norway relativistic hydrodynamics and freeze-out lászló csernai (bergen computational physics...

47
Norway

Upload: clara-weaver

Post on 13-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Norway

Page 2: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Relativistic Relativistic Hydrodynamics and Hydrodynamics and

Freeze-outFreeze-out

Relativistic Relativistic Hydrodynamics and Hydrodynamics and

Freeze-outFreeze-out

László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Page 3: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

?

Page 4: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Relativistic Fluid DynamicsRelativistic Fluid Dynamics

Eg.: from kinetic theory. BTE for the evolution of phase-space distribution:

Then using microscopic conservation laws in the collision integral C:

These conservation laws are valid for any, eq. or non-eq. distribution, f(x,p). These cannot be solved, more info is needed!

Boltzmann H-theorem: (i) for arbitrary f, the entropy increases, (ii) for stationary, eq. solution the entropy is maximal,

P = P (e,n) Solvable for local equilibrium!

EoSEoS

Page 5: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Relativistic Fluid DynamicsRelativistic Fluid DynamicsFor any EoS, P=P(e,n), and any energy-momentum tensor in LE(!):

Not only for high v!

Page 6: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Local Equilibration, Fluids

Fluid components, Friction

-------------- One fluid >>> E O E O SS -------------- One fluid >>> E O E O SS

Hadronization, chemical FO, kinetic FO

Freeze Out >>> Detectors

Stages of a CollisionStages of a CollisionStages of a CollisionStages of a Collision

Collective flow reveals the EoS ifwe have dominantly one fluid with local equilibrium in a substantial part of the space-time domain of the collision !!!

Page 7: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

QGP EoS QGP EoS One fluidOne fluid

HadronizatiHadronizationon Chemical Freeze Chemical Freeze

OutOut Kinetic Freeze OutKinetic Freeze Out

Initi

al st

ate

time

Heavy Colliding SystemHeavy Colliding SystemHeavy Colliding SystemHeavy Colliding System

IdealizatioIdealizationsnsFO LayerFO Layer

FO HSFO HS

Page 8: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Small SystemSmall SystemSmall SystemSmall System

timeInitial state, Pre-equilibrium, cascade, Multi

Component Fluidno unique EoS Hadronization & Freeze Out

(One-Fluid)

FDFD

Page 9: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Multi Module ModelingMulti Module ModelingMulti Module ModelingMulti Module Modeling

• A: Initial state - Fitted to measured data (?)• B: Initial state - Pre-equilibrium: Parton

Cascade; Coherent Yang-Mills [Magas]• Local Equilibrium Hydro, EoS• Final Freeze-out: Kinetic models, measurables.

- If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle)

Landau (1953), Milekhin (1958), Cooper & Frye (1974)

Page 10: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Fire streak picture - Only in 3 dimensions!Fire streak picture - Only in 3 dimensions!

Myers, Gosset, Kapusta, Westfall

Page 11: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

String rope --- Flux tube --- Coherent YM field

Page 12: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Initial state

3rd flow component

Page 13: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

3-dim Hydro for RHIC Energies

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=0.0 fm/c, Tmax= 420 MeV, emax= 20.0 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

EoS: p= e/3 - 4B/3, B = 397 MeV/fm3 8.7 x 4.4 fm

Page 14: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=2.3 fm/c, Tmax= 420 MeV, emax= 20.0 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

11.6 x 4.6 fm

Page 15: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=4.6 fm/c, Tmax= 419 MeV, emax= 19.9 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

14.5 x 4.9 fm

Page 16: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=6.9 fm/c, Tmax= 418 MeV, emax= 19.7 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

17.4 x 5.5 fm

Page 17: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=9.1 fm/c, Tmax= 417 MeV, emax= 19.6 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

20.3 x 5.8 fm

Page 18: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=11.4 fm/c, Tmax= 416 MeV, emax= 19.5 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

23.2 x 6.7 fm

Page 19: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=13.7 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

26.1 x 7.3 fm

Page 20: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=16.0 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

31.9 x 8.1 fm

Page 21: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=18.2 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

34.8 x 8.7 fm

Page 22: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Global Flow patterns:Directed

Transverse flow

Elliptic flow

3rd flow component(anti - flow)

Squeeze out

Page 23: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)
Page 24: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

3rd flow component

Hydro

[Csernai, HIPAGS’93]

[Phys.Lett.B458(99)454]Csernai & Röhrich

Page 25: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

“Wiggle”, Pb+Pb, Elab=40 and 158GeV [NA49]

A. Wetzler

Preliminary

158 GeV/A

The “wiggle” is there!

v1 < 0

Page 26: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Flow is a diagnostic toolFlow is a diagnostic toolFlow is a diagnostic toolFlow is a diagnostic tool

Impact Impact par.par.

Transparency – Transparency – string tensionstring tension

EquilibrationEquilibrationtimetime

Consequence:Consequence:vv11(y), v(y), v22(y), …(y), …

Page 27: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

• Kinetic freeze out: Strongly interacting matter becomes dilute and cold, the momentum distr. of particles in the absence of collisions freezes out and the particles propagate toward the detectors.

• Sometimes sequential FO is assumed: Chemical + Kinetic FO

• Now: Rapid, simultaneous FO and hadronization from super-cooled QGP in a thin layer (2-3 fm). The process of gradual FO is followed by kinetic description.

What is Freeze Out (FO) ???What is Freeze Out (FO) ???What is Freeze Out (FO) ???What is Freeze Out (FO) ???

Page 28: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

(A)- identification of the Freeze Out Hyper-Surface (FOHS) [B. Schlei]

(B)- idealized FO over the FOHS

(C)- FO over a finite LAYER & described by kinetic theory, by the MBTE.

Page 29: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

(A) – Movies:

B=0, T-fo = 139MeV

B=0, T-fo = 180MeV

B=0.4, T-fo = 139MeV

B=0.4, T-fo = 180MeV

[Bernd Schlei, Los Alamos, [Bernd Schlei, Los Alamos, LA-UR-03-3410]

Page 30: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

• (B) - Freeze out over FOHS- post FO distribution?= 1st.: n, T, u, cons. Laws != 2nd.: non eq. f(x,p) !!! -> (C)

• (Ci) Simple kinetic model• (Cii) Covariant, kinetic F.O. description• (Ciii) Freeze out form transport equation

• Note: ABC together is too involved!B & C can be done separately -> f(x,p)

Page 31: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

(A) Freeze out as a (A) Freeze out as a discontinuitydiscontinuity

• Theory of discontinuities in relativistic flow (only space-like), [Taub, 1948]

• Generalization for both time-like and space-like discontinuities, [1987]

• 1st problem: We must use the correct parameters of the matter in the Post FO distribution

Matching conditions:

Discontinuity = where the properties of matter change suddenly

normal vector

=> n, T, u=> n, T, u

Page 32: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

(A) Modified Cooper-Frye (A) Modified Cooper-Frye FormulaFormula

• The number of particles crossing,

• The kinetic definition of the particle four-flow

• Cooper-Frye formula, Cooper and Frye, 1975

• 2nd : Problem of negative contributions, on the space-like part of the hyper-surface, Sinyukov, et al.

• Sharp cut-off proposed, Bugaev, 1996• Solved, kinetic model, Anderlik et al. 1999,

Magas et al. 1999

Not known form hydro !

Page 33: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Kinetic freeze out models,Kinetic freeze out models,(a) just FO(a) just FO

Assumptions:• only short range interactions• one dimensional geometry• assume stationary flow, no explicit time

dependence

• Simple kinetic model

• Kinetic model (b) with re-scattering, re-thermalization:

Page 34: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Reference FramesReference Frames

• Pre FO – Local Rest frame of the gas, where the matter is at rest = Rest Frame of the Gas (RFG), moving with the peak of the Pre-FO distribution

• Post FO – Rest Frame of the Front, (RFF) attached to the FO front

p’x

Page 35: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

(a)(a) Reproduced the Reproduced the cut Juttnercut Juttner distribution as the post FO distribution as the post FO distribution, --- but: the other half of distribution, --- but: the other half of the distribution remained there, the distribution remained there, interacting for everinteracting for ever

(b)(b) Gradually all matter froze out, no Gradually all matter froze out, no negative contribution, result negative contribution, result approximated by CJ distribution --- approximated by CJ distribution --- but: it took infinite time – unrealistic. but: it took infinite time – unrealistic.

Bondorf et al. [NP A296 (‘78) 320.]: Sph. Expansion -> Bondorf et al. [NP A296 (‘78) 320.]: Sph. Expansion -> increasing divergence & adiabatic cooling -> descreasing increasing divergence & adiabatic cooling -> descreasing random thermal flux <vrandom thermal flux <vrel FO without any collision beyond some radius !!!

22ndnd problem is not finished yet !!! problem is not finished yet !!!22ndnd problem is not finished yet !!! problem is not finished yet !!!

Page 36: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Feasibility: a realistic hydro model + a realistic FOHS modelwith Cooper Fry type FO is theonly manageable model (B).

However, a realistic post FO distribution should be used (!), and this should be investigated (C).

Page 37: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

The Boltzmann Transport Equation and Freeze OutThe Boltzmann Transport Equation and Freeze Out

Freeze out is :

• Strongly directed process: • Delocalized:• The m.f.p. - reaches infinity • Finite characteristic length

Modified Boltzmann Transport Equation for Freeze Out

description

The change is not negligible in the FO direction

Page 38: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

The Boltzmann Transport EquationThe Boltzmann Transport Equation

A nonlinear equation for dilute gasses, with the following assumptions:

1. Only binary collisions2. The molecular chaos – no correlations: gives the

number of collisions at the respective point

3. A smoothly varying function compared to the m.f.p.

1

2

3

4

Gain term Loss term

Page 39: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

The Modified Boltzmann Transport EquationThe Modified Boltzmann Transport Equation

• Introducing, and the FO probability –

which feeds the free component

FO probablity not included !!!

re-thermalization term

free component

interacting component

MBTE ->MBTE -> MBTE ->MBTE ->

Page 40: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

The invariant “ Escape” probability in finite layer

The escape form the int to free component

• Not to collide, depends on remaining distance

•If the particle momentum is not normal to the surface, the spatial distance increases

Early models:

1

Page 41: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

The invariant “ Escape” probabilityThe invariant “ Escape” probability

Escape probability factors for different points on FO hypersurface, in the RFG. Momentum values are in units of [mc]

A B C

D E F

t’

x’

[RFG][RFG]

Page 42: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Results – the cooling and retracting of the interacting matterResults – the cooling and retracting of the interacting matter

Space-Like FO Time-Like FO

cooling

retracting

Cut-off factor flow velocity No Cut-off

[RFF] [RFF]

Page 43: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Results – the momentum distributionResults – the momentum distribution

Space-Like FO Time-Like FO

asymmetric elongated in FO direction

curved due to the FO process

[RFF] [RFF]

Page 44: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Results – the contour lines of the FO distribution, f(p)Results – the contour lines of the FO distribution, f(p)

Space-Like FO Time-Like FO

jump in [RFF]

With different initial flow velocities

[RFF] [RFF]

Page 45: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Time-like FO

Page 46: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

• Post FO distributions are non – thermal !• Conservation laws must be satisfied !• Post FO distributions must be calculated

from transport theory, or can be approximated with adequate ansatz (Cancelling Juttner distribution)

• Note(!) BTE is not applicable, molecular chaos, and smoothness of the phase space distribution are not applicable for the FO process. Adequate MD models or MBTE models should be applied.

Conclusions

Posters: 2/39 Bravina 2/56 Zschocke 4/125 Zabrodin 5/150 Manninen10/270 Magas 10/272 Molnar, E.

Page 47: Norway Relativistic Hydrodynamics and Freeze-out László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)