notation index - cambridge university...
Embed Size (px)
TRANSCRIPT
-
Notation index
+∞, 490+ϕ, 496+p, 490−A, xxA + B, xxA − B, xxA | E, xxiiA ÷ B, 146A ⊕ B, xxA ∨ B, 33A•, 329C∗, 35K◦, 32K�, 507Kρ, 209[L, L′], 240[·, ·], xix#, 459•⋃, 336‖ · ‖K , 53≈S , 347≈T , 347f̄ , xxii·p, 490η � η′, 251〈 f 〉, 611〈·, ·〉, xixν ∗ μ, 460⊕M , 495IIu, 116⊂, xx+̂p, 512
#̂, 513F̂, 75+̃, 507#̃, 509{ f < α}, 19{ f = α}, 19
{ f ≤ α}, 19f ∗ μ, 177f � g, 517f ∗, 37f •, 41f ◦, 5231A, xxIIx, 114Ix, 114
A(n, k), xxiiAρ(K, β), 121A, 42a(K, ·), 59aff , xix
B(K), 421B(z, ρ), xxiBn, xxiB0(z, ρ), xxiB(X), 209B(K), 590bi j, 116bd, xx
C+(Sn−1), 552C(Sn−1), 177C∞, 113Ck, 113Ck+, 115Cα(Rn), 522Cm(K, ·), 214Cvx(Rn), 40Cvx0(Rn), 41CK, 547C(X), 69Cn, 60CCn, 42CCno, 33C n, 35c(K), 314c(K, β, u), 234
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
716 Notation index
cρ(K, η, x), 231cl, xxconv, 2χ, 214, 230
D(K), xxi, 49D(·, . . . , ·), 124, 322Dk(x1, . . . , xk), 303DK, 140, 529Du f , 610d(A, x), xxid(K, K′), 250d(K, ·), 26dBM, 589diam, xxidim, 7dom, 20δ, 61δQ, 71δS , 71δD, 71δp, 71δw, 71δ̃, 507Δ, 119Δ(K), 49ΔS , 119∂, 29
EpK, 592, 593E(K), 75EL(K), 587EJ(K), 587Ei(K), 75Ep( f ), 610ei j, 116epi, 20exp, 18extr, 17ext, 17expr , 76extr , 76ηr , 79
F(K, ·), 45F (K), 74F n, 545F nc , 546F n(o), 545Fi(K), 74f (K, ·), 545Φ̃i(K), 515Φi(K), 515Φ
r,sk , 317
Φm(K, ·), 216G(K), 549G(n, k), xxii
Gδ, 132Gp(K), 555Gn, xxiiGL(n), xxiig(K, ·), 53gK , 528ΓφK, 568ΓpK, 567Γ−pK, 575γ(F, P), 109γn, 602γ(F, F′, P, P′), 240
H(K, ·), 45H−(K, ·), 45H+u,α, xxH−u,α, xxH j, 115Hu,α, xxHess, 28Hk, xxih(K, ·), 44h∗(K, ·), 262I∞A , xx, 21I+p , 582Ip, 581IK, 580i(K, q, u), 234int, xx
J , 42j(K, q, x), 231
Ks, 546Ku, 302K f , 51K[δ], 560Kns,1, 164Kns , 164K(A), 8Kn, 8Kn(r,R), 91Knc , 546Knn , 8Kn(o), 32Kn(os), 463Knos, 495Kno , 32KC , 440Kn(A), 8Knos, 290ki(x, u), 129κn, xxiκi(x, t), 113κs(x, t), 113
L(F), 240LK , 605
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Notation index 717
L2(Sn−1), 623LC(Rn), 517L, 40L(K), 590lin , xix (K), 602ΛK, 546Λm(K, ·), 216λF , 240
Mk(K), 265M(Sn−1), 177M(Sn−1, p), 177MK, 566MVal, 364MValm, 364M n, 615m(L ⊂ K), 418μ, xxii, 237μρ(K, ·), 209μk , xxii, 237
N(K, F), 83N(K, x), 81N(P), 348Nor K, 127, 209Nor , 59ν, xxii, 237νk , xxii, 237∇, 26, 47o, xixΩ(K), 544, 545Ωφ, 556Ωp(K1, . . . , Kn), 559
Ω̃−p(K), 559Ωp(K), 554ωn, xxi
P(K, ·), 81projE , xxiiPK, 581P(A), 348Pn, 8, 104Pnn, 8, 104p̃, 325p(A, x), 9pr(K), 314pos, 2ΠK, 302, 569Π〈 f 〉, 611Π◦K, 570ΠφK, 575ΠpK, 575Ψr , 316Ψm(K, ·), 216Q, 316
Qn, 523qr(K), 314
R(A, x), 9RpK, 574Rn, xixR̄, 19rec, 16regn, 87relbd, xxrelint, xxρ(A), 143ρi(x, t), 113ρs(x, t), 113
S (K, ·), 81S (·, . . . , ·, ·), 279, 280S m(K, ·), 214SH K, 536SK , 465SO(n), xxiiSL(n), xxiiSV , 348S(K), 163Snc , 546Sno, 57, 507Sn−1, xxiS m, 623s(K), 50s j, 117s(K), 546Σ, 209σ, xxi, 469σ(K, β), 88
T (K, M), 262T (K, u), 85T (u1, . . . , un−1), 304TxK, 112Θm(K, η), 212τ, xixτ(K, ω), 88
U(K), 91U(S ), 330U•(S ), 332Ui j, 401U(S ), 332u(A, x), 9uK , 83, 88, 113
V(·, . . . , ·), 277, 280V1(K, L), 286VK (ω), 501V j(K), 208, 214Vp(K, L), 492V(i), 406V(i)(K, L), 381Vi j, 421
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
718 Notation index
VK , 495Ṽ , 508Ṽi, 508Val∞, 366Val∞m , 366Val, 353Val+m, 353Val−m, 353ValG , 367Vn, 547Vnc , 547�(k), 303vert, 105vr(K), 597
Wi(K), 208, 213Wi(·, ·), 427Wx, 113
W̆i, 514Wu, 116Ŵi(K), 514W̃n−i, 508w(K), 50, 297w(K, ·), 49xK , 88Ξ
(k)m (K, ·), 227
ξK , 115
Υ, 48
Zφ(Λ), 609Z+p (Λ), 609Z ns , 341z(·, . . . , ·), 313zr+1(K), 312
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Author index
Abardia, J., 367, 580, 622Aczél, J., 349Ader, O. B., 589Adiprasito, K., 137Ahrens, I., 152Alberti, G., 89Aleksandrov, A. D., xi, xvi, 31, 58, 60, 89, 90,
112, 127, 131, 202, 226, 274, 286, 287, 295,309, 327, 385, 398, 408, 409, 417, 438, 439,454, 461, 464, 472, 477, 486–488, 498, 505,628
Alesker, S., 60, 201, 206, 295, 361, 363, 365–368,398, 578
Alexander, R., 205Alexandrov, V., 462Alfsen, E. M., 18Allendoerfer, C. B., 223Alonso-Gutiérrez, D., 381, 578, 606, 609,
614Alvino, A., 390Ambartzumian, R. V., 204Ambrosio, L., 89Ambrus, G., 541Anderson, R. D., 89Andrews, B., 504, 506, 558Anikonov, Yu. E., 628Arnold, R., 71, 320, 428, 439, 487Arocha, J. J., 8Arrow, K. J., 150, 151Artstein, Z., 150, 152, 154Artstein-Avidan, S., 40, 42, 43, 182, 518, 524,
525Ash, R. B., 209Asplund, E., 32, 76Assouad, P., 205Atkinson, K., 623Auneau-Cognacq, J., 265, 321Averkov, G., 529Avriel, M., 520
Baddeley, A. J., 236Baebler, T., 390Bair, J., 15, 19, 153, 154, 171Balashov, M. V., 167Ball, K., 374, 380, 523, 532, 573, 577, 588, 589,
597, 599, 600, 602, 604Bambah, R. P., 565Banchoff, T. F., 235Bandle, C., 391Bandt, Ch., 72, 73Bangert, V., 31, 274Bantegnie, R., 72Bapat, R. B., 328Baraki, G., 73Bárány, I., 8, 104, 112, 137, 462, 558, 562Barthe, F., 377, 381, 525, 565, 598–600, 602Barthel, W., 390, 391, 580Barvinok, A., xv, 594Bastero, J., 380, 594, 606, 614Batson, R. G., 19Bauer, C., 170, 439, 454, 472Bauer, H., 18, 209Baum, D., 59Bayen, T., 201Bazylevych, L. E., 70Beer, G. A., 69Behrend, F., 589, 593, 596, 600, 603Bensimon, D., 78Benson, R. V., xv, 393Benyamini, Y., 391Berck, G., 581Berg, Ch., 181, 186, 470, 628Berger, M., xvBernig, A., 228, 236, 261, 366–368, 578, 580, 622Bernštein, D. N., 398Bernstein, J., 361, 367Bernués, J., 380, 606, 614Besicovitch, A. S., 89, 103Betke, U., 202, 204, 311, 386Bettinger, W., 390
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
720 Author index
Bianchi, G., 31, 529, 532, 540, 541Bianchini, C., 532, 543Biehl, Th., 540Bisztriczky, T., xvii, 541, 569Björck, G., 77Blackwell, D., 205Blagojević, P. V. M., 8Blaschke, W., xii, xv, 69, 70, 126, 164, 181,
201–204, 261, 308, 320, 361, 378, 388, 463,472, 473, 538, 540, 541, 543, 545, 546, 548,550, 560, 591, 595, 628
Blind, R., 487Blumenthal, L. M., 72Bobkov, S. G., 520, 522, 523, 525, 614Böhm, J., 338Böröczky, K., 462Böröczky, K. J., 34, 380, 389, 393, 445, 495, 504,
506, 525, 534, 541, 558, 565, 566, 569, 576,605
Bokowski, J., 264, 310, 389Bol, G., 149, 151, 388, 389, 417, 432, 444, 628Bolker, E. D., 201–205Boltyanski, V., xvi, 201, 418Boman, J., 126Bonnesen, T., xi, xv, xvi, 58, 60, 81, 90, 91, 155,
188, 286, 287, 308, 320, 370, 378, 386, 388,393, 461
Bonnice, W., 15Borell, C., 380, 517, 520Borowska, D., 167Borwein, J. M., xvi, 31, 144, 151Bose, R. C., 319, 320Botts, T., 9Bourbaki, N., 15, 18, 79, 90Bourgain, J., 181, 203, 204, 378, 387, 486, 540,
541, 565, 585, 605, 628Boček, L., 393Bracho, J., 8Brandolini, L., xviiBrannen, N. S., 389, 578Brascamp, H. J., 380Brehm, U., 236Brickell, F., 545Bröcker, L., 236, 367Brøndsted, A., xvi, 19, 90, 112Bronshtein, E. M., 72, 73, 79, 172, 463Brooks, J. N., 168Brown, A. L., 78Brunn, H., xi, 377, 535Buchta, C., 562Budach, L., 236Bunt, L. N. H., 10Burago, Ju. D., 10, 15, 274, 379, 390, 398Burchard, A., 540Burckhardt, J. J., 202
Burton, G. R., 80, 168, 202Busemann, H., xvi, 31, 125, 127, 131, 274, 327,
390, 391, 398, 454, 462, 487, 515, 536, 539,580, 583
Caffarelli, L. A., 380, 462Campi, S., 379, 463, 473, 540, 541, 543, 566, 568,
569, 608, 628Cannarsa, P., 89Carathéodory, C., 3, 8, 540Carlen, E. A., 605Cascos, I., 206Cassels, J. W. S., 150Chai, Y. D., 516Chakerian, G. D., 201, 203, 393, 417, 454, 463,
477, 530, 532, 534, 586Chang, S.–Y. A., 399Chavel, I., 390, 391Cheeger, J., 236Chen, B., 295, 339, 361Chen, F., 569Chen, L.–Y., 393Chen, W., 506, 558Cheng, S.–Y., 462Chern, S. S., 125, 261, 309, 454Chernoff, P. R., 628Cheung, W.–S., 393, 418, 512, 559, 578, 579, 583,
606Choquet, G., 18, 79, 202, 205Chou, K.–S., 462, 500, 506Cianchi, A., 613Cieślak, W., 628Clack, R., 606Coifman, R. R., 623Colesanti, A., 31, 89, 228, 273, 379, 380, 463,
519, 520, 522, 523, 525, 532, 540, 541, 543Collier, J. B., 79Colzani, L., xviiCordero-Erausquin, D., 605Corson, H. H., 79Coupier, D., 541Coxeter, H. S. M., 202Cressie, N., 154Cuoghi, P., 380Curtis, D. W., 70Czipszer, J., 417
D’Agata, A., 151Dalla, L., 79, 80, 541Danzer, L., 8, 15, 587Dar, S., 379, 398Das Gupta, S., 380Davis, C., 15Davy, P. J., 321Davydov, Yu., 541de Rham, G., 137Debrunner, H., 310
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Author index 721
Debs, G., 78Deicke, A., 545, 546Delgado, J. A., 168Dierolf, P., 69Dinghas, A., 71, 152, 310, 378, 379, 388, 390, 417
418, 444, 628Diskant, V. I., 378, 384, 387, 389, 391, 409, 417,
445, 478, 482, 484, 486, 487Dolzmann, G., 552Dor, L. E., 205Dou, J., 506Drešević, M., 69Duan, X., 516Dubins, L. E., 19Dubois, C., 154Dubuc, S., 380Dudley, R., 32, 72Dunkl, C. F., 179Duporcq, E., 320Dvoretzky, A., 565Dyer, M., 289, 312Dziechcińska-Halamoda, Z., 155
Eckhoff, J., 8, 339Edelstein, M., 79, 154Efimow, N. W., 439Eggleston, H. G., xv, 79, 80, 388, 532, 540Egorychev, G. P., 327Eifler, L. Q., 78Ekeland, I., 150Epelman, M. S., 90Evans, L. C., 31Ewald, G., 60, 91, 103, 104, 152, 170, 429
Fabila, R., 8Falconer, K. J., 628Faro Rivas, I., 188Fáry, I., 287, 417, 462, 543, 561Favard, J., 89, 90, 389, 393, 409, 410, 431, 438,
439, 444, 472Federer, H., 31, 89, 224, 226, 236, 261, 262, 272,
273, 390Fedotov, V. P., 79, 90, 310, 477, 497Fejes Tóth, L., 389, 392, 541, 558Feller, W., 31, 127, 131Fenchel, W., xi, xv, xvi, 58, 60, 81, 90, 91, 155,
188, 223, 286, 287, 308, 320, 370, 378, 386,398, 409, 439, 454, 461
Feng, Y., 579Ferone, V., 390Ferrari, F., 410Ferrers, N. M., 320Fesmire, S., 154Figalli, A., 377, 383, 392Figiel, T., 203, 391Fillastre, F., 527Filliman, P., 202, 439
Fillmore, J. R., 473, 628Firey, W. J., 59, 60, 80, 126, 167, 168, 188, 203,
263, 273, 288, 310, 387, 393, 463, 470, 473,477, 490, 497, 504, 510, 512, 513
Fish, A., 583Fisher, J. C., 628Flaherty, F. J., 236Flanders, H., 319, 389Flatto, L., 101Fleury, B., 569Florentin, D., 43Florian, A., 71, 392Focke, J., 201, 628Fogel, E., 154Folkman, J., 141, 150Fourneau, R., 15, 154, 169, 533Fradelizi, M., 409, 525, 543, 564, 565Fragalà, I., 519, 520, 522, 523Franchi, B., 410Franz, G., 580Freiman, G. A., 445Fresen, D., 563Fu, J. H. G., 31, 228, 236, 261, 262, 366–368Fuglede, B., 19, 388, 391, 628Fujiwara, M., 90, 201, 628Fukuda, K., 154Fusco, N., 391, 392, 628
Gage, M. E., 388, 504, 506Gale, D., 59, 167, 168Gallego, E., 367, 410, 527Gallivan, S., 79Gao, F., 228, 410Gårding, L., 323, 327Gardner, R. J., xvi, 79, 152, 290, 369, 374, 377,
379, 411, 418, 454, 463, 491, 495–497, 510,511, 516, 532, 535, 539, 572, 574, 576, 582,584, 586, 610
Gariepy, R. F., 31Gates, J., 364Geivaerts, M., 152, 167, 168Gensel, B., 201Geppert, H., 444, 526, 628Gericke, H., 319, 410, 628Ghandehari, M., 393Giannopoulos, A., 409, 541, 565, 569, 594, 603,
604, 606Giné, E., 73, 154Glasauer, S., 104, 225, 227, 262Gluck, H., 462Godbersen, C., 532, 533Godet-Thobie, Ch., 70Görtler, H., 289, 628Goikhman, D. M., 463Goldberg, M., 201
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
722 Author index
Goodey, P. R., 168, 201, 202, 204, 206, 207, 227,262, 265, 273, 287, 289, 308, 311, 438, 463,473, 477, 478, 529, 582, 584, 628
Goodman, A. W., 320Goodman, J. E., xviiGordon, Y., 203, 525, 565, 566, 594Góźdź, S., 628Gray, A., 223Green, J. W., 60, 603Green, M., 225Grinberg, E. L., 188, 471, 515, 582, 586Gritzmann, P., 154, 202, 289, 312, 408, 409,
462Groemer, H., xvi, 132, 201, 264, 288, 292, 293,
332, 334, 338–340, 376–378, 383, 386, 387,391, 392, 421, 438, 539, 623, 628
Gromov, M., 52, 60, 378, 398, 612Gronchi, P., 379, 463, 473, 540, 541, 543, 566,
568, 569, 608Gross, W., 538, 540Gruber, P. M., xv, xvi, 31, 42, 71–73, 112,
136–138, 167, 411, 418, 533, 536, 540, 558,588, 594
Grünbaum, B., xvi, 8, 15, 73, 79, 80, 112, 155,169, 181, 186, 463, 477, 532
Grynkiewicz, D., 445Grzaślewicz, R., 171Grzybowski, J., 151, 167, 168, 170, 171, 472Guédon, O., 569Guan, B., 478Guan, P., 399, 478Guggenheimer, H., xvi, 487, 564Guilfoyle, B., 201Guleryuz, O. G., 595Guo, Q., 155Gurvits, L., 327Gustin, W., 600
Haberl, C., 504, 557, 568, 575, 582, 585, 613,620, 621
Hadamard, J., 125Hadwiger, H., xii, xv, 69, 151, 173, 181, 182, 202,
223, 235, 239, 261, 264, 310, 319, 320, 338,339, 341, 346–348, 360–363, 378, 379, 380,387–390, 392, 393, 398, 417, 440, 444, 514,540
Hahn, F. H., 150, 151Hahn, M. G., 73, 154Halmos, P. R., 205Halperin, D., 154Hammer, P. C., 153, 188Han, W., 623Hann, K., 125, 225Haralick, R. M., 151Hartenstine, D., 512Hartman, P., 126
Hartzoulaki, M., 409, 541Hausdorff, F., 68, 69Hayashi, T., 320, 628He, B., 506, 559, 576, 583, 587, 606Heil, E., 69, 201, 298, 310, 389, 390, 393, 565Heine, R., 399Helly, E., 4, 8Henk, M., 224, 506, 588Herglotz, G., 223, 463Hernández Cifre, M. A., 224, 225, 393, 440Hertel, E., 338Heveling, M., 224Hilbert, D., 378, 398Hildenbrand, W., 69, 151, 205, 207Hille, E., 58Hinderer, W., 227, 361Hiriart-Urruty, J.–B., 32Hirose, T., 69Höbinger, J., 536Hörmander, L., xvi, 42, 70, 323, 327, 398Hoffman, L. M., 73Holický, P., 79Holmes, R. B., 15Holmes, R. D., 391Horn, B. K. P., 462Howard, R., 202, 454, 558Howe, R., 137Hu, C., 506Hu, Y., 497, 566Huang, Q., 505, 583, 609Huang, Y., 506Huck, H., 309Hufnagel, A., 289, 312, 462Hug, D., 89, 125, 127, 132, 152, 205, 224, 225,
227, 228, 262, 273, 274, 290, 312, 321, 361,363, 364, 379, 410, 454, 463, 482, 486, 491,495–497, 500, 510, 532, 552, 555, 564, 565,594, 604
Hurwitz, A., 472, 628Husain, T., 154
Inzinger, R., 628Iosevich, A., xviiIvaki, M. N., 506Ivanov, B. A., 104Ivanov, G. E., 168
Jacobs, K., 18Jaglom, I. M., xvi, 201Jenkinson, J., 595Jensen, E. B. V., 265, 321, 511Jerison, D., 380Jessen, B., 31, 60, 125, 223, 286, 287, 409, 454,
461Jetter, M., 225Jiang, J., 497Jiang, M. Y., 506
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Author index 723
Jiménez, C. H., 381, 589Jin, H. L., 155John, F., 588, 591Jonasson, J., 534Jongmans, F., 18, 70, 72, 89, 154, 171Jourlin, M., 155Juhnke, F., 588
Kaasalainen, M., 462Kahn, J., 399Kakeya, S., 201, 628Kalinin, B. V., 274Kallay, M., 60, 112, 169, 171, 472Kalman, J. A., 19Kaluza, T., 151Kameneckii, I. M., 201, 628Kampf, J., 223Karasëv, R. N., 8, 167Karavelas, M. I., 154Karcher, H., 168Katsnelson, V., 224, 225Katsurada, Y., 309Kelly, P. J., xvKendall, W. S., 151Kenderov, P., 137Khovanskiı̆, A. G., 327, 340, 363, 398Kiderlen, M., 179, 182, 460, 463, 532Kim, J., 566, 583Kincses, J., 167Kiselman, C. O., 126Klain, D. A., 340, 355, 356, 360, 362, 364, 378
462, 511, 540Klartag, B., 182, 328, 399, 519, 525, 540, 569,
594, 605Klee, V., xvi, 8, 15, 18, 19, 59, 78–80, 89, 103,
136, 153, 155, 167, 272, 289, 339, 532Klein, E., 69Klima, V., 137Klingenberg, W., 201Klötzler, R., 201Kneser, H., 59, 370, 378, 463Kneser, M., 224Knothe, H., 372, 378, 388, 393, 439, 628Knyazeva, M., 526König, H., 586Kohlmann, P., 236, 310, 487Koldobsky, A., xvi, 576, 582–584, 586Kone, H., 622Kopteva, N., 462Koutroufiotis, D., 168, 487Krantz, S. G., 126Krein, M., 18Kropp, R., 227Kruskal, J. B., 78Kubota, T., 319, 320, 409, 438, 472, 628Kühnel, W., 236
Kuiper, N. H., 236Kuperberg, G., 565, 578Kuppe, M., 236Kuratowski, C., 69Kutateladze, S. S., 462, 463
Lachand-Robert, T., 201Laczkovich, M., 79Lafontaine, J., 236Lagarias, J. C., 327Laget, B., 155Lamberg, L., 462Langevin, R., 526Larman, D., 8, 78–80, 90, 91, 103, 104, 477, 541,
562Lashof, R. K., 125Last, G., 224Laugwitz, D., 57, 587Lay, S. R., xvLebesgue, H., 201Ledoux,M., 614Lee, Y. S., 516Lehec, J., 525Leichtweiß, K., xv, xvi, 59, 287, 327, 398, 438,
454, 487, 526, 543, 548, 550, 553, 560, 561,564, 589, 595
Leindler, L., 373Leng, G., 380, 454, 506, 511, 513, 514, 516, 559,
565, 569, 576, 579, 582, 583, 585, 586, 593,595, 606, 609
Lenz, H., 339, 587Letac, G., 472Lettl, G., 71, 72Levin, B. Ja., 472Levitt, G., 526Lévy, P., 205Lewis, D. R., 588, 594, 607Lewis, J. E., 152Lewy, H., 462Li, A.–J., 569, 603, 606Li, A.–M., 543Li, D.–Y., 418Li, J., 399, 478Li, K., 506, 576Li, N., 559Li, X., 511Li, Y., 478, 506Liapounoff, A. A., 205Lieb, E. H., 380Lin, C., 478Lin, Y., 565Lindelöf, L., 385Lindenstrauss, J., 181, 203–205, 378, 387, 391,
486, 540, 591, 628Lindquist, N. F., 202, 206Linhart, J., 202, 204
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
724 Author index
Linke, Ju. E., 73Little, J. J., 462Litvak, A. E., 534, 594Liu, L., 587Ljašenko, N. N., 154Lonke, Y., 203, 582Lopez, M. A., 566Loritz, A., 439Lü, S.–J., 586Lu, F., 506, 513, 516, 559, 583, 595Lu, G., 410Lu, J., 506Lu, Q., 506Ludwig, M., 532, 554, 556–558, 568, 575, 582,
613–616, 618, 620–622Lutwak, E., xvii, 288, 389, 393, 454, 460, 463,
490, 495–498, 500, 504–507, 510, 512–516,540, 546, 549–551, 554, 558, 559, 564, 567,568, 570–572, 575–578, 580–582, 584–586,591, 592, 595, 600, 601, 603, 605, 607,610–613
Lv, S., 454, 511, 559, 579, 586, 595Lyusternik, L. A., xvi, 390
Ma, T.–Y., 586, 595Ma, X.–N., 399, 478, 506Macbeath, A. M., 73, 539Maehara, H., 160Maggi, F., 377, 383, 392Mahler, K., 564, 565Makai, E., 223Makai, E., Jr, 462, 533, 541, 564, 566Malkevitch, J., xviiMani-Levitska, P., 15, 79, 261, 331, 332, 339, 541Mao, W., 583Marchaud, A., 535Maresch, G., 609Markessinis, E., 606Marti, J. T., xvi, 10, 15, 31, 89Martin, K., 78Martinez-Maure, Y., 488, 526Martini, H., 73, 201, 202, 418, 532, 541, 578, 582Mase, S., 154Matheron, G., 69, 151, 168, 202, 205, 225, 235,
236, 289, 308, 417, 529Matoušek, J., 8Matschke, B., 8Matsumura, S., 409, 628Matveev, V. S., 595Mazur, S., 89McAllister, B. L., 69McCann, R. J., 32, 378McClure, D. E., 558McKinney, R. L., 15McMinn, T. J., 103
McMullen, P., xi, xvi, xvii, 9, 59, 72, 73, 76, 112,131, 155, 165, 167–169, 171, 202, 204, 288,289, 319, 321, 332, 339, 340, 346, 352, 353,362, 366, 378, 461, 463, 533
Mecke, J., 151Meier, Ch., 295, 319, 346Meissner, E., 201, 319, 320, 628Melzak, Z. A., 137Menger, K., 72Meschkowski, H., 152Meyer, M., 381, 409, 438, 525, 530, 536, 541,
543, 556, 560, 562–566, 583, 594Meyer, P., 223Meyer, W., 112, 167, 169, 181Michael, E., 69Milka, A. D., 171Milman, D., 18Milman, E., 569Milman, V., 33, 40–43, 181, 182, 203, 288, 380,
391, 398, 409, 518–520, 523–525, 540, 541,565, 580, 591, 594, 603, 604, 606, 628
Minkowski, H., xi, 18, 90, 151, 155, 188, 286,287, 320, 377, 385, 386, 431, 432, 439, 453,455, 461, 463, 628
Minoda, T., 628Miranda, C., 462Molchanov, I., 150, 154, 206Montejano, L., 8, 70, 167Moore, J. D., 487Moreno, J. P., 167Mosler, K., 206Moszyńska, M., xv, 507Motzkin, T. S., 10Müller, C., 623Müller, H. R., 320, 321Müller, W., 236Mürner, P., 202
Nádenı̂k, Z., 393, 477Nadler, S., 70Nakajima, S., 320, 628Naszódi, M., 589Nazarov, F., 204, 565, 583Netuka, I., 137Neveu, J., 240Newman, D. J., 101Neyman, A., 207Nikliborc, W., 320Nirenberg, L., 462Nitsch, C., 390Noll, D., 31, 132
O’Brien, R. C., 144, 151Oda, T., 224Ohmann, D., 223, 379, 387, 388, 390, 410Oishi, K., 628Oliker, V. I., 454, 464, 486, 506
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Author index 725
Oliveros, D., 8Osher, S., 225Oshio, S., 417Osserman, R., 388–391Oudet, É., 201Overhagen, T., 310
Pach, J., 462Pajor, A., 541, 564, 580, 591, 594, 604, 606Pallaschke, D., 170, 288Palmon, O., 589Panina, G. Yu., 204, 293, 340, 488, 526Panov, A. A., 328Paouris, G., 310, 409, 541, 565, 569, 582, 583,
595, 606Papaderou–Vogiatzaki, I., 263Papadimitrakis, M., 603Papadopoulou, S., 78Parapatits, L., 361, 365, 463, 557, 579, 618, 619,
621Parks, H. R., 126Pastor, J. A., 393Pavlica, D., 103Payá, R., 169Pelczyński, 588Peña, A., 380Perissinaki, I., 594Perles, M. A., 235, 338Petermann, E., 393Petrov, F., 565Petty, C. M., 202, 203, 536, 546–549, 564, 567,
569, 570, 572, 579, 581, 583, 591, 594, 603,628
Pfiefer, R. E., 539Phelps, R. R., 18, 186Phillips, R. S., 58Pisier, G., 374, 380, 565Pivovarov, P., 310, 569Pogorelov, A. V., xvi, 274, 461, 462, 471–473,
486, 487Pollack, R., xviiPolovinkin, E. S., 160, 167Pólya, G., 391Pompeiu, D., 68Ponsiglione, M., 392Pontryagin, L. S., 151, 181Positsel’skii, E. D., 174, 181Pranger, W., 19Pratelli, A., 377, 383, 392, 628Prodromou, M., 558Protasov, V. Ju., 495Przesławski, K., 52, 60, 73, 287, 322, 339Przybycień, H., 151, 167Pucci, C., 31, 89Pukhlikov, A. V., 340, 363
Qi, C., 559
Quinn, J., 70
Rédei, L., 561Rényi, A., 558Rademacher, H., 58Radon, J., 3, 8, 188Rådström, H., 70Rajala, K., 392Rataj, J., 227, 236, 265, 312Ratschek, H., 70Rauch, J., 126, 168Reay, J. R., 15Rédei, L., 543Reidemeister, K., 89, 204Reisner, S., 381, 438, 525, 530, 536, 543, 560,
564–566, 583Reiter, H. B., 78Reitzner, M., 104, 112, 554, 556–558, 562Ren, D., 534Renegar, J., 323, 327Rényi, A., 417Rešetnjak, Ju. G., 31, 487, 628Reuleaux, F., 201Ricker, W., 207Rickert, N. W., 202, 205Riesz, F., 59Roberts, A. W., xi, xvi, 31Rockafellar, R. T., xi, xv, 9, 19, 30–32, 41,
42, 59Rodrı́guez, L., 526Rogers, C. A., xii, 69, 79, 91, 103, 104, 169, 477,
530, 532, 533, 541, 565Romance, M., 594, 606Rosenberg, H., 526Rota, G.–C., 339, 364Rotem, L., 43, 519, 520, 522–524Rother, W., 261, 264Roy, A. K., 154Roy, N. M., 18Roy, S. N., 319, 320Rubin, B., 584Rubinov, A. M., 463Rudelson, M., 603Ryabogin, D., 204, 565, 580, 583, 585
Sacksteder, R., 125Sah, C.–H., 360Saint Pierre, J., 73, 181, 188Saint Raymond, J., 564Saks, M., 399Salani, P., 380Salinas Martı́nez, G., 393Salinetti, G., 69Salkowski, E., 543Sallee, G. T., 131, 151, 160, 166, 167, 169, 181,
235, 332, 338–340Sandgren, L., 59
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
726 Author index
Sangwine-Yager, J. R., 223–226, 387, 389, 417,439
Santaló, L. A., 223, 261, 310, 388, 393, 410, 546,548
Saorı́n, E., 224, 225, 379, 440Saroglou, C., 541, 543, 578, 606Sas, E., 541, 628Saškin, Ju. A., 18Schaal, H., 201Schechtman, G., 391, 602Schirokow, A. P., 543Schirokow, P. A., 543Schmidt, E., 378, 391Schmidt, K. D., 70Schmitt, K.–A., 152Schmuckenschläger, M., 381, 530, 561, 577, 602Schneider, R., xv, xvii, 34, 35, 60, 71–73, 78, 80,
90, 104, 112, 126, 137, 144, 151, 155, 167,168, 170, 171, 179–182, 188, 190, 198,200–203, 205, 206, 224, 226, 235, 236,261–264, 273, 274, 287, 288, 295, 309, 312,320, 321, 332, 338, 358, 362–364, 391, 399,409, 410, 417, 421, 428, 438, 439, 444, 450,454, 461, 463, 471–473, 477, 482, 484,486–488, 497, 516, 529, 533, 535, 540, 545,558, 578, 582, 583, 594, 604, 628
Scholtes, S., 170, 288, 472Schori, R. M., 70Schröder, G., 70Schrader, R., 236Schröcker, H.–P., 594Schürger, K., 154Schürmann, A., 506Schütt, C., 525, 552, 556, 558, 561–563, 566Schuster, F. E., 179, 182, 200, 201, 206, 364–366,
368, 461, 463, 512, 568, 575, 578, 579, 586,588, 594, 601, 609, 613, 619, 628
Schuster, R., 321, 363Schwarz, T., 137Schwella, A., 409Seeger, A., 32Seeley, R. T., 119, 623Segal, A., 42, 43, 377, 379, 384Segura Gomis, S., 393Sen’kin, E. P., 473Serra, J., 151Serra, O., 445Shahin, J. K., 310Shapley, L., 141, 150Shen, C., 506Shen, Y., 583Sheng, W., 478, 558Shephard, G. C., xi, xvi, 9, 15, 71, 72, 112, 152,
164, 167–170, 181, 186, 202, 235, 319, 340,399, 530, 532, 533, 541, 583, 628
Si, L., 580, 595Silverman, R., 169Simon, U., 309, 310, 543Slomka, B. A., 42, 43Smilansky, Z., 169Soberón, P., 8Solanes, G., 228, 367, 410, 527Soltan, P. S., 418Soltan, V., 532Song, X., 535Sorger, H., 137Sorokin, V. A., 152Spiegel, W., 69, 332, 346Stachó, L. L., 224Stanchescu, Y. V., 445Stancu, A., 504, 506, 563, 566Stanley, R. P., 399Starr, R., 150, 151Stavrakas, N. M., 70, 78Steenaerts, P., 264Steiger, W., 104Steiner, J., 223, 319Stepanov, V. N., 628Sternberg, S. R., 151Stoka, M., 261Stoker, J. J., 125, 454Stoyan, D., 151Strantzen, J. B., 168Straszewicz, S., 19Straus, E. G., 515Strausz, R., 8Study, E., 540Sturmfels, B., 154Su, B., 320, 628Süss, W., 309, 370, 378, 386, 438, 462, 463, 472,
578Sulanke, R., 558Sung, C. H., 90Szarek, S. J., 381Szegö, G., 391Sz.-Nagy, B. v., 223, 417Sz.-Nagy, G. v., 320Szwiec, C., 155
Talenti, G., 391Tam, B. S., 90Tani, M., 310Tanno, S., 188Teissier, B., 224, 398Temam, R., 150Tennison, R. L., 170Teufel, E., 527The Lai, Ph., 70Thomas, C., 399Thompson, A. C., xvi, 69, 391, 536, 565, 580, 582Tichy, R., 72
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Author index 727
Tietze, H., 15Tiwary, H. R., 154Tölke, J., xviTolstonogov, A. A., 70Tomczak-Jaegermann, N., 594Travaglini, G., xviiTreibergs, A., 464, 487Trudinger, N. S., 228, 399, 478, 558Tsang, A., 622Tsirelson, B. S., 310Tsolomitis, A., 381, 594Türk, I., 227Tverberg, H., 8Tweddle, I., 154Tzanaki, E., 154
Uhrin, B., 379, 380Umanskiy, V., 506Urbański, R., 70, 151, 167, 168, 170, 288
Valdimarsson, S. I., 597Valentine, F. A., xv, 10, 15Valettas, P., 606Valette, G., 60, 152van Heijenoort, J., 125van Schaftingen, J., 541Vanderwerff, J. D., xvi, 31Vanhecke, L., 223Varberg, D. E., xi, xvi, 31Vassallo, S., 511Vidal Abascal, E., 223Vilenkin, N. J., 627Villa, R., 381Vincensini, P., 153Viro, O., 340Vitale, R. A., 71, 73, 152, 154, 228, 308, 310, 381,
421, 558Vlasov, L. P., 10Voiculescu, D., 153, 381Volčič, A., 511, 540, 541Volkov, Yu. A., 387, 391, 486Volland, W., 338Vodop’yanov, S. K., 487Vritsiou, B.–H., 565, 569, 606
Waksman, Z., 90Wallen, L. J., 389Walter, R., 127, 132Wan, X., 586Wang, G., 583, 609Wang, T., 610, 611, 622Wang, Wei, 559, 587Wang, Weidong, 516, 559, 579, 585, 586Wang, X.–J., 228, 462, 478, 500, 506, 558Wang, Y., 399Wannerer, T., 228, 361, 365, 367, 368, 619Weberndorfer, M., 543, 601, 608, 609
Webster, R. J., xv, 71–73, 540Wegmann, R., 151Wegner, B., 188Wei, D., 559Weibel, Ch., 154Weil, W., 60, 112, 131, 152, 154, 167, 168, 188,
201, 204–207, 224, 227, 261–265, 273,287–290, 295, 308, 311, 312, 361, 362, 386,463, 473, 477, 478, 491, 495–497, 510, 529,532, 571, 582, 585
Weis, S., 90Weiss, A. Ivić, xviiWeiss, G., 623Weiss, M. L., xvWeiss, V., 236Weissbach, B., 201Weisshaupt, H., 72Wellerding, A., 71, 439Wenger, R., 8Wenzel, W., 73Werner, E., 525, 552, 556, 558, 561–563, 566, 595Wets, R. J.–B., 19, 69Weyl, H., 223, 439Wieacker, J. A., 137, 138, 161, 167, 168Wiernowolski, M., 168Wiesler, H., 19Wijsman, R. A., 69Wills, J. M., xvi, 264, 310, 389, 392, 409, 506Wills, M. D., 68Willson, S. J., 418Winternitz, A., 553Wintgen, P., 236Wintner, A., 125Witsenhausen, H. S., 205Wolff, P., 606Wrase, D., 409Wu, D., 587, 593Wu, H., 125Wulff, G., 411Wunderlich, W., 201
Xiang, Y., 559Xiao, J., 613Xiong, B., 580Xiong, G., 418, 506, 535, 576, 578
Yang, C., 569Yang, D., 389, 495–497, 500, 504–506, 540, 558,
568, 575–577, 591, 592, 595, 600, 601, 603,605, 607, 610–613
Yano, K., 310Yaskin, V., xvi, 473, 576, 582, 583, 586Yaskina, M., 473, 582, 586Yau, S.–T., 462Ye, D., 556, 559Yost, D., 169Yu, W., 577, 580, 587, 593
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
728 Author index
Yuan, J., 514, 516, 579, 582, 583, 585, 595,606
Yuan, S., 514, 582, 583
Zähle, M., 127, 130, 132, 217, 226, 227, 235, 236,261, 264
Zaguskin, V. L., 594Zajı́ček, L., 31, 89, 103Zalgaller, V. A., 10, 15, 91, 103, 379, 390, 398Zamfirescu, T., xvi, 133, 134, 137, 152, 153Zarichnyi, M. M., 70Zhang, G., 188, 289, 294, 389, 418, 471, 477,
495–497, 500, 504–506, 510, 534, 535, 540,558, 567, 568, 573–577, 582, 584–586, 591,592, 595, 600, 601, 603, 605, 607, 610–613
Zhao, C.–J., 393, 512, 516, 559, 578, 579, 583Zhao, G., 543Zhao, L., 516
Zhong, X., 392Zhou, F., 478Zhou, J., 418, 559, 569Zhu, B., 559Zhu, G., 569Zhu, H., 583Zhu, M., 506Zhu, X., 399, 559, 583, 586Zhu, X.–Y., 583Zhuang, X., 151Ziegel, J., 321Ziegler, G. M., xvi, 8, 112Zinn, J., 154Živaljević, R. T., 73Zong, C., xviZvavitch, A., 204, 511, 543, 565, 580, 583, 585Zymonopoulou, M., 582, 583, 586
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Subject index
a-type, 109abstract duality, 43additive, 172, 329affine
combination, xixenergy, 610function, 20hull, xixisoperimetric inequality, 545normal vector, 544perimeter, 545Pólya–Szegö principle, 613quermassintegral, 515Sobolev inequality, 610surface area, 544, 545
affinely independent, xixAleksandrov body, 411Aleksandrov–Fenchel inequality, 393Aleksandrov–Fenchel–Jessen theorem,
448Aleksandrov’s projection theorem, 449Alesker’s irreducibility theorem, 365analogous (polytopes), 110antisummand, 139, 170area centroid, 314area measure, 214, 215Asplund sum, 517associated convex function, 51asymmetric Lp affine energy, 613asymmetric Lp zonotope, 609asymmetry class, 170, 472asymmetry function, 170
Baire space, 132ball
closed, xxiopen, xxi
Ball–Barthe inequality, 601Banach–Mazur distance, 589barycentre function, 19
barycentric coordinates, 6Binet ellipsoid, 590Blaschke
addition, 459, 463body, 463diagram, 387–Groemer inequality, 539–Minkowski homomorphism, 460–Santaló inequality, 548, 563
Lp, 568selection theorem, 63sum, 459
Blaschke’s rolling theorem, 164body of constant width, 140Bonnesen inequality, 388brightness function, 529Brunn–Minkowski theorem, 369Brunn–Minkowski theory
Lp, 489dual, 507
Busemann intersection inequality, 580Busemann–Petty problem, 583Busemann random simplex inequality, 539
canal class, 440cancellation law, 48, 139cap, 17, 91
body, 87covering theorem, 91
Carathéodory’s theorem, 3category
first, 132Cauchy’s surface area formula, 301centred support function, 262centroaffine surface area, 555centroid, 314centroid body
p-, 567Orlicz, 568
characteristic function, xx, 329
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
730 Subject index
Chebyshev set, 10Choquet simplex, 532chord power integral, 534Christoffel’s problem, 470, 472circumball, 142circumradius, 142class reduction, 576closed
ball, xxiconvex function, 36convex hull, 6halfspace, xxsegment, xix
combinationaffine, xixconvex, 1linear, xixpositive, 2
commonantisummand, 467summand, 467support plane, 103
concaveα-, 520function, 20
cone-volume measure, 501cone-volume probability measure, 495conjugate face, 75conjugate function, 37constant width, 140continuous convex set, 59convex, 1
body, 8combination, 1cone, 1floating body, 561function, 19hull, 2
convolution body, 381, 561covariogram, 528Crofton’s intersection formula, 245cross covariogram, 530cross measure, 607current representation, 217curvature
centroid, 314function, 545image, 547measure, 214
cyclically monotonic, 30cylinder, 341
diameter, xxi, 49difference body, 140, 529
inequality, 530
dilatate, xxidilatation, xxidimension, 7direct sum, xxdirect summand, 156directly indecomposable, 156discriminant
mixed, 322dissection, 346distance, xxidual
Lp John ellipsoid, 593affine quermassintegral, 515Brunn–Minkowski theory, 507cone, 35harmonic quermassintegral, 514mixed volume, 508quermassintegral, 508
Dupin indicatrix, 126
economic cap covering, 104edge, 105effective domain, 20ellipsoid
Lp John, 592dual, 593
Binet, 590John, 587Legendre, 590Loewner, 587LYZ-, 591
elliptic type, 547p, 555
epigraph, 20equidissectable, 346Euler
characteristic, 214, 230point, 127relation, 337-type relation, 339
Euler’s theorem, 115even measure, 192even valuation, 353exceptional, 103exposed
r-, 76normal vector, 85support plane, 85
r-skeleton, 76face, 75normal vector, 85point, 18support plane, 85
exterior normal vector, 11, 81external angle, 109
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Subject index 731
extreme, 85(K1, . . . , Kn−1), 87r-, 76
normal vector, 85support plane, 85
normal vector, 85support plane, 85point, 16ray, 17
face, 16i-, 74-function, 78
facet, 74, 105Fenchel conjugate, 40first category, 132first fundamental form, 114flag measure, 227flat, xxfloating body, 561flotation body, 560form body, 386formula
Cauchy’s surface area, 301Crofton’s intersection, 245Kubota’s, 301principal kinematic, 239Steiner, 208
local, 213fully additive, 330function
affine, 20barycentre, 19characteristic, xxconcave, 20conjugate, 37convex, 19gauge, 53indicator, xx, 21support, 44
gauge function, 53gauge transform, 42, 55Gauss map, 113Gauss–Kronecker curvature, 115general Brunn–Minkowski theorem,
406general relative position, 474generalizedM-body, 191curvature measure, 213principal curvature, 129triangle body, 201zonoid, 195
generated Minkowski class, 190
generating measure, 193generating set, 160, 167generic, 132Geometric Barthe inequality, 597Geometric Brascamp–Lieb inequality, 597geometric convex function, 41geometric Minkowski combination, 494geominimal surface area, 549gradient, 26Grassmannian, xxiiGrothendieck group, 172
half-flat, xxhalf-open segment, xxHanner polytope, 564harmonic
p-combination, 512Blaschke addition, 513Blaschke linear combination, 513quermassintegral, 514
Hausdorffasymmetry index, 390distance, 61measure, xximetric, 61, 68
hedgehog, 526Helly’s theorem, 4hérisson, 526Hessian matrix, 28Hessian measure, 228homogeneous, 341homothet, xxihomothetic, xxi
positively, xxihomothety, xxihull
affine, xixclosed convex, 6convex, 2linear, xixpositive, 2
hyperbolic polynomial, 323hyperbolicity cone, 323hyperplane, xxhyperspace, 70
improper rigid motion, xxiiinclusion measure, 418inclusion–exclusion principle, 330indecomposable, 164indecomposable pair, 171independent
affinely, xixindex function, 231indicator function, xx, 21
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
732 Subject index
inequalityLp Busemann–Petty centroid, 568affine Lp Sobolev, 610, 611affine Sobolev, 610Aleksandrov–Fenchel, 393Ball–Barthe, 601Blaschke–Groemer, 539Blaschke–Santaló, 548, 563Bonnesen, 388Busemann intersection, 580Busemann random simplex, 539difference body, 530Geometric Barthe, 597Geometric Brascamp–Lieb, 597geominimal surface area, 549Hölder’s for integrals, 509isodiametric, 382isoperimetric, 376, 382Jensen, 20Kneser–Süss, 460Minkowski’s, 382
first, 382for integrals, 509second, 382
Petty projection, 572affine, 579
Prékopa–Leindler, 373reverse Brunn–Minkowski, 380Rogers–Shephard, 530Urysohn, 382Zhang projection, 573
infimal convolution, 39inner radius, 143inradius
relative, 148internal, 7intersection body, 580
Lp, 581mixed, 583
intersectional family, 330intrinsic (r + 1)-moment, 314intrinsic volume, 208, 214irreducible, 169isodiametric inequality, 382isoperimetric inequality, 376, 382
affine, 545isotropic
constant, 605measure, 595
normalized, 596position, 604
Jensen’s inequality, 20Jessen radius of curvature, 125John ellipsoid, 587
John position, 596John’s theorem, 587
Kirchberger’s theorem, 14Klain
embedding, 356function, 356map, 356
Kneser–Süss inequality, 460Krein–Milman theorem, 18Kubota’s integral recursion, 301
Lφ affine surface area, 556Lψ affine surface area, 557Ln-star, 511Lp
addition, 490Brunn–Minkowski theory, 489John ellipsoid, 592Minkowski problem, 498Minkowski valuation, 617dual affine surface area, 559dual geominimal surface area, 559harmonic Blaschke addition, 513metric, 71surface area measure, 494zonoid, 606
-norm, 602lattice endomorphism, 34Legendre
ellipsoid, 590transform, 40transformation, 40
length measure, 465Lévy–Prokhorov distance, 480lift zonoid, 205line-free, 16lineality space, 16linear
combination, xixhull, xixparameter system, 542
linearity direction, 25local parallel set, 209local parallel volume, 121local Steiner formula, 213locally determined, 215locally embeddable, 157locally similar (polytopes), 110Loewner ellipsoid, 587Loewner position, 596log-concave function, 517lower curvature, 113lower radius of curvature, 113lower semi-continuous hull, 38
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Subject index 733
LYZ body, 611LYZ ellipsoid, 591
M-addition, 495maximal common summand, 171McMullen decomposition, 341meagre, 132mean
curvature, 115dual affine quermassintegral, 516section body, 265, 477width, 50, 173, 297, 519
measurable, 209measure
Hausdorff, xxiof non-convexity, 144
metric entropy, 72metric projection, 9metric tensor, 316minimal common anti-summand, 170minimal pair, 170, 472Minkowski
addition, 48additive, 48, 172class, 189difference, 146endomorphism, 177functional, 53, 208linear, 172problem
Lp, 498subtraction, 146symmetrization, 181tensor, 317valuation, 364, 586, 616
Lp, 617Minkowski’s
existence theorem, 455inequality, 382theorem, 17
Minkowskian integral formulae, 297, 309mixed
p-affine surface area, 559affine surface area, 548area measure, 279, 280body, 262, 463discriminant, 124, 322integral, 521intersection body, 583moment tensor, 321moment vector, 313projection body, 570quermassintegral, 427valuation, 345volume, 277, 280
width integral, 513moment body, 566
asymmetric Lp, 568moment matrix, 589moment vector, 312multiplier transformation, 180
nearest-point map, 9normal, 125
bundle, 127, 132, 209cone, 81point, 127vector, xx, 106
normalized convex body, 164normalized isotropic measure, 596
o-symmetric, xxobverse, 42odd valuation, 353open ball, xxiorder cancellation law, 139order isomorphism, 34Orlicz
centroid body, 568projection body, 575sum, 496zonotope, 609
outernormal vector, 11, 81parallel body, 128, 208unit normal vector, 106volume ratio, 599
p-addition, 490affine surface area, 554curvature function, 554geominimal surface area, 555linear combination, 490scalar multiplication, 490sum, 490tangential body, 86
parallel bodyinner, 148outer, 148
parallel chord movement, 543perfect face, 84Petty projection inequality, 572
affine, 579polar
Lp addition, 512body, 32curvature image, 546projection body, 570set, 32
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
734 Subject index
polarization, 325polarization formula, 277polynomial
hyperbolic, 323valuation, 363
polytope, 3, 104porous, 136position, 596positive
basis, 15combination, 2hull, 2reach, 224
positively homogeneous, 24positively homothetic, xxiPrékopa–Leindler inequality, 373principal curvature, 114, 127
generalized, 129principal kinematic formula, 239principal radius of curvature, 116projection body, 302, 569
Lp, 575asymmetric, 575polar, 575
Lp mixed, 587Orlicz, 575
projection generating measure, 308proper
(convex function), 19(face), 74(rigid motion), xxiiseparation, 12
quasi-concave, 520quermassintegral, 208, 213quermassvector, 314
r-singular, 83r-skeleton, 76radial
p-combination, 508pth mean body, 574addition, 507Blaschke linear combination, 509Blaschke–Minkowski homomorphism,
512Blaschke sum, 509function, 57linear combination, 507map, 89metric, 507sum, 507valuation, 620
Radon’s theorem, 3rational homogeneous, 341ray, xxrecession cone, 16reduced pair, 170, 472reducible, 169regular, 83
normal vector, 87supporting halfspace, 84
relativeboundary, xxindecomposability, 171interior, xx
residual, 132reverse
Brunn–Minkowski inequality, 380isoperimetric inequality, 599second fundamental form, 116spherical image, 88
map, 88Weingarten map, 116
rigid motion, xxiRogers–Shephard inequality, 530rolling theorem, 164, 168roots of Steiner polynomial, 224rotation, xxiirotor, 189
Santaló point, 546Santaló region, 562second fundamental form, 114semiaxis function, 59separate, 12shadow system, 542shaking, 539Shapley–Folkman lemma, 141Shapley–Folkman–Starr theorem, 143shearing, 347similarity, xxiisimple
(polytope), 109(valuation), 346
simplex, 3simplicial, 109singular relative position, 251slicing problem, 606sliding freely, 156smooth, 83smooth valuation, 366Sobolev distance, 71special position, 238, 240specific curvature, 274
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
Subject index 735
sphericalharmonic, 623image, 88
map, 88, 113Laplace operator, 119
stable convex body, 78star body, 57, 507star duality, 507starshaped, 57Steiner
ball, 421formula, 208point, 50, 315, 319
abstract, 181polynomial, 208
roots, 224symmetral, 536symmetrization, 536
Steinitz’s theorem, 14Straszewicz’s theorem, 18strict separation, 12strict subspace concentration inequality,
504strictly convex, 87strong separation, 12strongly isomorphic, 109subdifferential, 29subgradient, 29sublevel set, 20sublinear, 24subspace concentration condition, 504summand, 139, 147, 156sup-convolution, 517support, 11
cone, 81element, 59, 127, 209function, 44, 518measure, 213number, 276plane, xx, 11, 45set, 45vector, 293
supporting halfspace, 11, 45surface area measure, 214, 215
Lp, 494surface body, 562symmetric difference metric, 71
T-equidissectable, 346tangent space, 112tangential body, 86tangential radius of curvature, 126
telescoping, 443theorem
Aleksandrov’s projection, 449Aleksandrov–Fenchel–Jessen, 448Alesker’s irreducibility, 365Blaschke selection, 63Brunn–Minkowski, 369
general, 406Carathéodory, 3Euler, 115Groemer’s extension, 338Helly, 4John, 587Kirchberger, 14Krein–Milman, 18Minkowski, 17Minkowski’s existence, 455Radon, 3
coloured, 5Shapley–Folkman–Starr, 143Steinitz, 14Straszewicz, 18Tverberg, 8
thickness, 49touching cone, 85translate, xxitranslation, xxi
invariant, 341mixture, 262
triangle body, 201type
a-, 109typical, 132
umbilical point, 484unit ball, xxiunit sphere, xxiuniversal approximating class, 186universal convex body, 200upper
curvature, 113level set, 520radius of curvature, 113
Urysohn’s inequality, 382
valuation, 172, 329vertex, 105vertical (halfspace), 36virtual polytope, 526volume functional, 57volume product, 563
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
-
736 Subject index
volume ratio, 597inner, 597outer, 599
weaklycontinuous, 348monotonic, 179positive measure, 179
weighted floating body, 562Weingarten map, 113width, 49
constant, 140function, 49, 140
integral, 514Wills functional, 310Wulff shape, 411, 418
Zhang projection inequality, 573zonal signed measure, 177zonoid, 191, 192
Lp, 606equation, 203generalized, 195
zonotope, 191antisymmetric Lp, 609Orlicz, 609
www.cambridge.org© in this web service Cambridge University Press
Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information
ExcerptIndex
http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org
http://www: cambridge: org:
9781107601017: