLWK�RQVLWH�k0=0.1k and similarly for other parameters. From E. C. Cuansing, H. Li, and J.-S. Wang, Phys. Rev. E 86, 031132 (2012).

ICTP workshop 2012 34

Full counting statistics (FCS)

• What is the amount of energy (heat) Q transferred in a given time t ?

• This is not a fixed number but given by a probability distribution P(Q )

• Generating function

• All moments of Q can be computed from the derivatives of Z.

• The objective of full counting statistics is to compute Z(˫).

dQQPeZ Qi )()(

ICTP workshop 2012 35

A brief history on full counting statistics ವ L. S. Levitov and G. B. Lesovik proposed the concept

for electrons in 1993; rederived for noninteracting electron problems by I. Klich, K. Schönhammer, and others

ವ K. Saito and A. Dhar obtained the first result for phonon transport in 2007

ವ J.-S. Wang, B. K. Agarwalla, and H. Li, PRB 2011; B. K. Agarwalla, B. Li, and J.-S. Wang, PRE 2012.

ICTP workshop 2012 36

Definition of generating function based on two-time measurement

/

2

)(

)0,(e.g.,)0,(),0()(

||

||

' 'Tr

iHtLL

L

aa

aaa

tHiHi

etUtUHtUtH

aaaH

aaPP

PPeeZ LL Consistent

history quantum mechanics (R. Griffiths).

ICTP workshop 2012 37

Approaches to compute Z ವ Express Z as expectation value of some effective

evolution operator over a contour ವ Evaluate the expression using

ವ Feynman path integral/influence functional

ವ Feynman diagrammatic expansion

ICTP workshop 2012 38

Product initial state

, ,

( )

/ 2 / 2

/ 2 / 2

, [ , ] 0, '

Tr

Tr (0, ) ( ,0)

Tr (0, ) ( ,0)

Tr (0, ) ( ,0)

( , ') ( , ')

L L

L L

L L L

L L

HL L

L C R

i H i H t

i H i H

i H i H i H

ixH ixHx

e P H

Z e e

e U t e U t

e U t e U t e

U t U t

U t t e U t t e

ICTP workshop 2012 39

Ux

)(

)(

)(

)()(

',

)',(

00

)(

)(

'

'

xueueu

HHuVuHHeHeHHHH

eHHHHHeetHetH

ttTe

eTeettU

LixHLixHLx

xI

CLCTLx

RC

ixHLCixHRCRCL

ixHRCLCRCL

ixH

ixHixHx

dttH

ixHdttHixHx

LL

LL

LL

LL

t

t xi

L

t

ti

L

ICTP workshop 2012 40

Schrödinger, Heisenberg, and interaction pictures

tHitHi

I

dttHi

I

I

tHi

I

I

HHH

HH

i

AeetA

ttTettSttStHtttSi

tttStet

HHH

tHtAt

tAi

tAUtUtA

ttUtHt

ttUi

iiwtttUt

t

t I

00

'

0

)(

',)',(),',()()',(

)'(|)',()(|)(|

)](),([)()0(||),0,(),0()(

)',()()',(||)'(|)',()(|

'')''(

0

Schrödinger picture Heisenberg picture Interaction picture

ICTP workshop 2012 41

Compute Z in interaction picture

LxL

ALRLCC

AL

ALCR

xLC

LCxL

CLC

C C

xI

xIC

xIC

dHi

C

GggG

G

GggZ

VgVg

ddHHidHiT

eT

tUtUZ

CxI

,,

)]1ln[(Tr21

)]1)(1det[(ln21)](1[lnTr

21ln

][Tr211

')'()(21)(1Tr

]Tr[

)]0,(),0([Tr

00

0

0

2

)(

2/2/- /2

+ /2

ICTP workshop 2012 42

Important result

otherwise00if2/)(0if2/)()(

)',()'('),()',(

,,

)1ln(Tr21ln

00

0

M

M

LLAL

LxL

ALRLCC

AL

tttxtttxx

xx

GggG

GZ

ICTP workshop 2012 43

Long-time result, Levitov-Lesovik formula

)/(1),1/(1

,),()1]([),1]([

where

)2()1()1(detln4

01lnTr

21

)1ln(Tr21ln

00

0

0

0

22

22

TkefRLi

ebea

ffeefefeGGIdt

GGG

GZ

Ba

ar

iL

iL

RLii

Ri

Li

Ra

Lr

M

a

Kr

AL

baba

baba

ICTP workshop 2012 44

Arbitrary time, transient result

time)long in(

)(ln

)(Tr

21

)(ln

)(ln

)1ln(Tr21ln

2

2222

00

0

0

ItQ

iZQQQ

iG

iZQQ

iZQ

GZ

M

AL

n

nn

AL

ICTP workshop 2012 45

Numerical results, 1D chain

1D chain with a single site as the center. k= 1eV/(uÅ2), k0=0.1k, TL=310K, TC=300K, TR=290K. Red line right lead; black, left lead. B. K. Agarwalla, B. Li, and J.-S. Wang, PRE 85, 051142, 2012.

ICTP workshop 2012 46

FCS for coupled leads

,

LC LRL

CL CRC

RL RCR

K V VK V K V G g gVG

V V K

1 1

ln ln det ( 1) (1 ) ( 1) (1 ) [ ]4

[ ] , , ,

If center is absent 0, then

[ ] [ ]

i iM L R R L g

r a a rg LR R RL L

LC RC

r ag I RR R RR L

dZ t I e f f e f f T

T G G i g g L R

V V

T T G G

From H. Li, B. K. Agarwalla, and J.-S. Wang, Phys. Rev. E 86, 011141 (2012); and arXiv:1208.4915

ICTP workshop 2012 47

FCS in nonlinear systems

ವ Can we do nonlinear? ವ Yes we can. Formal expression generalizes Meir-

Wingreen ವ Interaction picture defined on contour

ವ Some example calculations

ICTP workshop 2012 48

Vacuum diagrams, Dyson equation, interaction picture transformation on contour

,

[

Lj,

0 0

( )I1 2 1 2

0 0

( )

ln 1 Tr( ) 2 ( )

1( , ) Tr ( ) ( )

, (0 , ) ( ,0 ) /

( ) (0 , ) ( ) ( ,0 )

( ,0 )

InC

x T LC T CRL C C R

C

AL n

i H dI I TC

n

In M M

I

i u V u u V u d

C

Z Gi i

G G G G

iG T u u eZ

Z Z Z V t V t ZO V O V

V T e ,0 ]

ICTP workshop 2012 49

Nonlinear system self-consistent results

Single-site (1/4)˨u4 model cumulants. k=1 eV/(uÅ2), k0=0.1k, Kc=1.1k, V LC-1,0=V CR0,1=-0.25k, TL=660 K, TR=410K. From H. Li, B. K. Agarwalla, B. Li, and J.-S. Wang, arxiv::1210.2798

( , ') 3 ( , ') ( , ')n i G

ICTP workshop 2012 50

Other results

ವ We can also compute the cumulants for the projected steady state ˮ’

ವ Entropy production ವ Fluctuation theorem, Z(˫) = Z(-˫ +i(˟R-˟L))

ವ The theory is applied equally well to electron number of

electron energy transport

ICTP workshop 2012 51

Summary remarks

ವ NEGF is a powerful tool to handle thermal transport problems in nanostructures

ವ Steady state current is obtained from Landauer and

Caroli formula ವ New results for transient and full counting statistics. A

key quantity is the self-energy ːLA

ICTP workshop 2012 52

Group members/acknowledgements

Front (left to right) Mr. Thingna Juzar Yahya, Mr. Zhou Hangbo, Mr. Bijay Kumar Agarwalla, Dr. Leek Meng Lee, Dr/Ms Ni Xiaoxi, Mr. Tan Kuo Liang; Back: Dr. Jose Luis Garcia Palacios, Prof. Wang Jian, Dr. Jiang Jinwu, Prof. Wang Jian-Sheng, Dr. Zhang Lifa, Mr. Li Huanan, Dr. Eduardo C. Cuansing.

Thank you

see http://staff.science.nus.edu.sg/̃phywjs/ for more information