nonlinear systems ppt

37
Max Planck Institute Magdeburg January 11, 2012 Model Order Reduction for Nonlinear Systems Lihong Feng MAX-PLANCK-INSTITUT DYNAMIK KOMPLEXER TECHNISCHER SYSTEME MAGDEBURG Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

Upload: smritihunny5969

Post on 24-Dec-2015

368 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Nonlinear systems ppt

Max Planck Institute Magdeburg

January 11, 2012

Model Order Reduction for Nonlinear Systems

Lihong Feng

MAX-PLANCK-INSTITUT

DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME

MAGDEBURG

Max Planck Institute for Dynamics of Complex Technical Systems

Computational Methods in Systems and Control Theory

Page 2: Nonlinear systems ppt

Max Planck Institute Magdeburg 2

Original large

ODE or PDE

Reduced small

ODE or PDE

Numerical simulation

of the full model

Numerical simulation

of the small model Much Faster

Very small differences

MOR

Idea of MOR

Page 3: Nonlinear systems ppt

Max Planck Institute Magdeburg 3

Moment-matching MOR

)()(

)(/

tLXty

tBuGXdtCdX

Original linear system

)()(

)()()(

sLXsY

sBUsGXssCX

q

i

qi

i

ii

ssBGCsCGCs

ssBGCsCGCsBGsCsX

0

0

1

0

1

0

0

0

1

0

1

0

1

)()(])([

)()(])([)()(

nRX

Laplace transform

Expanding around 0s

BGCsr

rCGCsCrGCsrspanVrange j

)(

}])[(,,)(,{)(

1

0

1

0

1

0

Projection matrix V:

Page 4: Nonlinear systems ppt

Max Planck Institute Magdeburg 4

)()(

)(/

tLXty

tBuGXdtCdX

)()(

)(/

tLVZty

tBuGVZdtCVdZ

VZX

nrRZ r ,

Galerkin Projection

Original large system

Review and motivation moment-matching MOR

)(/ tBuGVZdtCVdZe 0eV T

)()(ˆ

)(/

tLVZty

tBuVGVZVdtCVdZV TTT

Define: LVLBVBGVVGCVVC TTT ˆ,ˆ,ˆ,ˆ

)(ˆ)(ˆ

)(ˆˆ/ˆ

tZLty

tuBZGdtdZC

Reduced small system

Page 5: Nonlinear systems ppt

Max Planck Institute Magdeburg 5

)(sH )(ˆ sHThe first j +1 moments are the same

jiMM ii ,,0,ˆ

Transfer function

Accuracy of the reduced model:

,...1,0,)(])([ 1

0

1

0 iBGCsCGCsLM i

iMoments:

0

0

1

0

1

0

1 )()(])([)()(/)()(i

ii ssBGCsCGCsLBGsCLsUsYsH

BGCsb

bCGCsCbGCsbspanVrange j

)(

}])[(,,)(,{)(

1

0

1

0

1

0

If:

Then:

Review and motivation moment-matching MOR

Page 6: Nonlinear systems ppt

Max Planck Institute Magdeburg 6

Overview

• Linearization MOR.

• Qudratic MOR.

• Bilinearization MOR.

• Variational analysis MOR.

• Trajectory piece-wise linear MOR.

• Other MOR methods for nonlinear systems.

• Conclusions.

• References.

Page 7: Nonlinear systems ppt

Max Planck Institute Magdeburg Model Order Reduction of Parametric Systems 7 03.02.2012

Linearization MOR

Original large ODE

)()(

)()(/

tLXty

tBuXfdtCdX

)(Xf

AXXf )(~

Linearization: approximate

by a linear function )(Xf

)()(~

1

)(])(,[/ 00

tLXty

tuXDXfBAXdtCdX f

)()(

))(()(2

1)()()(

00

00000

XXDXf

XXXHXXXXDXfXf

f

f

T

f

Taylor series expansion:

)()(~

)()()(/ 00

tLXty

tBuXXDXfdtCdX f

.,1,0,])[(,~

},,,{

1

0

1

21

irCACsMBAr

rMrMrMrizationorthogonalV

i

i

j

,...1,0,)( 1 irCAM i

i

Page 8: Nonlinear systems ppt

Max Planck Institute Magdeburg 8

Example

1 2 3 N-3 N-2 N-1 N

C C C C C C Ci(t)

Y. Chen, MIT thesis 1999.

)()(

),(

0

0

1

)(

)()(

)()(

)()(

1

11

3221

211

tLXty

tu

xxg

xxgxxg

xxgxxg

xxgxg

dt

dX

nn

kkkk

1)( 40 xexg x

xxgg

xg

xggxg

41)0(')0(

!2

)0('')0(')0()( 2

)()(

),(

0

0

1

4141

418241

418241

4282

1

11

321

21

tLXty

tu

xx

xxx

xxx

xx

dt

dX

nn

kkk

Page 9: Nonlinear systems ppt

Max Planck Institute Magdeburg 9

Example

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

+ q=10 __ full simulation

Page 10: Nonlinear systems ppt

Max Planck Institute Magdeburg 10

Example

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

+ q=10

-- q=20

__full simulation

Page 11: Nonlinear systems ppt

Max Planck Institute Magdeburg 11

Example

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

+ q=10

-- q=20

...linear, no reduction

__ full simulation

Page 12: Nonlinear systems ppt

Max Planck Institute Magdeburg 12

Quadratic MOR

)(Xf )(Xg

)(Xf

)(Xg

nqRZVZX q ,,

)()(ˆ

)(~

/

tLVZty

tuBVWVZVZAVZVdtCXdZV TTTTT

Approximate by a quadratic polynomial

)()(

)()(/

tLXty

tBuXfdtCdX

Taylor series expansion:

)()(~)(

~/

tLXty

tuBWXXAXdtCdX T

))(()(2

1)()(

))(()(2

1)()()(

00000

00000

XXXHXXXXDXf

XXXHXXXXDXfXf

f

T

f

f

T

f

.,1,0,])[(,~

)(

},,,{

1

0

1

0

21

irCACsMBACsr

rMrMrMrizationorthogonalV

i

i

j

Page 13: Nonlinear systems ppt

Max Planck Institute Magdeburg 13

Example

1 2 3 N-3 N-2 N-1 N

C C C C C C Ci(t)

Y. Chen, MIT thesis 1999.

)()(

),(

0

0

1

)(

)()(

)()(

)()(

1

11

3221

211

tLXty

tu

xxg

xxgxxg

xxgxxg

xxgxg

dt

dX

nn

kkkk

1)( 40 xexg x

2'

2'

80041)0()0(

!2

)0('')0()0()(

xxxgg

xg

xggxg

)()(

),(

0

0

1

)(800

)(800)(800

)(800)(800

)(800800

4141

418241

418241

4282

2

1

2

1

2

1

2

32

2

21

2

21

2

1

1

11

321

21

tLXty

tu

xx

xxxx

xxxx

xxx

xx

xxx

xxx

xx

dt

dX

nn

kkkk

nn

kkk

Page 14: Nonlinear systems ppt

Max Planck Institute Magdeburg 14

Example

1 2 3 N-3 N-2 N-1 N

C C C C C C Ci(t)

Y. Chen, MIT thesis 1999.

)()(

),(

0

0

1

)(800

)(800)(800

)(800)(800

)(800800

4141

418241

418241

4282

2

1

2

1

2

1

2

32

2

21

2

21

2

1

1

11

321

21

tLXty

tu

xx

xxxx

xxxx

xxx

xx

xxx

xxx

xx

dt

dX

nn

kkkk

nn

kkk

)()(~)(

~/

tLXty

tuBWXXAXdtCdX T

W

is a tensor, it has n matrices, the ith matrix

corresponds to the ith element of the

nonlinear vector.

Page 15: Nonlinear systems ppt

Max Planck Institute Magdeburg 15

Example

1 2 3 N-3 N-2 N-1 N

C C C C C C Ci(t)

Y. Chen, MIT thesis 1999.

0000

0000

00800800

008001600

1

nnRW

W

1

1

000000

0000

08008000

08000800

000800800

0000

i

i

i

RW nni

1,,1 iii

80080000

800800

0000

00

0000

nnn RW

XWX

XWX

XWX

WXX

nT

iT

T

T

1

VZWVZ

VZWVZ

VZWVZ

WVZVZ

nTT

iTT

TT

TT

1

Page 16: Nonlinear systems ppt

Max Planck Institute Magdeburg 16

Example

0 2 4 6 8 100

0.005

0.01

0.015

0.02

0.025

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

-- quadratic MOR, q=10

…linear, no reduction

__ full simulation

Page 17: Nonlinear systems ppt

Max Planck Institute Magdeburg 17

Example

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

-- quadratic MOR, q=10

…quadratic MOR, q=20

__ full simulation

Page 18: Nonlinear systems ppt

Max Planck Institute Magdeburg 18

Example

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

-- quadratic MOR, q=10

…quadratic, no reduction

__ full simulation

Page 19: Nonlinear systems ppt

Max Planck Institute Magdeburg 19

Bilinearization MOR

)(Xf )(Xg

)(Xf

)(XgnqRZVZX q ,,

)()(ˆ

)()(/

tLVZty

tuBVtVZuNVVZAVdtdZ TTT

Approximate by quadratic polynomial , but written into Kronecker

product

)()(

)()(/

tLXty

tBuXfdtdX

Taylor series expansion:

XXAXAXf

XXXHXXXXDXf

XXXHXXXXDXfXf

f

T

f

f

T

f

210

00000

00000

)(

))(()(2

1)()(

))(()(2

1)()()(

)()(

)()(/

tXLty

tuBtuXNXAdtdX

2, nNRX N

Page 20: Nonlinear systems ppt

Max Planck Institute Magdeburg 20

XX

XX

0

BB 0LL

11

21

0 AIIA

AAA

0

00

BIIBN

)()(

)()(/

tXLty

tuBtuXNXAdtdX

)()(

)()(/

tLXty

tBuXfdtdX

Carleman bilinearization

Carleman bilinearization:

[1] W.J. Rugh, Nolinear System Theory, The John Hopkins University Press, Boltimore, 1981.

[2] S. Sastry, Nonlinear Systems: Analysis, Stability and Control, Springer, New York, 1999.

Bilinearization MOR

BaBa

BaBa

BA

mnm

n

1

111

Kronecker product

Page 21: Nonlinear systems ppt

Max Planck Institute Magdeburg 21

)()(

)()(/

tXLty

tuBtuXNXAdtdX

How to compute V?

1

)()(n

n tyty

nnn

t

n

reg

nn dtdtttuttttuttthty 1210

21

)( )()(),,,()(

BeNeNeLttthtAtAtAT

n

reg

nnn 11),,,( 21

)(

Volterra series expression of bilinear system According to the theory in [Rugh 1981], the output response of the bilinear system can be expressed into Volterra series,

BAAsINAAsINAAsINAAsIc

BAIsNAIsNAIsNAIsLsssh

nn

Tn

nn

T

n

reg

n

111

1

111

2

111

1

111

1

1

1

2

1

1

1

21

)(

)()()()()1(

)()()()(),,,(

Laplace transform (drop for simplicity):

Bilinearization MOR

Page 22: Nonlinear systems ppt

Max Planck Institute Magdeburg 22

)()(

)()(/

tXLty

tuBtuXNXAdtdX

How to compute V?

BAAsINAAsINAAsINAAsIL

BAIsNAIsNAIsNAIsLsssh

nn

Tn

nnn

reg

n

111

1

111

2

111

1

111

1

1

1

2

1

1

1

21

)(

)()()()()1(

)()()()(),,,(

Laplace transform:

i

n

i

nn sAsAIAsI 111)(

1 1

1

1

1

21

)(

1

111)1(),,,(n

nnn

l l

lllll

n

n

n

reg

n BANNALAsssssh

BANNALAllmllln

nnn 11)1(),,( 1

Multimoments:

Bilinearization MOR

Page 23: Nonlinear systems ppt

Max Planck Institute Magdeburg 23

)()(

)()(/

tXLty

tuBtuXNXAdtdX

How to compute V?

1 1

1

1

1

21

)(

1

111)1(),,,(n

nnn

l l

lllll

n

n

n

reg

n BANNALAsssssh

BANNALAllmllln

nnn 11)1(),,( 1

Multimoments:

},,{},{}{ 1

1

111

1 BABAspanbAAKVrangeq

q

},,{},{}{ 11

1

,1

1

1

11

j

q

jjjqj NVANVANVANVAAKVrange j

j

},,{}{ 1 JVVcolspanVrange

)()(ˆ

)()(/

tLVZty

tuBVtVZuNVVZAVdtdZ TTT

Reduced model:

Bilinearization MOR

Page 24: Nonlinear systems ppt

Max Planck Institute Magdeburg 24

Example

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<3, u(t)=1, t>=3;

voltage a

t node 1

original system

quadratic MOR, q=20

quadratic, no reduction

bilinearization, q=20

V for bilinearization MOR: },{}{ 21 VVcolspanVrange

})(,,){(}{ 191

1 BABAspanVrange

)}1(:,){(}{ 1

1

2 NVAspanVrange

V for quadratic MOR:

},,{}{ 201 BABAspanVrange

Page 25: Nonlinear systems ppt

Max Planck Institute Magdeburg 25

Variational analysis MOR

XXXAXXAXAXf

XXXHXXXXDXfXf f

T

f

3210

0000

)(

))(()(2

1)()()(

Taylor series expansion:

)()(

)()(/

tLXty

tBuXfdtdX

)()(

)(~~/ 21

tLXty

tuBXXAXAdtdX

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

)()()(),( 3

3

2

2

1 tXtXatXtX

Variational analysis:

)()(

)(~~/ 21

tLXty

tuBXXAXAdtdX

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

or

or

Original system:

Page 26: Nonlinear systems ppt

Max Planck Institute Magdeburg 26

Variational analysis MOR

)()()()( 3

3

2

2

1 tXtXatXtX

Variational analysis:

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

)()(

)(~~)]()()[(

)]()[(

)(/)(

3

3

2

2

13

3

2

2

13

3

2

2

13

3

3

2

2

13

3

2

2

12

3

3

2

2

113

3

2

2

1

tLXty

tuBXXXXXXXXXA

XXXXXXA

XXXAdtXXXd

)(~~)(/)(: 111 tuBtXAdttdX

)()(/)(: 112212

2 XXAtXAdttdX

)()()(/)(: 111312212313

3 XXXAXXXXAtXAdttdX

Page 27: Nonlinear systems ppt

Max Planck Institute Magdeburg 27

Variational analysis MOR

)()()()( 3

3

2

2

1 tXtXatXtX

Variational analysis:

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

)(~~)(/)(: 111 tuBtXAdttdX

)()(/)(: 112212

2 XXAtXAdttdX

)()()(/)(: 111312212313

3 XXXAXXXXAtXAdttdX

}~

,,~

{ 1

1

1

11111 BABAspanVZVXq

},,{ 212

1

122222 AAAAspanVZVX

q

]},[,],,[{ 32132

1

133332 AAAAAAspanVZVX

q

33

3

22

2

11

3

3

2

2

1

3

3

2

2

1 )()()()(

ZVZVZV

XXX

tXtXatXtX

},,{)( 321 VVVspantX

Page 28: Nonlinear systems ppt

Max Planck Institute Magdeburg 28

Variational analysis MOR

Original system:

)()(

)()(/

tLXty

tBuXfdtdX

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

)()(

)(~~/ 321

tLXty

tuBXXXAXXAXAdtdX

},,{)( 321 VVVspantX

Compute V: },,{)( 321 VVVspanVrange

Reduced model: )()(ˆ

)(~~/ 321

tLVZty

tuBVVZVZVZAVVZVZAVVZAVdtdZ TTTT

VZtX )(

Page 29: Nonlinear systems ppt

Max Planck Institute Magdeburg 29

Example

V for bilinearization MOR:

},{}{ 21 VVcolspanVrange

},,{}{ 191

1 BABAspanVrange

)}1(:,{}{ 1

2 NVAspanVrange

V for Variational analysis MOR:

},{}{

)}6:1(:,{}{

}{

},,{}{

21

0

2

1

12

2

0

2

41

11

VVspanVrange

VAspanVrange

AorthV

BABAspanVrange

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<3; u(t)=1, t>=3

voltage a

t node 1

original exact output response

Bilinearization MOR, q=20, relative error=0.0078

Variational analysis MOR, q=9, relative error=0.0073

Page 30: Nonlinear systems ppt

Max Planck Institute Magdeburg 30

Example

V for [Phillips 2000] method:

V for our method:

},{}{

)]}6:1(:,[{}{

}{

},,{}{

21

0

2

1

12

2

0

2

41

11

VVspanVrange

VAspanVrange

AorthV

BABAspanVrange

},{}{

)}6:1(:,{}{

)(

},,{}{

21

0

22

112

10

2

41

11

VVspanVrange

VspanVrange

VVAAV

BABAspanVrange

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time, u(t)=0, t<0.3; u(t)=1, t>=0.3

voltage a

t node 1

original

our method, q=9, relative error=0.0073

Phillips 2003 method, q=9, relative error=0.0076

Page 31: Nonlinear systems ppt

Max Planck Institute Magdeburg 31

Trajectory piece-wise linear MOR

)(Xf

)(1 Xg

)(2 Xg

)(4 Xg

)(3 Xg

0X1X

2X

)()(

)()(/

tLXty

tBuXfdtdX

Original system:

)()(

,)(~/1

0

tLXty

BuXgwdtdXs

i

ii

1,,1,0),()()( siXXAXfXg iiii

iXk

j

jkjkix

XfaaA

)(),(

Page 32: Nonlinear systems ppt

Max Planck Institute Magdeburg 32

Trajectory piece-wise linear MOR

)()(

)()(/

tLXty

tBuXfdtdX

Original system:

)()(

,)(/1

0

tLXty

BuXgdtdXs

i

i

))((~~

1,,1,0),()(~)()(~)(

iiiiii

iiiiii

XAXfwXAw

siXXAXwXfXwXg

)()(

,]~,[~~/

1

0

tLXty

wuBXAwdtdX T

i

s

i

ii

ii AXXfBBBB )(],,[~

00

How to compute V?

},,{}{

1,,1,0}~

,,~

{}{

11

1

s

i

q

iiii

VVspanVrange

siBABAspanVrange i

Page 33: Nonlinear systems ppt

Max Planck Institute Magdeburg 33

Trajectory piece-wise linear MOR

)()(

)()(/

tLXty

tBuXfdtdX

Original system:

)()(

,]~,[~~/

1

0

tLXty

wuBXAwdtdX T

i

s

i

ii

)()(ˆ

,]~,[~~/

1

0

tLVZty

wuBVVZAVwdtdZ T

i

Ts

i

i

T

i

Trajectory piece-wise linear system:

Reduced model:

Page 34: Nonlinear systems ppt

Max Planck Institute Magdeburg 34

Other nonlinear MOR methods

• Proper orthogonal decomposition (POD).

mainly applied in e.g. chemical, bio engineering etc..

POD is sometimes called Karhunen-Loeve decomposition or principal

component analysis.

• Reduced basis method.

mainly applied in e.g. mechanical engineering etc..

Page 35: Nonlinear systems ppt

Max Planck Institute Magdeburg 35

Conclusions

• Krylov subspace based nonlinear MOR methods include linearization

methods, quadratic methods, bilinearization methods,

variational analysis methods, trajectory piece-wise linear (polynomial)

methods, etc..

• Quadratic, bilinearization, variational analysis are suitable for weakly

nonlinear systems.

• Tranjectory picec-wise linear (polynomial) performs better for strong

nonlinear systems.

• Other methods like POD, reduced basis could be applied to MEMS

simulation.

Page 36: Nonlinear systems ppt

Max Planck Institute Magdeburg 36

References

Quadratic MOR:

[1] Yong Chen, “Model order reduction for nonlinear systems”, MIT master thesis, 1999.

Bilinearization MOR:

[2] J. R. Phillips, “Projection Frameworks for Model Reduction of Weakly Nonlinear

Systems”, Proc. IEEE/ACM DAC, pp. 184-189, 2000.

[3] Z. Bai, and D. Skoogh, “A projection method for model reduction of bilinear dynamical systems”, Linear Algebra Appl., 415, pp. 406—425, 2006.

[4] L. Feng and P. Benner, A Note on Projection Techniques for Model Order Reduction of

Bilinear Systems, AIP Conf. Proc. 936, pp. 208-211, 2007.

Page 37: Nonlinear systems ppt

Max Planck Institute Magdeburg Model Order Reduction of Parametric Systems 37 03.02.2012

Variational analysis MOR:

[5] J. R. Phillips, “Automated Extraction of Nonlinear Circuit Macromodels ”, Proc. of IEEE

Custom Itegrated Circuits Conference, pp. 451-454, 2000.

[6] L. Feng, X. Zeng, Ch. Chiang, D. Zhou, Q, Fang “Direct nonlinear order reduction with

variational analysis”, Proc. of Design, Automation and Test in Europe Conference and

Exhibition, vol. 2, pp. 1316-1321, 2004.

Trajectory piece-wise linear (polynomial) MOR:

[7] M. Rewienski and J. White, “ A Trajectory Piecewise-Linear Approach to Model Order

Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices”, IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 2, pp. 155-170, 2003.

[8] M. Rewienski and J. White, “ Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations ”, Linear Algebra Appl., vol. 415, no. 2-3, pp.

426-454, 2006.

References