nonstationary random vibrations of multiple-mass systems

6
NONSTATIONARY RANDOM MULTIPLE-MASS SYSTEMS L. M. Re znikov VIBRATIONS OF UDC 534.011 The analysis of structures subjected to the action of wind, earthquakes, and explosion waves entails the investigation of both steady-state and transient motions elicited by the sudden application of a stationary distur- bance [4]. Nonstationarity of the load, as is typical, e.g., of seismic effects, explosions, or disturbances acting on transportation vehicles upon contact with diverse roadbed features, is also taken into consideration. In the present article, nonstationary random vibrations of multiple-mass system subjected to kinematic disturbances applied simultaneously or with delay are investigated by the method of monents [3] which is finding ever-in- creasing applications in present-day mechanics problems [1, 2]. ~_1. Nonstationary White Noise Consider the following system of linear differential equations with variable coefficients, written in Cauchy form: (t) = B (t)y (t) + OF (t) ~p (t). (1.1) Here y(t) is a vector of coordinates of order 2n, B(t) is a 2n • square matrix, D is a 2n xm rectangular ma- trix, F(t) is an m x m square matrix of deterministic envelope functions, r is a vector of centered white-noise functions with correlation matrix ~(t)~'(T)= Q6(t-~), Q is an m xm square matrix, 6(.) is the Dirac delta func- tion, the overbar denotes averaging over the ensemble of realizations, and the prime is the transposition sym- bol. Let I(t) = y(t)y'(t) be the matrix of cross-correlation moments of the system coordinates, and W(t, r) a matrix of transient response functions. From (1.1) we deduce the equation i (t) = B (t) I (t) + I (t) B" (t) -4- DF (t) ~P(t) y'(t) + y(t) ~P"(t) F" (t) D'; t y (t) = W (t, ~) y (0) -{- I W (t, "0 OF (~) ~p(~) dr, 0 and for uncorrelated vectors y(0) and ~'(t) we have y (t) ~p" (t) = 0,5 DF (t) Q; ~p(t) y* (t) = O,5 QF" (t) D'. The matrix I(t) can be found by integrating the following matrix differential equation with specified initial con- ditions I(0): "I (t) = B (t) I (t) + I (t) B" (t) + DF (0 QF" (t) D'. (1.2) The vibrations of a system with viscous friction under the action of nonstationary white noise are de- scribed by the equation d [F(t),(t)l+$F(t)r 7, + nx + cx = sl -~ (1.3) in which the matrix of inertial coefficients is reduced to the unit matrix, H and C are n xn square matrices, and S 1 and S are n • m rectangular matrices. Introducing the extended vector of coordinates y'(t) = ix', {~.- StF(t)@(t)}], we transform Eq. (1.3) to the form (1.1), where $1 .=[_; Inasmuch as the values of x(O) and k(O) are ss independent of ~(t), in the integration of Eq. (1.2) the initial conditions take the form Dnepropetrovsk Branch of the Institute of Mechanics, Academy of Sciences of the Ukrainian SSR. Trans- lated from Prikladnaya Mekhanika, Vol. 15, No. 7, pp. 88-94, July, 1979. Original article submitted March 29, 1977. 0038-5298/79/1507- 0633 $07.50 1980 Plenum Publishing Corporation 633

Upload: l-m-reznikov

Post on 10-Jul-2016

216 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Nonstationary random vibrations of multiple-mass systems

NONSTATIONARY RANDOM

MULTIPLE-MASS SYSTEMS

L. M. Re znikov

V I B R A T I O N S O F

UDC 534.011

The analysis of s t ruc tures subjected to the action of wind, earthquakes, and explosion waves entails the investigation of both s teady-s ta te and t ransient motions elicited by the sudden application of a s ta t ionary dis tur- bance [4]. Nonstat ionari ty of the load, as is typical, e.g., of se ismic effects, explosions, or dis turbances acting on t ranspor ta t ion vehicles upon contact with diverse roadbed features , is also taken into consideration. In the present ar t ic le , nonstat ionary random vibrations of mul t ip le-mass sys tem subjected to kinematic disturbances applied simultaneously or with delay are investigated by the method of monents [3] which is finding ever - in - c reas ing applications in present -day mechanics problems [1, 2].

~_1. N o n s t a t i o n a r y W h i t e N o i s e

Consider the following sys tem of l inear differential equations with variable coefficients, writ ten in Cauchy form:

(t) = B (t)y (t) + OF (t) ~p (t). (1.1)

Here y(t) is a vector of coordinates of order 2n, B(t) is a 2n • square matrix, D is a 2n xm rectangular ma- tr ix, F(t) is an m x m square mat r ix of determinis t ic envelope functions, r is a vector of centered white-noise functions with corre la t ion matr ix ~(t)~'(T)= Q6(t-~) , Q is an m xm square matrix, 6(.) is the Dirac delta func- tion, the overbar denotes averaging over the ensemble of real izat ions, and the prime is the t ransposi t ion sym- bol.

Let I(t) = y(t)y'(t) be the matr ix of c r o s s - c o r r e l a t i o n moments of the sys tem coordinates , and W(t, r) a matr ix of t rans ient response functions. F rom (1.1) we deduce the equation

i (t) = B (t) I (t) + I (t) B" (t) -4- DF (t) ~P (t) y'(t) + y(t) ~P" (t) F" (t) D'; t

y (t) = W (t, ~) y (0) -{- I W (t, "0 OF (~) ~p (~) dr, 0

and for uncorre la ted vec tors y(0) and ~'(t) we have

y (t) ~p" (t) = 0,5 DF (t) Q; ~p (t) y* (t) = O,5 QF" (t) D'.

The matr ix I(t) can be found by integrating the following matr ix differential equation with specified initial con- ditions I(0):

"I (t) = B (t) I (t) + I (t) B" (t) + DF (0 QF" (t) D'. (1.2)

The vibrations of a sys tem with viscous frict ion under the action of nonstat ionary white noise are de- scr ibed by the equation

d [ F ( t ) , ( t ) l + $ F ( t ) r 7, + nx + cx = s l -~ (1.3)

in which the mat r ix of inert ial coefficients is reduced to the unit matrix, H and C are n xn square matr ices , and S 1 and S are n • m rectangular mat r ices . Introducing the extended vector of coordinates y'(t) = ix', {~.- StF(t)@(t)}], we t r ans fo rm Eq. (1.3) to the form (1.1), where

$1 .=[_; Inasmuch as the values of x(O) and k(O) are ss independent of ~(t), in the integration of Eq. (1.2) the initial conditions take the fo rm

Dnepropetrovsk Branch of the Institute of Mechanics, Academy of Sciences of the Ukrainian SSR. T rans - lated f rom Prikladnaya Mekhanika, Vol. 15, No. 7, pp. 88-94, July, 1979. Original ar t ic le submitted March 29, 1977.

0038-5298/79/1507- 0633 $07.50 �9 1980 Plenum Publishing Corporat ion 633

Page 2: Nonstationary random vibrations of multiple-mass systems

X

= 1 (.=[.]=,+o..,,,,,o) t "xx" xx" lt=o

F r o m this r e s u l t we in fe r I z z ' (t) = Iyy, (t) + 0.5D F(t) Q F' (t) D' 1 + 0.5D 1F(t) Q F' (t) D' + D 1F(t) Q F' (t) D' 16(0). The ad-

di t ional t e r m s in the m a t r i x Izz,( t) not in Iyy,(t) a re equal to z e r o for xx ' , a r e finite quant i t ies fo r x:x' and ~x' ,

and b e c o m e infinite fo r ~b~', as is e n t i r e l y na tura l .

The m a t r i x equat ion (1.2) is equivalent to a s y s t e m of n(2n + 1) o r d i n a r y d i f fe ren t ia l equat ions and is so lvable on a c o m p u t e r .

Fo r l a rge values o f n, it is adv i sab le to use the e i g e n v e c t o r s of the m a t r i x B, p rov ided that the la t ter is independent of t ime . Le t V be the m a t r i x of e igenvec to r s , and A the d iagonal m a t r i x of e igenva lues kj of B.

* * *

Then B = VAV -1, B' = V-1AV, and f r o m Eq. (1.2) we deduce

(0 = a r (t) + r ( t) i + L (t), (1.4)

where

r (0 = v- ' z (O L (0 = V - ' O F (t) QF" (t) D ' V - ' ;

The a s t e r i s k denotes t r ans i t i on to the Hermi t i an -con juga te ma t r ix .

The m a t r i x equat ion (1.4) r e p r e s e n t s a s y s t e m of uncoupled d i f fe ren t ia l equat ions of the f o r m ~ij(t) = (~i +

Xj)Yij (t) + lij (t).

In the spec ia l p r o b l e m of sudden appl ica t ion of s t a t i ona ry r a n d o m p r o c e s s e s , L(t) = cons t for t > O. T h e r e - fore,

o r

At ~ t * r (t) ---- e iF (0) - - 6] e + G; I (t) ---- V {e At iV-11 (0) V - I - - G| e ~t + G}

I (0 = W (t)[I (0) - - I (oo)]W" (t) + I (oo).

Here G---- - - lO n the s t a t i o n a r y solut ion in I(oo) = VGV, and the m a t r i x of t r a n s i e n t r e s p o n s e funct ions is

W(t) = v e h t v -1.

w N o n s t a t i o n a r y W h i t e N o i s e w i t h D e l a y

Fo r d i s t u rbanc e s of the type S F ( t - r ) $ ( t - r ) , the v ibra t ion equat ion for a m u l t i p l e - m a s s s y s t e m is wr i t t en in the f o r m

"9(0 = B y (t) + DF ( t - - T) , (t - - "O.

where

r ( t -T ) = [qj (t--rj}]~=i is a v e c t o r of c e n t e r e d White-noise packe ts ac t ing with d i f fe ren t de lay t i m e s v j ; and

F ( t - r ) = [ f i j ( t - r j ) ] ~ j =l is a m a t r i x of d e t e r m i n i s t i c funct ions of the de lay a r g u m e n t rj.

As in w we obta in

"I (t) = BI (t) + I (t) B" + DF (t - - ~) ~ (t - - ~) y" (t) + y (t) 4" ( t - - r ) F" (t - - ~) D" ;

t

y (t) , " (t - - T) F" (t - - ~) D" = f W (t - - ta) DF (t - - ~) 0

• ~2 (ix - - *) *" (t - - x) dtxF" (t - - , ) D' .

(2.1)

634

Page 3: Nonstationary random vibrations of multiple-mass systems

We now in t roduce T as the sum of the l a s t two t e r m s in (2.1) and el , fi, di as the i - t h co lumns of the r e - spec t i ve m a t r i c e s E, F, D; Q = [qij]l,,j =l- We wr i t e the c o r r e l a t i o n m a t r i x of the w h i t e - n o i s e funct ions in the

f o r m m m

i = l :=l

Then, mak ing use of the f i l t e r ing p r o p e r t y of the del ta function, we obtain

T -- ~ ~ qu [117 (~I - - ~) Dr, (t - - vj) ti (t - - ~s) D' + 0f l (t - - v:)/~ (t - - T~) D'W (%, - - xt)]. j=l l=l

Thus , the m a t r i x I(t) is ca l cu la t ed by i n t eg ra t i ng the equa t ion I(t) = BI(t) +I( t ) B' +T sub jec t to the s p e c i - f ied in i t ia l condi t ions . Fo r th is ope ra t ion , the va lues of W ( r j - r i ) D fo r v a r i o u s c o m b i n a t i o n s of ind ices i, j a r e d e t e r m i n e d f r o m t h e equa t ion d/dt[W(t)D] = B[W(t)D] + D 6 ( t - r j ) ; W(0)D = 0. F o r the c a s e of z e r o de lay [r = 0, W(0) = 0.5E], the e x p r e s s i o n

T = 0,50 2 ~-~ [fi (t) q~if~ (t) + fj (t) quf~ (t)] 0 ' = OF(t) QF' (t) D' l = l i ~ l

exa c t l y c o r r e s p o n d s to the f r e e t e r m of Eq. (1.2). I f the m a t r i x F ( t - r ) is d iagonal , then

T = ~.~ qufu ( t - - ~) fn (t - - T,) [V, (*j) d~ + dig; (,j)], 1 = 1 i = l

w h e r e the vec to r Yiffj) = W ( r ] - r i ) d i is t he so lu t ion fo r t = r j of the equa t ion ~i(t) = BYi( t )+di /~( t -vi) , Yi(0) = 0. Fo r iden t i ca l funct ions f ( t - r i) with d i f f e ren t de lay t i m e s ri, we have

in Y/$

T = ~ t 2 (t --~j) Tj, r~e r j = Y (~1) d~. - F d y ' (~1); Y (vi)-= ~ Y, (vJ) qu. 1 = 1 / = 1

Final ly , for c o m p l e t e l y c o r r e l a t e d w h i t e - n o i s e funct ions (qi] = 1; i, j = 1, 2, .. . , n), the v e c t o r Y(rj) is the so lu- t ion of the equa t ion Y(t) = BY(t) + D S ( t - r ) sub jec t to z e r o - v a l u e d ini t ia l condi t ions . H e r e 5(t--T) = [6 ( t - -~ i ) ]ml

is the v e c t o r of de layed D i r ac de l ta funct ions .

The g iven e x p r e s s i o n s a r e a l so app l icab le to s y s t e m s with v a r i a b l e p a r a m e t e r s [B = B(t)], and in this c a s e the m a t r i x W(t, tl) depends on the two a r g u m e n t s , but not on t he i r d i f f e r ence .

w N o n s t a t i o n a r y K i n e m a t i c D i s t u r b a n c e D i s t i n c t

f r o m W h i t e N o i s e

Le t a m u l t i p l e - m a s s s y s t e m be ac ted upon by d i s t u r b a n c e s Ui(d/dt)[F(t)~p~ +UF{t)q~~ where U, U 1 a r e nx m r e c t a n g u l a r m a t r i c e s , q~~ is an m - d i m e n s i o n a l v e c t o r of s t a t i o n a r y r a n d o m funct ions with r a t i o n a l - f r a c - t ion s p e c t r a l d e n s i t i e s , and the e l e m e n t s of the m a t r i x ~{t) a r e i n t e g r a b l e p i e c e w i s e - c o n t i n u o u s funct ions . The shap ing f i l t e r t r a n s f o r m i n g the white no ise @(t) into s t a t i o n a r y funct ion q~~ m a y be d e s c r i b e d by the equat ions

~ + Hi+ + C1~ = Sl;~ (t) + S~ (0; ~o (t) = s,~ (0. The d i m e n s i o n s of the m a t r i c e s a r e H1, C 1 (k xk) ; $1, S (k x / ) ; S 2 (m xk) .

The s y s t e m of equa t ions ex tended with r e g a r d for the shap ing f i l t e r is t r a n s f o r m e d to the Cauchy f o r m

~t(t) = B (t) y (t) + D (t) • (t) (3.1)

by se t t ing

t -~ I- x (t) ; D (t) ---- UiF (t) S~SI

Y(O= 1 ,~(t) s~ /' _ ,~ 0 - - s , ~ (t) _ s - - u ~ s i _

635

Page 4: Nonstationary random vibrations of multiple-mass systems

0 0 011 B (t) = - - C - - H [U~'F (t)q-UF (t)l S~. U~F (t) S~ �9 0 0 0 E "

l o o - c l - n l

The matr ix I(t) = y(t}y'(t) is calculated f rom the equation

"I (t) = B (t) l (t) -~ l (t) S ' (t) q- D (t) QD" (t), (3.2)

where the initial values of the corre la t ion moments of the coordinates x(t), A(t) of the mechanical sys tem cor - respond to the given conditions at t = 0, the c r o s s - c o r r e l a t i o n moments of the coordinates of the sys tem and fil ter are equal to zero, and the corre la t ion moments of the finite coordinates r ~(t)-Sl~(t) a re evaluated for the steady state ( t~ ~o). The lat ter moments a re determined f rom the sys tem of equations obtained f rom (3.2) by putting I(oo) = 0 and retaining in the mat r ices I(t), B(t), and D(t) only elements pertaining to the coordi- nates of the shaping fi l ter.

w V i b r a t i o n s o f t h e S y s t e m in M o t i o n a l o n g a P a t h

w i t h R a n d o m I n h o m o g e n e i t i e s

Let us suppose that kinematic disturbances a re crea ted by the path (track or roadbed) without delay and that the dependence of the path traveled on the t ime r(t) and of the velocity on the time v(t) and path v(r) a re known. Let the sys tem move along a path with i r regular i t i es F(r)~~ where Fir) is an m • matr ix of de- terminis t ic functions with piecewise-continuous f i rs t derivatives and ~p~ is a vector of s tat ionary random functions, for which a shaping fi l ter can be synthesized.

The vibration equations for the extended sys tem

x "t- Hx d- Cx = U1F(r) ~~ d- [U1F(r) d- UF(r)] ep ~ (r); (4.1)

d ~ --- S d~ (r) + S~ (r); ,~o (0 = S~,p (r), dr =

correspond to the moment equation

d l B I (r) + I (r) B" (r) + D (r) QD' (r), (r) (r) (4

which can be integrated to find the corre la t ion moments of the displacements and velocities of the sys tem. Here I(r) = y(r )y ' ( r ) ;

] x (0 [ u~F (0 s ,s~ y (r) == [ qD (r) �9 [; D (r) ----- S ,

0 vC0 0 0 - U~(r) - | ~ I - - Z ; - + -v (Ty] ~,

C H U=(r) Ua ) ; B (r) = v (r) v (r)

0 0 0 o o - - c , - - H, d U3 (r) = U1F (r) S=.

To find the corre la t ion moments of the accelera t ions , it is necessa ry to put S 1 = 0 [otherwise ~(t) x'(t-)-- ~]. Differentiating Eq. (4.1) with respec t to t and ca r ry ing out s t ra ightforward t ransformat ions , we ar r ive at (4.2), in which now

y" (r) ----- x ' (t), x ' (t), r (r), ; D ' (r) = [0 , { U f (r) o (r) S~S}', O, S'] '

V I[ dF (r) dv (r) U~fr)= 11L, -ar d~

d2F (r) H dF (r) .b ~ o(r)]S~-- F (r)v(r) S,Ci } -k - ~ S,;

636

Page 5: Nonstationary random vibrations of multiple-mass systems

G 5 10 /5 t, sec

Fig . I

O~/OZ - z I

~ F ' ~ - - " " 5 I0 15 20 t, see

Q6

' \

5 10 15 20 25 t, sec

Fig . 2

0 5 10 15 t, sec

Fig . 3 F ig . 4

4- dv (r) S=] + 2 dP (r) Us(r)=Ul{F(r)[--v(r)S~l-Iz-- ~ _ ~ v ( r ) S ~ } +UF(r) sr

E x a m p l e s

F i g u r e 1 g i v e s the v a r i a n c e s of the d i s p l a c e m e n t s in m 2 ( so l id c u r v e s ) and v e l o c i t i e s in m2sec -1 (dashed c u r v e s ) of po in t s x, y, z of a c a b l e [5] s u b j e c t e d to a n o n s t a t i o n a r y g u s t of wind, which c r e a t e s a load a p p r o x i - m a t e d by the func t ion t e - eta(t) , w h e r e ~0(t) i s whi te n o i s e and e = 0.4 s e e - t

C u r v e s r e p r e s e n t i n g the v a r i a t i o n of the v a r i a n c e s of the d i s p l a c e m e n t s and v e l o c i t i e s (in s e e -2) of both m a s s e s of the t w o - m a s s s y s t e m a n a l y z e d in [5] a r e g iven in F i g s . 2 and 3. In the f i r s t e a s e , the b a s e of the s y s - t e m m o v e s a c c o r d i n g to the law t e - e t c ( t ) , w h e r e r i s a s t a t i o n a r y r a n d o m funct ion with unit v a r i a n c e and s p e c t r a l dens i t yS~(c~ ) = 2 a ( ~ 2 + f 1 2 ) ~ t l - w 2 + 2 a i o ~ + ~ 2 + f 1 2 ~ ' 2 ; E=0.3 s e e - t ; a = 7 s e e - t ; fl = 1 8 s e e -1. T h e d o t - d a s h c u r v e in F ig . 2 r e p r e s e n t s the d e t e r m i n i s t i c enve lope of the d r i v i n g funct ion . The s e c o n d e a s e p e r t a i n s to the p r o c e s s of d a m p i n g of t he s y s t e m a f t e r c e s s a t i o n of the s t e a d y - s t a t e mo t ion of the b a s e , fo r a = 0.1 s e c -1 and /3 = 18 s e e -1. I t i s ev iden t f r o m Fig . 3 tha t the v a r i a n c e s of the c o o r d i n a t e s e x c e e d the s t a t i o n a r y v a l u e s a t the beg inn ing of the t r a n s i e n t r e g i m e (t = 0), a s can a l s o happen in the t r a n s i e n t r e g i m e fo l lowing r e m o v a l of the d e t e r m i n i s t i c d r i v e r .

The t i m e d e p e n d e n c e of the v a r i a n c e a . 2 of the v e l o c i t y of one of the m a s s e s of the s a m e s y s t e m is g iven X "

in F ig . 4 for s e v e r a l v a r i a n t s of the r a n d o m func t ion (p(t) [the enve lope F(t) is g iven in F ig . 2]. The c u r v e s a r e n u m b e r e d a c c o r d i n g to the v a l u e s of the p a r a m e t e r s (in s e c -1) of the e x p r e s s i o n g iven above fo r Sqp(~): 1) a = 7, f l = 1 8 ; 2) ~ = 0 . 1 , fl = 1 8 ; 3) ~ : 0 , / ~ = 1 8 ; 4) c~=0 , f l = 3 ; 5 ) ~ = 0 , f l = 1 . C u r v e 6 i s p lo t t ed for the c a s e tSJco) = 1/2:r (white no i s e ) . The n u m b e r s in p a r e n t h e s e s a l o n g s i d e the c u r v e s i n d i c a t e the s c a l e f a c t o r by which he o r d i n a t e s of the c u r v e s m u s t be m u l t i p l i e d . We note tha t for ~ = 0 the s p e c t r a l d e n s i t y Sq~(c0) = (1 /2 )~ (c0 - f l )+

(1/2)5(w+fl), i . e . , ~p (t) = cos(f i t + 0) i s a h a r m o n i c p r o c e s s wi th p h a s e 0 d i s t r i b u t e d u n i f o r m l y in the i n t e r v a l [0, 21r]. A s i s i n c r e a s e d , the p r o c e s s i0 ( t ) b e c o m e s m o r e wideband , and the s u p e r p o s i t i o n of h a r m o n i e s with d i f f e r e n t f r e q u e n -

c i e s t e n d s to s m o o t h the v a r i a n c e of the s y s t e m r e s p o n s e in c o m p a r i s o n wi th the r e s u l t s for ~ = 0 (fl 31) . F o r fi = 1, the s y s t e m e n t e r s a s i t u a t i o n c l o s e to r e s o n a n c e , so tha t the p e a k s of the v a r i a n c e s a r e c o n s i d e r a b l y h i g h e r than in o t h e r c a s e s .

637

Page 6: Nonstationary random vibrations of multiple-mass systems

4

5 ~ 8 ,'2 ~ sec

Fig. 5

We have invest igated the v ibra t ions of a f l a tca r moving with var iab le veloci ty over a t r a c k with s ta t ionary random i r r egu l a r i t i e s . Ze ro -va lued initial conditions a r e adopted, and the k inemat ic d i s tu rbances a re sup- p re s sed synchronous ly on al l wheel pa i r s . The solid cu rves in Fig. 5 r e p r e s e n t the va r i ances of the a c c e l e r a -

ff2 tions (in m 2 - sec -4) of a wheel pa i r ( ~ ) , of a point of suppor t of the ca r body on the c a r r i a g e (~ . ) , and of the

of the wheelbase (a~.) during motion of a f la tcar over a t r a c k with i r r egu l a r i t i e s for which d2r 2 is midpoint

white noise with a s pec t r a l densi ty ordinate equal to 9.35 �9 10 -6 m 2. sec -3. The dashed curves r e p r e s e n t the s ta t ionary value of the va r i ances of the acce le ra t ion of the same points during motion of the f la tcar with a co r - responding constant veloci ty; the var ia t ion of the veloci ty (m/sec) is r ep re sen t ed by the d o t - dash curve . The s ta t ionary and nonsta t ionary values of the va r i ances of the acce le ra t ions of the wheel pa i r (~.) coincide in the

graph. Calculat ions for t h r e e - and s i x - m a s s hal f -vehic le models have yielded c lose resu l t s , which differ by no more than 6%.

1,

2.

3.

4.

5.

L I T E R A T U R E C I T E D

F. Y. M. Wan, "Nonsta t ionary response of l inear t i m e - v a r y i n g dynamical s y s t e m s to r andom excitat ion," T rans . ASME, Ser . E: Appl. Mech., 95, No. 2, 422-428 (1973). E. G. Goloskokov, S. I. Detistov, and N. E. Isikov, "Response of mechanica l s y s t e m s to nonsta t ionary se i smic d is turbance ," in: Dynamics and Strength of Machines [in Russian] , No. 22, Vishcha Shkola, Kharkov (1975), pp. 3-5. I. E. Kazakov, Sta t i s t ica l Theory of Control Sys tems in State Space [in Russian] , Nauka, Moscow (1975), p. 432. N. A. Nikolaenko, Probabi l i s t i c Methods for the Dynamic Analysis of Mechanical Engineer ing s t r u c t u r e s [in Russian], Mashinos t roenie , Moscow (1967). L. M. Reznikov, "Calculat ion of the va r i ances of the coordinates of m u l t i p l e - m a s s s y s t e m s in t r ans ien t motion under the action of s t a t ionary random d is tu rbances , " Pr ik l . Mekh., 12, No. 5, 109-115 (1976).

6"~8