north seattle community college hvac program instructor – mark t. weber, m.ed. geothermal heat...

52
North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Upload: meagan-morris

Post on 26-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

North Seattle Community College HVAC ProgramInstructor – Mark T. Weber, M.Ed.

Geothermal Heat Pumps

Page 2: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Objectives

• After studying this unit, you should be able to: – Describe an open- and closed-loop

geothermal heat pump system– Explain how water quality affects an open-

loop geothermal heat pump– Describe different ground-loop configurations

for closed loop geothermal heat pump systems

Page 3: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Objectives (cont’d.)

– Explain the advantages and disadvantages of series- and parallel-flow configurations in geothermal heat pump systems

– Explain the different system fluids and heat exchanger materials

– Describe different geothermal well types and water sources for heat pumps

Page 4: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Objectives (cont’d.)

– Explain some of the most common service problems with geothermal heat pump systems

– List and explain the governing formulas that calculate the amount of heat rejected or absorbed by the water-side of a geothermal heat pump

– Describe a direct geothermal heat pump system

Page 5: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Reverse-Cycle Refrigeration

• Geothermal heat pumps use the earth, or water in the earth, as heat sources and heat sinks – Heat pumps use the energy stored in the

earth’s crust for heating • Air-conditioning loads transferred to the earth

– Can be used for space heating and cooling• Uses four major system components, four-way

reversing valve

Page 6: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Heat Pump Classifications

• Open-loop– Water source heat pumps – Water is used as the heat transfer medium – The water is then expelled back to the

earth – Typically use a well, lake, or pond

Page 7: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Heat Pump Classifications (cont’d.)

• Closed-loop– Earth-coupled system – The same heat transfer fluid is reused – The fluid is circulated in buried plastic

pipes – Used primarily where there is not enough

water to support an open-loop system

Page 8: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Open-Loop Systems

• Heat is transferred between a water source and the air from the space – Water is then expelled back to the earth – Heating mode

• Heat is absorbed from the water source and transferred to the air in the space

– Cooling mode • Heat is absorbed from the space and

transferred to the water source

Page 9: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Figure 44–3 An open-loop, water-source heat pump with boiler and cooling tower to maintain the loop temperature

Page 10: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Water Quality

• Water flow must be able to handle required capacities

• The temperature of the water must be within desired range

• Water temperature determines heat transfer capability

• The water must be clean

Page 11: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Water Quality (cont’d.)

• Water and refrigerant piping is configured in a counter-flow design

• The heat exchanger is a coaxial tube-in-tube type

• Heat exchangers are usually made of copper alloys to extend the service life

Page 12: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Closed-Loop Systems

• Utilize ground loops or water loops – Many yards of buried plastic pipe– Loops are completely sealed – Water or antifreeze solution is circulated

through the loops – A low-wattage centrifugal pump is used to

circulate the liquid

Page 13: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Closed-Loop Systems (cont’d.)

Figure 44–7 A ground loop showing a series-vertical configuration in the heating mode

Page 14: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Closed-Loop Systems (cont’d.)

Figure 44–8 A ground loop showing a parallel-vertical configuration in the cooling mode

Page 15: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Closed-Loop Systems (cont’d.)

• The circulating fluid exchanges its heat with the refrigerant loop – Heat exchange takes place within the heat

pump’s cabinet– The heat exchanger will not get fouled

• The air loop is used to distribute conditioned air

Page 16: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Closed-Loop Systems (cont’d.)

• Domestic water can be heated by compressor discharge gas – Requires a separate heat exchanger – Domestic water is circulated by a pump – Uses a counterflow tube-in-tube heat

exchanger – The hot gas is desuperheated while the

water is heated

Page 17: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Ground-Loop Configurations and Flows

• Vertical systems – used when there is a shortage of land

• Horizontal systems – used when land is available without hard rock

• Slinky loop – Designed to reduce trench length– Can be installed in lakes or ponds

Page 18: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Ground-Loop Configurations and Flows (cont’d.)

• Series flow– Only one path for the fluid to flow – Trapped air can be removed easily – Have a high rate of heat transfer per foot of

pipe– Larger diameter plastic pipe is needed – Installation costs are higher – Larger pressure drops

Page 19: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Ground-Loop Configurations and Flows (cont’d.)

• Parallel flow– Use smaller diameter plastic pipe – Installation costs are lower – Air is difficult to remove from the system – Requires less antifreeze than series

systems – Water flow balancing is difficult

Page 20: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Figure 44–17 Different flow paths in ground loops

Page 21: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

System Materials and Heat Exchange Fluids

• Buried pipe usually made of polyethylene or polybutylene

• If there is not threat of freezing, pure water can be used in the ground loops

• Antifreeze solutions – Salts– Glycols – Alcohols

Page 22: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

System Materials and Heat Exchange Fluids (cont’d.)

• System components must be chosen carefully when they are to be used with salts, glycols, or alcohols

• New pre-mixed geothermal loop fluids have great antifreeze, anticorrosive, and heat transfer properties

• R-410A is the leading alternative to replace R-22 in new equipment

Page 23: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Wells and Water Sources

• Drilled wells– Equipped with submersible well water

pumps– Water is pumped to the individual units and

is then discharged– Discharge water can be directed to lakes

or streams – Most wells are grouted to prevent water

contamination and rusting

Page 24: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Wells and Water Sources (cont’d.)

• Return wells– Return the discharged water back to the

ground – Supply and return wells should be located

far enough apart to prevent the supply and return water from mixing

– Supply and return wells should be at least 100ft apart

Page 25: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Figure 44–21 A return well system

Page 26: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Wells and Water Sources (cont’d.)

• Slow closing solenoids in the return line– Prevent water hammering – Keeps heat exchanger and pressure tank

pressure equal– Helps keep minerals dissolved in the water

Page 27: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Wells and Water Sources (cont’d.)

• Dedicated geothermal wells – Closed-loop system – Uses only one well– Supply water comes from top of the well– Return water is introduced at the bottom of

the well – Used when there is not enough water for

other standard well systems

Page 28: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Wells and Water Sources (cont’d.)

• Dry wells – Used for the discharge water in an open-loop

system– Basically large reservoirs filled with gravel

and sand – Water is filtered as it seeps through the

gravel – Water then returns to the underground

aquifer

Page 29: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Wells and Water Sources (cont’d.)

• Pressure tanks – Used on well systems and open-loop

geothermal heat pumps – Pressurized tank for water storage – Prevents the well pump from short cycling – The well pump fills the pressure tank to a

predetermined pressure

Page 30: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Wells and Water Sources (cont’d.)

• Pressure tanks (cont’d.)– When the tank pressure drops to a

predetermined pressure, the pump comes on again to fill the tank

– The tank should be sized so that the pump comes on about once every 10 minutes

Page 31: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Geothermal Wells and Water Sources (cont’d.)

Figure 44–24 The operation of a well system’s pressure tank

Page 32: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Water-to-Water Heat Pumps

• Utilize two coaxial heat exchangers

• Configured as either open-loop or closed-loop system

• Common to see a buffer tank installed on the condenser water side to prevent high head pressure and to function as the water supply tank for the radiant heating system

Page 33: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Water-to-Water Heat Pumps (cont’d.)

Figure 44–26 Heat exchanger configuration on a water-to-water heat pump system

Figure 44–27 Buffer tank location on a water-to-water heat pump system

Page 34: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Troubleshooting

• Similar to the methods that are used for air-to-air heat pumps

• Ground loop pressure and temperature readings are needed

• A temperature probe measures the temperature difference between the inlet and outlet of the water’s heat exchanger

Page 35: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Troubleshooting (cont’d.)

• Pressure gauge – Used to determine the pressure drop

across the heat exchanger– Helps to determine the flow rate through

the heat exchanger

• Troubleshooting the refrigerant and electrical circuits of geothermal heat pumps is similar to other refrigeration systems

Page 36: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Troubleshooting (cont’d.)

• Ground loop (water loop) provides means for a water-to-refrigerant heat exchanger

• Amount of heat transferred = gpm x temp differential x 500

• Temperature differential: temperature difference between the water entering and leaving the heat exchanger

Page 37: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Troubleshooting (cont’d.)

• A conversion chart from pressure drop to gpm may be needed

• Low antifreeze flow rate be caused by: – Defective circulating pump – Air restriction in the piping – Contaminated or kinked pipe in closed-loop– Low water supply pressure in open-loop

Page 38: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Troubleshooting (cont’d.)• Symptoms

– Reduced antifreeze flow (heating)• Low suction pressure, large temperature differential

– Reduced antifreeze flow (cooling)• High head pressure, large temperature differential

– Mineral deposits in heat exchanger (open-loop)• Lower-than-usual temperature differential • High head pressure in cooling mode• Low suction pressure in heating mode

Page 39: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Direct Geothermal Heat Pump Systems

• Direct geothermal systems– Refrigerant lines buried in the ground

• Refrigerant loop acts as the evaporator in the heating mode

– In the cooling mode, conventional air-cooled condenser is used

• No coaxial heat exchangers or centrifugal pumps are used

– Can be used as first-stage heating

Page 40: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Direct Geothermal Heat Pump Systems (cont’d.)

• Installation and refrigerant-loop piping– Installation costs are lower than a stand

alone geothermal system – Existing condensing unit acts as the pump

and heat generator • Copper loops are buried 3 to 4 feet; no buried

joints underground • Loops are connected by brazing to a header

– Existing refrigerant lines are tapped for connections

Page 41: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Direct Geothermal Heat Pump Systems (cont’d.)

• The earth loop (the refrigerant loop), may be three different configurations: Diagonal, Vertical, Horizontal

• Connected to a refrigerant distributor or manifold, which divides the refrigerant flow equally to each loop

• Manifold is connected to the heat pump’s compressor unit

Page 42: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Direct Geothermal Heat Pump Systems (cont’d.)

• Heating mode– Heat is transferred from the warmer earth

into the refrigerant loop

• Cooling mode– Refrigerant temperature entering the

refrigerant (earth) loop is higher than that of the earth and will now be transferred to the earth

Page 43: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Refrigerant Management System

• System consists of two components:– Liquid Flow Control, Active Charge Control

• Three main objectives:– Improve system efficiency, reliability, and

serviceability– Continuously return lubricating oil back to the

compressor without returning liquid refrigerant– Stabilize liquid and vapor refrigerant flow in

long refrigerant

Page 44: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Refrigerant Management System (cont’d.)

• Liquid Flow Control– Regulates the rate of liquid refrigerant

flowing from the condenser to the evaporator by responding directly to the amount of vapor bubbles arriving at the control from the condenser’s outlet

– End result is a larger condenser with lower condensing pressures, lower compression ratios, and higher system efficiencies

Page 45: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Refrigerant Management System (cont’d.)

• Active Charge Control (ACC)– A thermally insulated reservoir replaces the

standard accumulator– Purpose is to constantly deliver refrigerant

vapor and oil to the compressor in the optimum conditions and quantities

– Determines when the system is properly charged without using gauges, wet and dry bulb readings, or charging charts

Page 46: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Summary

• Energy is transferred daily to and from the earth by solar radiation, rainfall, and wind

• Geothermal heat pumps use the earth, or water in the earth, for their heat source and heat sink

Page 47: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Summary (cont’d.)

• Because the earth’s underground temperature in the summer is cooler than the outside air, heat loads from summer air conditioning can be rejected underground more efficiently

• Geothermal heat pumps are very similar to air source heat pumps in that they both use reverse-cycle refrigeration

Page 48: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Summary (cont’d.)

• Geothermal heat pumps are classified as either open- or closed-loop systems

• Water quality is one of the most important considerations in the design of an open-loop geothermal heat pump system

• Open-loop systems usually use well water as their heat source and heat sink

Page 49: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Summary (cont’d.)• Heat exchanger fouling can be a

problem if water quality is poor

• Water sources for open-loop systems may be an existing well or a new well

• Pressure tanks are used in conjunction with wells in open-loop systems

• Closed-loop heat pump systems recirculate the same antifreeze fluid

Page 50: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Summary (cont’d.)

• Closed-loop or earth-coupled systems are used where there is insufficient water quality or quantity

• Loops can have series or parallel fluid flows

• The buried piping or underground heat exchanger is usually either polyethylene or polybutylene pipe

Page 51: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Summary (cont’d.)

• The antifreeze solutions inside the buried piping are used to prevent freezing of the heat pump heat exchanger and for heat transfer purposes

• Water-to-water heat pump systems often use a buffer tank to store the heated water until it is needed by the heating circuits

Page 52: North Seattle Community College HVAC Program Instructor – Mark T. Weber, M.Ed. Geothermal Heat Pumps

Summary (cont’d.)

• Waterless heat pump systems utilize buried refrigerant lines instead of buried water lines

• Waterless heat pump systems transfer heat into and out of the refrigerant by using the ground as the heat source in the winter and as the heat sink in the summer