notation index - cambridge university...

of 22 /22
Notation index + , 490 + ϕ , 496 + p , 490 A, xx A + B, xx A B, xx A | E, xxii A ÷ B, 146 A B, xx A B, 33 A , 329 C , 35 K , 32 K , 507 K ρ , 209 [L, L ], 240 [·, ·], xix #, 459 , 336 · K , 53 S , 347 T , 347 ¯ f , xxii · p , 490 ηη , 251 f , 611 ·, ·, xix ν μ, 460 M , 495 II u , 116 , xx + p , 512 #, 513 F, 75 +, 507 #, 509 { f }, 19 { f = α}, 19 { f α}, 19 f μ, 177 f g, 517 f , 37 f , 41 f , 523 1 A , xx II x , 114 I x , 114 A(n, k), xxii A ρ (K), 121 A, 42 a(K, ·), 59 a, xix B(K), 421 B(z), xxi B n , xxi B 0 (z), xxi B(X), 209 B(K), 590 b ij , 116 bd, xx C + (S n1 ), 552 C(S n1 ), 177 C , 113 C k , 113 C k + , 115 C α (R n ), 522 C m (K, ·), 214 Cvx(R n ), 40 Cvx 0 (R n ), 41 CK, 547 C(X), 69 C n , 60 CC n , 42 CC n o , 33 C n , 35 c(K), 314 c(K, β, u), 234 www.cambridge.org © in this web service Cambridge University Press Cambridge University Press 978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded Edition Rolf Schneider Index More information

Author: others

Post on 24-Jan-2021

7 views

Category:

Documents


0 download

Embed Size (px)

TRANSCRIPT

  • Notation index

    +∞, 490+ϕ, 496+p, 490−A, xxA + B, xxA − B, xxA | E, xxiiA ÷ B, 146A ⊕ B, xxA ∨ B, 33A•, 329C∗, 35K◦, 32K�, 507Kρ, 209[L, L′], 240[·, ·], xix#, 459•⋃, 336‖ · ‖K , 53≈S , 347≈T , 347f̄ , xxii·p, 490η � η′, 251〈 f 〉, 611〈·, ·〉, xixν ∗ μ, 460⊕M , 495IIu, 116⊂, xx+̂p, 512

    #̂, 513F̂, 75+̃, 507#̃, 509{ f < α}, 19{ f = α}, 19

    { f ≤ α}, 19f ∗ μ, 177f � g, 517f ∗, 37f •, 41f ◦, 5231A, xxIIx, 114Ix, 114

    A(n, k), xxiiAρ(K, β), 121A, 42a(K, ·), 59aff , xix

    B(K), 421B(z, ρ), xxiBn, xxiB0(z, ρ), xxiB(X), 209B(K), 590bi j, 116bd, xx

    C+(Sn−1), 552C(Sn−1), 177C∞, 113Ck, 113Ck+, 115Cα(Rn), 522Cm(K, ·), 214Cvx(Rn), 40Cvx0(Rn), 41CK, 547C(X), 69Cn, 60CCn, 42CCno, 33C n, 35c(K), 314c(K, β, u), 234

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 716 Notation index

    cρ(K, η, x), 231cl, xxconv, 2χ, 214, 230

    D(K), xxi, 49D(·, . . . , ·), 124, 322Dk(x1, . . . , xk), 303DK, 140, 529Du f , 610d(A, x), xxid(K, K′), 250d(K, ·), 26dBM, 589diam, xxidim, 7dom, 20δ, 61δQ, 71δS , 71δD, 71δp, 71δw, 71δ̃, 507Δ, 119Δ(K), 49ΔS , 119∂, 29

    EpK, 592, 593E(K), 75EL(K), 587EJ(K), 587Ei(K), 75Ep( f ), 610ei j, 116epi, 20exp, 18extr, 17ext, 17expr , 76extr , 76ηr , 79

    F(K, ·), 45F (K), 74F n, 545F nc , 546F n(o), 545Fi(K), 74f (K, ·), 545Φ̃i(K), 515Φi(K), 515Φ

    r,sk , 317

    Φm(K, ·), 216G(K), 549G(n, k), xxii

    Gδ, 132Gp(K), 555Gn, xxiiGL(n), xxiig(K, ·), 53gK , 528ΓφK, 568ΓpK, 567Γ−pK, 575γ(F, P), 109γn, 602γ(F, F′, P, P′), 240

    H(K, ·), 45H−(K, ·), 45H+u,α, xxH−u,α, xxH j, 115Hu,α, xxHess, 28Hk, xxih(K, ·), 44h∗(K, ·), 262I∞A , xx, 21I+p , 582Ip, 581IK, 580i(K, q, u), 234int, xx

    J , 42j(K, q, x), 231

    Ks, 546Ku, 302K f , 51K[δ], 560Kns,1, 164Kns , 164K(A), 8Kn, 8Kn(r,R), 91Knc , 546Knn , 8Kn(o), 32Kn(os), 463Knos, 495Kno , 32KC , 440Kn(A), 8Knos, 290ki(x, u), 129κn, xxiκi(x, t), 113κs(x, t), 113

    L(F), 240LK , 605

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Notation index 717

    L2(Sn−1), 623LC(Rn), 517L, 40L(K), 590lin , xix (K), 602ΛK, 546Λm(K, ·), 216λF , 240

    Mk(K), 265M(Sn−1), 177M(Sn−1, p), 177MK, 566MVal, 364MValm, 364M n, 615m(L ⊂ K), 418μ, xxii, 237μρ(K, ·), 209μk , xxii, 237

    N(K, F), 83N(K, x), 81N(P), 348Nor K, 127, 209Nor , 59ν, xxii, 237νk , xxii, 237∇, 26, 47o, xixΩ(K), 544, 545Ωφ, 556Ωp(K1, . . . , Kn), 559

    Ω̃−p(K), 559Ωp(K), 554ωn, xxi

    P(K, ·), 81projE , xxiiPK, 581P(A), 348Pn, 8, 104Pnn, 8, 104p̃, 325p(A, x), 9pr(K), 314pos, 2ΠK, 302, 569Π〈 f 〉, 611Π◦K, 570ΠφK, 575ΠpK, 575Ψr , 316Ψm(K, ·), 216Q, 316

    Qn, 523qr(K), 314

    R(A, x), 9RpK, 574Rn, xixR̄, 19rec, 16regn, 87relbd, xxrelint, xxρ(A), 143ρi(x, t), 113ρs(x, t), 113

    S (K, ·), 81S (·, . . . , ·, ·), 279, 280S m(K, ·), 214SH K, 536SK , 465SO(n), xxiiSL(n), xxiiSV , 348S(K), 163Snc , 546Sno, 57, 507Sn−1, xxiS m, 623s(K), 50s j, 117s(K), 546Σ, 209σ, xxi, 469σ(K, β), 88

    T (K, M), 262T (K, u), 85T (u1, . . . , un−1), 304TxK, 112Θm(K, η), 212τ, xixτ(K, ω), 88

    U(K), 91U(S ), 330U•(S ), 332Ui j, 401U(S ), 332u(A, x), 9uK , 83, 88, 113

    V(·, . . . , ·), 277, 280V1(K, L), 286VK (ω), 501V j(K), 208, 214Vp(K, L), 492V(i), 406V(i)(K, L), 381Vi j, 421

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 718 Notation index

    VK , 495Ṽ , 508Ṽi, 508Val∞, 366Val∞m , 366Val, 353Val+m, 353Val−m, 353ValG , 367Vn, 547Vnc , 547�(k), 303vert, 105vr(K), 597

    Wi(K), 208, 213Wi(·, ·), 427Wx, 113

    W̆i, 514Wu, 116Ŵi(K), 514W̃n−i, 508w(K), 50, 297w(K, ·), 49xK , 88Ξ

    (k)m (K, ·), 227

    ξK , 115

    Υ, 48

    Zφ(Λ), 609Z+p (Λ), 609Z ns , 341z(·, . . . , ·), 313zr+1(K), 312

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Author index

    Abardia, J., 367, 580, 622Aczél, J., 349Ader, O. B., 589Adiprasito, K., 137Ahrens, I., 152Alberti, G., 89Aleksandrov, A. D., xi, xvi, 31, 58, 60, 89, 90,

    112, 127, 131, 202, 226, 274, 286, 287, 295,309, 327, 385, 398, 408, 409, 417, 438, 439,454, 461, 464, 472, 477, 486–488, 498, 505,628

    Alesker, S., 60, 201, 206, 295, 361, 363, 365–368,398, 578

    Alexander, R., 205Alexandrov, V., 462Alfsen, E. M., 18Allendoerfer, C. B., 223Alonso-Gutiérrez, D., 381, 578, 606, 609,

    614Alvino, A., 390Ambartzumian, R. V., 204Ambrosio, L., 89Ambrus, G., 541Anderson, R. D., 89Andrews, B., 504, 506, 558Anikonov, Yu. E., 628Arnold, R., 71, 320, 428, 439, 487Arocha, J. J., 8Arrow, K. J., 150, 151Artstein, Z., 150, 152, 154Artstein-Avidan, S., 40, 42, 43, 182, 518, 524,

    525Ash, R. B., 209Asplund, E., 32, 76Assouad, P., 205Atkinson, K., 623Auneau-Cognacq, J., 265, 321Averkov, G., 529Avriel, M., 520

    Baddeley, A. J., 236Baebler, T., 390Bair, J., 15, 19, 153, 154, 171Balashov, M. V., 167Ball, K., 374, 380, 523, 532, 573, 577, 588, 589,

    597, 599, 600, 602, 604Bambah, R. P., 565Banchoff, T. F., 235Bandle, C., 391Bandt, Ch., 72, 73Bangert, V., 31, 274Bantegnie, R., 72Bapat, R. B., 328Baraki, G., 73Bárány, I., 8, 104, 112, 137, 462, 558, 562Barthe, F., 377, 381, 525, 565, 598–600, 602Barthel, W., 390, 391, 580Barvinok, A., xv, 594Bastero, J., 380, 594, 606, 614Batson, R. G., 19Bauer, C., 170, 439, 454, 472Bauer, H., 18, 209Baum, D., 59Bayen, T., 201Bazylevych, L. E., 70Beer, G. A., 69Behrend, F., 589, 593, 596, 600, 603Bensimon, D., 78Benson, R. V., xv, 393Benyamini, Y., 391Berck, G., 581Berg, Ch., 181, 186, 470, 628Berger, M., xvBernig, A., 228, 236, 261, 366–368, 578, 580, 622Bernštein, D. N., 398Bernstein, J., 361, 367Bernués, J., 380, 606, 614Besicovitch, A. S., 89, 103Betke, U., 202, 204, 311, 386Bettinger, W., 390

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 720 Author index

    Bianchi, G., 31, 529, 532, 540, 541Bianchini, C., 532, 543Biehl, Th., 540Bisztriczky, T., xvii, 541, 569Björck, G., 77Blackwell, D., 205Blagojević, P. V. M., 8Blaschke, W., xii, xv, 69, 70, 126, 164, 181,

    201–204, 261, 308, 320, 361, 378, 388, 463,472, 473, 538, 540, 541, 543, 545, 546, 548,550, 560, 591, 595, 628

    Blind, R., 487Blumenthal, L. M., 72Bobkov, S. G., 520, 522, 523, 525, 614Böhm, J., 338Böröczky, K., 462Böröczky, K. J., 34, 380, 389, 393, 445, 495, 504,

    506, 525, 534, 541, 558, 565, 566, 569, 576,605

    Bokowski, J., 264, 310, 389Bol, G., 149, 151, 388, 389, 417, 432, 444, 628Bolker, E. D., 201–205Boltyanski, V., xvi, 201, 418Boman, J., 126Bonnesen, T., xi, xv, xvi, 58, 60, 81, 90, 91, 155,

    188, 286, 287, 308, 320, 370, 378, 386, 388,393, 461

    Bonnice, W., 15Borell, C., 380, 517, 520Borowska, D., 167Borwein, J. M., xvi, 31, 144, 151Bose, R. C., 319, 320Botts, T., 9Bourbaki, N., 15, 18, 79, 90Bourgain, J., 181, 203, 204, 378, 387, 486, 540,

    541, 565, 585, 605, 628Boček, L., 393Bracho, J., 8Brandolini, L., xviiBrannen, N. S., 389, 578Brascamp, H. J., 380Brehm, U., 236Brickell, F., 545Bröcker, L., 236, 367Brøndsted, A., xvi, 19, 90, 112Bronshtein, E. M., 72, 73, 79, 172, 463Brooks, J. N., 168Brown, A. L., 78Brunn, H., xi, 377, 535Buchta, C., 562Budach, L., 236Bunt, L. N. H., 10Burago, Ju. D., 10, 15, 274, 379, 390, 398Burchard, A., 540Burckhardt, J. J., 202

    Burton, G. R., 80, 168, 202Busemann, H., xvi, 31, 125, 127, 131, 274, 327,

    390, 391, 398, 454, 462, 487, 515, 536, 539,580, 583

    Caffarelli, L. A., 380, 462Campi, S., 379, 463, 473, 540, 541, 543, 566, 568,

    569, 608, 628Cannarsa, P., 89Carathéodory, C., 3, 8, 540Carlen, E. A., 605Cascos, I., 206Cassels, J. W. S., 150Chai, Y. D., 516Chakerian, G. D., 201, 203, 393, 417, 454, 463,

    477, 530, 532, 534, 586Chang, S.–Y. A., 399Chavel, I., 390, 391Cheeger, J., 236Chen, B., 295, 339, 361Chen, F., 569Chen, L.–Y., 393Chen, W., 506, 558Cheng, S.–Y., 462Chern, S. S., 125, 261, 309, 454Chernoff, P. R., 628Cheung, W.–S., 393, 418, 512, 559, 578, 579, 583,

    606Choquet, G., 18, 79, 202, 205Chou, K.–S., 462, 500, 506Cianchi, A., 613Cieślak, W., 628Clack, R., 606Coifman, R. R., 623Colesanti, A., 31, 89, 228, 273, 379, 380, 463,

    519, 520, 522, 523, 525, 532, 540, 541, 543Collier, J. B., 79Colzani, L., xviiCordero-Erausquin, D., 605Corson, H. H., 79Coupier, D., 541Coxeter, H. S. M., 202Cressie, N., 154Cuoghi, P., 380Curtis, D. W., 70Czipszer, J., 417

    D’Agata, A., 151Dalla, L., 79, 80, 541Danzer, L., 8, 15, 587Dar, S., 379, 398Das Gupta, S., 380Davis, C., 15Davy, P. J., 321Davydov, Yu., 541de Rham, G., 137Debrunner, H., 310

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Author index 721

    Debs, G., 78Deicke, A., 545, 546Delgado, J. A., 168Dierolf, P., 69Dinghas, A., 71, 152, 310, 378, 379, 388, 390, 417

    418, 444, 628Diskant, V. I., 378, 384, 387, 389, 391, 409, 417,

    445, 478, 482, 484, 486, 487Dolzmann, G., 552Dor, L. E., 205Dou, J., 506Drešević, M., 69Duan, X., 516Dubins, L. E., 19Dubois, C., 154Dubuc, S., 380Dudley, R., 32, 72Dunkl, C. F., 179Duporcq, E., 320Dvoretzky, A., 565Dyer, M., 289, 312Dziechcińska-Halamoda, Z., 155

    Eckhoff, J., 8, 339Edelstein, M., 79, 154Efimow, N. W., 439Eggleston, H. G., xv, 79, 80, 388, 532, 540Egorychev, G. P., 327Eifler, L. Q., 78Ekeland, I., 150Epelman, M. S., 90Evans, L. C., 31Ewald, G., 60, 91, 103, 104, 152, 170, 429

    Fabila, R., 8Falconer, K. J., 628Faro Rivas, I., 188Fáry, I., 287, 417, 462, 543, 561Favard, J., 89, 90, 389, 393, 409, 410, 431, 438,

    439, 444, 472Federer, H., 31, 89, 224, 226, 236, 261, 262, 272,

    273, 390Fedotov, V. P., 79, 90, 310, 477, 497Fejes Tóth, L., 389, 392, 541, 558Feller, W., 31, 127, 131Fenchel, W., xi, xv, xvi, 58, 60, 81, 90, 91, 155,

    188, 223, 286, 287, 308, 320, 370, 378, 386,398, 409, 439, 454, 461

    Feng, Y., 579Ferone, V., 390Ferrari, F., 410Ferrers, N. M., 320Fesmire, S., 154Figalli, A., 377, 383, 392Figiel, T., 203, 391Fillastre, F., 527Filliman, P., 202, 439

    Fillmore, J. R., 473, 628Firey, W. J., 59, 60, 80, 126, 167, 168, 188, 203,

    263, 273, 288, 310, 387, 393, 463, 470, 473,477, 490, 497, 504, 510, 512, 513

    Fish, A., 583Fisher, J. C., 628Flaherty, F. J., 236Flanders, H., 319, 389Flatto, L., 101Fleury, B., 569Florentin, D., 43Florian, A., 71, 392Focke, J., 201, 628Fogel, E., 154Folkman, J., 141, 150Fourneau, R., 15, 154, 169, 533Fradelizi, M., 409, 525, 543, 564, 565Fragalà, I., 519, 520, 522, 523Franchi, B., 410Franz, G., 580Freiman, G. A., 445Fresen, D., 563Fu, J. H. G., 31, 228, 236, 261, 262, 366–368Fuglede, B., 19, 388, 391, 628Fujiwara, M., 90, 201, 628Fukuda, K., 154Fusco, N., 391, 392, 628

    Gage, M. E., 388, 504, 506Gale, D., 59, 167, 168Gallego, E., 367, 410, 527Gallivan, S., 79Gao, F., 228, 410Gårding, L., 323, 327Gardner, R. J., xvi, 79, 152, 290, 369, 374, 377,

    379, 411, 418, 454, 463, 491, 495–497, 510,511, 516, 532, 535, 539, 572, 574, 576, 582,584, 586, 610

    Gariepy, R. F., 31Gates, J., 364Geivaerts, M., 152, 167, 168Gensel, B., 201Geppert, H., 444, 526, 628Gericke, H., 319, 410, 628Ghandehari, M., 393Giannopoulos, A., 409, 541, 565, 569, 594, 603,

    604, 606Giné, E., 73, 154Glasauer, S., 104, 225, 227, 262Gluck, H., 462Godbersen, C., 532, 533Godet-Thobie, Ch., 70Görtler, H., 289, 628Goikhman, D. M., 463Goldberg, M., 201

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 722 Author index

    Goodey, P. R., 168, 201, 202, 204, 206, 207, 227,262, 265, 273, 287, 289, 308, 311, 438, 463,473, 477, 478, 529, 582, 584, 628

    Goodman, A. W., 320Goodman, J. E., xviiGordon, Y., 203, 525, 565, 566, 594Góźdź, S., 628Gray, A., 223Green, J. W., 60, 603Green, M., 225Grinberg, E. L., 188, 471, 515, 582, 586Gritzmann, P., 154, 202, 289, 312, 408, 409,

    462Groemer, H., xvi, 132, 201, 264, 288, 292, 293,

    332, 334, 338–340, 376–378, 383, 386, 387,391, 392, 421, 438, 539, 623, 628

    Gromov, M., 52, 60, 378, 398, 612Gronchi, P., 379, 463, 473, 540, 541, 543, 566,

    568, 569, 608Gross, W., 538, 540Gruber, P. M., xv, xvi, 31, 42, 71–73, 112,

    136–138, 167, 411, 418, 533, 536, 540, 558,588, 594

    Grünbaum, B., xvi, 8, 15, 73, 79, 80, 112, 155,169, 181, 186, 463, 477, 532

    Grynkiewicz, D., 445Grzaślewicz, R., 171Grzybowski, J., 151, 167, 168, 170, 171, 472Guédon, O., 569Guan, B., 478Guan, P., 399, 478Guggenheimer, H., xvi, 487, 564Guilfoyle, B., 201Guleryuz, O. G., 595Guo, Q., 155Gurvits, L., 327Gustin, W., 600

    Haberl, C., 504, 557, 568, 575, 582, 585, 613,620, 621

    Hadamard, J., 125Hadwiger, H., xii, xv, 69, 151, 173, 181, 182, 202,

    223, 235, 239, 261, 264, 310, 319, 320, 338,339, 341, 346–348, 360–363, 378, 379, 380,387–390, 392, 393, 398, 417, 440, 444, 514,540

    Hahn, F. H., 150, 151Hahn, M. G., 73, 154Halmos, P. R., 205Halperin, D., 154Hammer, P. C., 153, 188Han, W., 623Hann, K., 125, 225Haralick, R. M., 151Hartenstine, D., 512Hartman, P., 126

    Hartzoulaki, M., 409, 541Hausdorff, F., 68, 69Hayashi, T., 320, 628He, B., 506, 559, 576, 583, 587, 606Heil, E., 69, 201, 298, 310, 389, 390, 393, 565Heine, R., 399Helly, E., 4, 8Henk, M., 224, 506, 588Herglotz, G., 223, 463Hernández Cifre, M. A., 224, 225, 393, 440Hertel, E., 338Heveling, M., 224Hilbert, D., 378, 398Hildenbrand, W., 69, 151, 205, 207Hille, E., 58Hinderer, W., 227, 361Hiriart-Urruty, J.–B., 32Hirose, T., 69Höbinger, J., 536Hörmander, L., xvi, 42, 70, 323, 327, 398Hoffman, L. M., 73Holický, P., 79Holmes, R. B., 15Holmes, R. D., 391Horn, B. K. P., 462Howard, R., 202, 454, 558Howe, R., 137Hu, C., 506Hu, Y., 497, 566Huang, Q., 505, 583, 609Huang, Y., 506Huck, H., 309Hufnagel, A., 289, 312, 462Hug, D., 89, 125, 127, 132, 152, 205, 224, 225,

    227, 228, 262, 273, 274, 290, 312, 321, 361,363, 364, 379, 410, 454, 463, 482, 486, 491,495–497, 500, 510, 532, 552, 555, 564, 565,594, 604

    Hurwitz, A., 472, 628Husain, T., 154

    Inzinger, R., 628Iosevich, A., xviiIvaki, M. N., 506Ivanov, B. A., 104Ivanov, G. E., 168

    Jacobs, K., 18Jaglom, I. M., xvi, 201Jenkinson, J., 595Jensen, E. B. V., 265, 321, 511Jerison, D., 380Jessen, B., 31, 60, 125, 223, 286, 287, 409, 454,

    461Jetter, M., 225Jiang, J., 497Jiang, M. Y., 506

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Author index 723

    Jiménez, C. H., 381, 589Jin, H. L., 155John, F., 588, 591Jonasson, J., 534Jongmans, F., 18, 70, 72, 89, 154, 171Jourlin, M., 155Juhnke, F., 588

    Kaasalainen, M., 462Kahn, J., 399Kakeya, S., 201, 628Kalinin, B. V., 274Kallay, M., 60, 112, 169, 171, 472Kalman, J. A., 19Kaluza, T., 151Kameneckii, I. M., 201, 628Kampf, J., 223Karasëv, R. N., 8, 167Karavelas, M. I., 154Karcher, H., 168Katsnelson, V., 224, 225Katsurada, Y., 309Kelly, P. J., xvKendall, W. S., 151Kenderov, P., 137Khovanskiı̆, A. G., 327, 340, 363, 398Kiderlen, M., 179, 182, 460, 463, 532Kim, J., 566, 583Kincses, J., 167Kiselman, C. O., 126Klain, D. A., 340, 355, 356, 360, 362, 364, 378

    462, 511, 540Klartag, B., 182, 328, 399, 519, 525, 540, 569,

    594, 605Klee, V., xvi, 8, 15, 18, 19, 59, 78–80, 89, 103,

    136, 153, 155, 167, 272, 289, 339, 532Klein, E., 69Klima, V., 137Klingenberg, W., 201Klötzler, R., 201Kneser, H., 59, 370, 378, 463Kneser, M., 224Knothe, H., 372, 378, 388, 393, 439, 628Knyazeva, M., 526König, H., 586Kohlmann, P., 236, 310, 487Koldobsky, A., xvi, 576, 582–584, 586Kone, H., 622Kopteva, N., 462Koutroufiotis, D., 168, 487Krantz, S. G., 126Krein, M., 18Kropp, R., 227Kruskal, J. B., 78Kubota, T., 319, 320, 409, 438, 472, 628Kühnel, W., 236

    Kuiper, N. H., 236Kuperberg, G., 565, 578Kuppe, M., 236Kuratowski, C., 69Kutateladze, S. S., 462, 463

    Lachand-Robert, T., 201Laczkovich, M., 79Lafontaine, J., 236Lagarias, J. C., 327Laget, B., 155Lamberg, L., 462Langevin, R., 526Larman, D., 8, 78–80, 90, 91, 103, 104, 477, 541,

    562Lashof, R. K., 125Last, G., 224Laugwitz, D., 57, 587Lay, S. R., xvLebesgue, H., 201Ledoux,M., 614Lee, Y. S., 516Lehec, J., 525Leichtweiß, K., xv, xvi, 59, 287, 327, 398, 438,

    454, 487, 526, 543, 548, 550, 553, 560, 561,564, 589, 595

    Leindler, L., 373Leng, G., 380, 454, 506, 511, 513, 514, 516, 559,

    565, 569, 576, 579, 582, 583, 585, 586, 593,595, 606, 609

    Lenz, H., 339, 587Letac, G., 472Lettl, G., 71, 72Levin, B. Ja., 472Levitt, G., 526Lévy, P., 205Lewis, D. R., 588, 594, 607Lewis, J. E., 152Lewy, H., 462Li, A.–J., 569, 603, 606Li, A.–M., 543Li, D.–Y., 418Li, J., 399, 478Li, K., 506, 576Li, N., 559Li, X., 511Li, Y., 478, 506Liapounoff, A. A., 205Lieb, E. H., 380Lin, C., 478Lin, Y., 565Lindelöf, L., 385Lindenstrauss, J., 181, 203–205, 378, 387, 391,

    486, 540, 591, 628Lindquist, N. F., 202, 206Linhart, J., 202, 204

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 724 Author index

    Linke, Ju. E., 73Little, J. J., 462Litvak, A. E., 534, 594Liu, L., 587Ljašenko, N. N., 154Lonke, Y., 203, 582Lopez, M. A., 566Loritz, A., 439Lü, S.–J., 586Lu, F., 506, 513, 516, 559, 583, 595Lu, G., 410Lu, J., 506Lu, Q., 506Ludwig, M., 532, 554, 556–558, 568, 575, 582,

    613–616, 618, 620–622Lutwak, E., xvii, 288, 389, 393, 454, 460, 463,

    490, 495–498, 500, 504–507, 510, 512–516,540, 546, 549–551, 554, 558, 559, 564, 567,568, 570–572, 575–578, 580–582, 584–586,591, 592, 595, 600, 601, 603, 605, 607,610–613

    Lv, S., 454, 511, 559, 579, 586, 595Lyusternik, L. A., xvi, 390

    Ma, T.–Y., 586, 595Ma, X.–N., 399, 478, 506Macbeath, A. M., 73, 539Maehara, H., 160Maggi, F., 377, 383, 392Mahler, K., 564, 565Makai, E., 223Makai, E., Jr, 462, 533, 541, 564, 566Malkevitch, J., xviiMani-Levitska, P., 15, 79, 261, 331, 332, 339, 541Mao, W., 583Marchaud, A., 535Maresch, G., 609Markessinis, E., 606Marti, J. T., xvi, 10, 15, 31, 89Martin, K., 78Martinez-Maure, Y., 488, 526Martini, H., 73, 201, 202, 418, 532, 541, 578, 582Mase, S., 154Matheron, G., 69, 151, 168, 202, 205, 225, 235,

    236, 289, 308, 417, 529Matoušek, J., 8Matschke, B., 8Matsumura, S., 409, 628Matveev, V. S., 595Mazur, S., 89McAllister, B. L., 69McCann, R. J., 32, 378McClure, D. E., 558McKinney, R. L., 15McMinn, T. J., 103

    McMullen, P., xi, xvi, xvii, 9, 59, 72, 73, 76, 112,131, 155, 165, 167–169, 171, 202, 204, 288,289, 319, 321, 332, 339, 340, 346, 352, 353,362, 366, 378, 461, 463, 533

    Mecke, J., 151Meier, Ch., 295, 319, 346Meissner, E., 201, 319, 320, 628Melzak, Z. A., 137Menger, K., 72Meschkowski, H., 152Meyer, M., 381, 409, 438, 525, 530, 536, 541,

    543, 556, 560, 562–566, 583, 594Meyer, P., 223Meyer, W., 112, 167, 169, 181Michael, E., 69Milka, A. D., 171Milman, D., 18Milman, E., 569Milman, V., 33, 40–43, 181, 182, 203, 288, 380,

    391, 398, 409, 518–520, 523–525, 540, 541,565, 580, 591, 594, 603, 604, 606, 628

    Minkowski, H., xi, 18, 90, 151, 155, 188, 286,287, 320, 377, 385, 386, 431, 432, 439, 453,455, 461, 463, 628

    Minoda, T., 628Miranda, C., 462Molchanov, I., 150, 154, 206Montejano, L., 8, 70, 167Moore, J. D., 487Moreno, J. P., 167Mosler, K., 206Moszyńska, M., xv, 507Motzkin, T. S., 10Müller, C., 623Müller, H. R., 320, 321Müller, W., 236Mürner, P., 202

    Nádenı̂k, Z., 393, 477Nadler, S., 70Nakajima, S., 320, 628Naszódi, M., 589Nazarov, F., 204, 565, 583Netuka, I., 137Neveu, J., 240Newman, D. J., 101Neyman, A., 207Nikliborc, W., 320Nirenberg, L., 462Nitsch, C., 390Noll, D., 31, 132

    O’Brien, R. C., 144, 151Oda, T., 224Ohmann, D., 223, 379, 387, 388, 390, 410Oishi, K., 628Oliker, V. I., 454, 464, 486, 506

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Author index 725

    Oliveros, D., 8Osher, S., 225Oshio, S., 417Osserman, R., 388–391Oudet, É., 201Overhagen, T., 310

    Pach, J., 462Pajor, A., 541, 564, 580, 591, 594, 604, 606Pallaschke, D., 170, 288Palmon, O., 589Panina, G. Yu., 204, 293, 340, 488, 526Panov, A. A., 328Paouris, G., 310, 409, 541, 565, 569, 582, 583,

    595, 606Papaderou–Vogiatzaki, I., 263Papadimitrakis, M., 603Papadopoulou, S., 78Parapatits, L., 361, 365, 463, 557, 579, 618, 619,

    621Parks, H. R., 126Pastor, J. A., 393Pavlica, D., 103Payá, R., 169Pelczyński, 588Peña, A., 380Perissinaki, I., 594Perles, M. A., 235, 338Petermann, E., 393Petrov, F., 565Petty, C. M., 202, 203, 536, 546–549, 564, 567,

    569, 570, 572, 579, 581, 583, 591, 594, 603,628

    Pfiefer, R. E., 539Phelps, R. R., 18, 186Phillips, R. S., 58Pisier, G., 374, 380, 565Pivovarov, P., 310, 569Pogorelov, A. V., xvi, 274, 461, 462, 471–473,

    486, 487Pollack, R., xviiPolovinkin, E. S., 160, 167Pólya, G., 391Pompeiu, D., 68Ponsiglione, M., 392Pontryagin, L. S., 151, 181Positsel’skii, E. D., 174, 181Pranger, W., 19Pratelli, A., 377, 383, 392, 628Prodromou, M., 558Protasov, V. Ju., 495Przesławski, K., 52, 60, 73, 287, 322, 339Przybycień, H., 151, 167Pucci, C., 31, 89Pukhlikov, A. V., 340, 363

    Qi, C., 559

    Quinn, J., 70

    Rédei, L., 561Rényi, A., 558Rademacher, H., 58Radon, J., 3, 8, 188Rådström, H., 70Rajala, K., 392Rataj, J., 227, 236, 265, 312Ratschek, H., 70Rauch, J., 126, 168Reay, J. R., 15Rédei, L., 543Reidemeister, K., 89, 204Reisner, S., 381, 438, 525, 530, 536, 543, 560,

    564–566, 583Reiter, H. B., 78Reitzner, M., 104, 112, 554, 556–558, 562Ren, D., 534Renegar, J., 323, 327Rényi, A., 417Rešetnjak, Ju. G., 31, 487, 628Reuleaux, F., 201Ricker, W., 207Rickert, N. W., 202, 205Riesz, F., 59Roberts, A. W., xi, xvi, 31Rockafellar, R. T., xi, xv, 9, 19, 30–32, 41,

    42, 59Rodrı́guez, L., 526Rogers, C. A., xii, 69, 79, 91, 103, 104, 169, 477,

    530, 532, 533, 541, 565Romance, M., 594, 606Rosenberg, H., 526Rota, G.–C., 339, 364Rotem, L., 43, 519, 520, 522–524Rother, W., 261, 264Roy, A. K., 154Roy, N. M., 18Roy, S. N., 319, 320Rubin, B., 584Rubinov, A. M., 463Rudelson, M., 603Ryabogin, D., 204, 565, 580, 583, 585

    Sacksteder, R., 125Sah, C.–H., 360Saint Pierre, J., 73, 181, 188Saint Raymond, J., 564Saks, M., 399Salani, P., 380Salinas Martı́nez, G., 393Salinetti, G., 69Salkowski, E., 543Sallee, G. T., 131, 151, 160, 166, 167, 169, 181,

    235, 332, 338–340Sandgren, L., 59

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 726 Author index

    Sangwine-Yager, J. R., 223–226, 387, 389, 417,439

    Santaló, L. A., 223, 261, 310, 388, 393, 410, 546,548

    Saorı́n, E., 224, 225, 379, 440Saroglou, C., 541, 543, 578, 606Sas, E., 541, 628Saškin, Ju. A., 18Schaal, H., 201Schechtman, G., 391, 602Schirokow, A. P., 543Schirokow, P. A., 543Schmidt, E., 378, 391Schmidt, K. D., 70Schmitt, K.–A., 152Schmuckenschläger, M., 381, 530, 561, 577, 602Schneider, R., xv, xvii, 34, 35, 60, 71–73, 78, 80,

    90, 104, 112, 126, 137, 144, 151, 155, 167,168, 170, 171, 179–182, 188, 190, 198,200–203, 205, 206, 224, 226, 235, 236,261–264, 273, 274, 287, 288, 295, 309, 312,320, 321, 332, 338, 358, 362–364, 391, 399,409, 410, 417, 421, 428, 438, 439, 444, 450,454, 461, 463, 471–473, 477, 482, 484,486–488, 497, 516, 529, 533, 535, 540, 545,558, 578, 582, 583, 594, 604, 628

    Scholtes, S., 170, 288, 472Schori, R. M., 70Schröder, G., 70Schrader, R., 236Schröcker, H.–P., 594Schürger, K., 154Schürmann, A., 506Schütt, C., 525, 552, 556, 558, 561–563, 566Schuster, F. E., 179, 182, 200, 201, 206, 364–366,

    368, 461, 463, 512, 568, 575, 578, 579, 586,588, 594, 601, 609, 613, 619, 628

    Schuster, R., 321, 363Schwarz, T., 137Schwella, A., 409Seeger, A., 32Seeley, R. T., 119, 623Segal, A., 42, 43, 377, 379, 384Segura Gomis, S., 393Sen’kin, E. P., 473Serra, J., 151Serra, O., 445Shahin, J. K., 310Shapley, L., 141, 150Shen, C., 506Shen, Y., 583Sheng, W., 478, 558Shephard, G. C., xi, xvi, 9, 15, 71, 72, 112, 152,

    164, 167–170, 181, 186, 202, 235, 319, 340,399, 530, 532, 533, 541, 583, 628

    Si, L., 580, 595Silverman, R., 169Simon, U., 309, 310, 543Slomka, B. A., 42, 43Smilansky, Z., 169Soberón, P., 8Solanes, G., 228, 367, 410, 527Soltan, P. S., 418Soltan, V., 532Song, X., 535Sorger, H., 137Sorokin, V. A., 152Spiegel, W., 69, 332, 346Stachó, L. L., 224Stanchescu, Y. V., 445Stancu, A., 504, 506, 563, 566Stanley, R. P., 399Starr, R., 150, 151Stavrakas, N. M., 70, 78Steenaerts, P., 264Steiger, W., 104Steiner, J., 223, 319Stepanov, V. N., 628Sternberg, S. R., 151Stoka, M., 261Stoker, J. J., 125, 454Stoyan, D., 151Strantzen, J. B., 168Straszewicz, S., 19Straus, E. G., 515Strausz, R., 8Study, E., 540Sturmfels, B., 154Su, B., 320, 628Süss, W., 309, 370, 378, 386, 438, 462, 463, 472,

    578Sulanke, R., 558Sung, C. H., 90Szarek, S. J., 381Szegö, G., 391Sz.-Nagy, B. v., 223, 417Sz.-Nagy, G. v., 320Szwiec, C., 155

    Talenti, G., 391Tam, B. S., 90Tani, M., 310Tanno, S., 188Teissier, B., 224, 398Temam, R., 150Tennison, R. L., 170Teufel, E., 527The Lai, Ph., 70Thomas, C., 399Thompson, A. C., xvi, 69, 391, 536, 565, 580, 582Tichy, R., 72

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Author index 727

    Tietze, H., 15Tiwary, H. R., 154Tölke, J., xviTolstonogov, A. A., 70Tomczak-Jaegermann, N., 594Travaglini, G., xviiTreibergs, A., 464, 487Trudinger, N. S., 228, 399, 478, 558Tsang, A., 622Tsirelson, B. S., 310Tsolomitis, A., 381, 594Türk, I., 227Tverberg, H., 8Tweddle, I., 154Tzanaki, E., 154

    Uhrin, B., 379, 380Umanskiy, V., 506Urbański, R., 70, 151, 167, 168, 170, 288

    Valdimarsson, S. I., 597Valentine, F. A., xv, 10, 15Valettas, P., 606Valette, G., 60, 152van Heijenoort, J., 125van Schaftingen, J., 541Vanderwerff, J. D., xvi, 31Vanhecke, L., 223Varberg, D. E., xi, xvi, 31Vassallo, S., 511Vidal Abascal, E., 223Vilenkin, N. J., 627Villa, R., 381Vincensini, P., 153Viro, O., 340Vitale, R. A., 71, 73, 152, 154, 228, 308, 310, 381,

    421, 558Vlasov, L. P., 10Voiculescu, D., 153, 381Volčič, A., 511, 540, 541Volkov, Yu. A., 387, 391, 486Volland, W., 338Vodop’yanov, S. K., 487Vritsiou, B.–H., 565, 569, 606

    Waksman, Z., 90Wallen, L. J., 389Walter, R., 127, 132Wan, X., 586Wang, G., 583, 609Wang, T., 610, 611, 622Wang, Wei, 559, 587Wang, Weidong, 516, 559, 579, 585, 586Wang, X.–J., 228, 462, 478, 500, 506, 558Wang, Y., 399Wannerer, T., 228, 361, 365, 367, 368, 619Weberndorfer, M., 543, 601, 608, 609

    Webster, R. J., xv, 71–73, 540Wegmann, R., 151Wegner, B., 188Wei, D., 559Weibel, Ch., 154Weil, W., 60, 112, 131, 152, 154, 167, 168, 188,

    201, 204–207, 224, 227, 261–265, 273,287–290, 295, 308, 311, 312, 361, 362, 386,463, 473, 477, 478, 491, 495–497, 510, 529,532, 571, 582, 585

    Weis, S., 90Weiss, A. Ivić, xviiWeiss, G., 623Weiss, M. L., xvWeiss, V., 236Weissbach, B., 201Weisshaupt, H., 72Wellerding, A., 71, 439Wenger, R., 8Wenzel, W., 73Werner, E., 525, 552, 556, 558, 561–563, 566, 595Wets, R. J.–B., 19, 69Weyl, H., 223, 439Wieacker, J. A., 137, 138, 161, 167, 168Wiernowolski, M., 168Wiesler, H., 19Wijsman, R. A., 69Wills, J. M., xvi, 264, 310, 389, 392, 409, 506Wills, M. D., 68Willson, S. J., 418Winternitz, A., 553Wintgen, P., 236Wintner, A., 125Witsenhausen, H. S., 205Wolff, P., 606Wrase, D., 409Wu, D., 587, 593Wu, H., 125Wulff, G., 411Wunderlich, W., 201

    Xiang, Y., 559Xiao, J., 613Xiong, B., 580Xiong, G., 418, 506, 535, 576, 578

    Yang, C., 569Yang, D., 389, 495–497, 500, 504–506, 540, 558,

    568, 575–577, 591, 592, 595, 600, 601, 603,605, 607, 610–613

    Yano, K., 310Yaskin, V., xvi, 473, 576, 582, 583, 586Yaskina, M., 473, 582, 586Yau, S.–T., 462Ye, D., 556, 559Yost, D., 169Yu, W., 577, 580, 587, 593

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 728 Author index

    Yuan, J., 514, 516, 579, 582, 583, 585, 595,606

    Yuan, S., 514, 582, 583

    Zähle, M., 127, 130, 132, 217, 226, 227, 235, 236,261, 264

    Zaguskin, V. L., 594Zajı́ček, L., 31, 89, 103Zalgaller, V. A., 10, 15, 91, 103, 379, 390, 398Zamfirescu, T., xvi, 133, 134, 137, 152, 153Zarichnyi, M. M., 70Zhang, G., 188, 289, 294, 389, 418, 471, 477,

    495–497, 500, 504–506, 510, 534, 535, 540,558, 567, 568, 573–577, 582, 584–586, 591,592, 595, 600, 601, 603, 605, 607, 610–613

    Zhao, C.–J., 393, 512, 516, 559, 578, 579, 583Zhao, G., 543Zhao, L., 516

    Zhong, X., 392Zhou, F., 478Zhou, J., 418, 559, 569Zhu, B., 559Zhu, G., 569Zhu, H., 583Zhu, M., 506Zhu, X., 399, 559, 583, 586Zhu, X.–Y., 583Zhuang, X., 151Ziegel, J., 321Ziegler, G. M., xvi, 8, 112Zinn, J., 154Živaljević, R. T., 73Zong, C., xviZvavitch, A., 204, 511, 543, 565, 580, 583, 585Zymonopoulou, M., 582, 583, 586

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Subject index

    a-type, 109abstract duality, 43additive, 172, 329affine

    combination, xixenergy, 610function, 20hull, xixisoperimetric inequality, 545normal vector, 544perimeter, 545Pólya–Szegö principle, 613quermassintegral, 515Sobolev inequality, 610surface area, 544, 545

    affinely independent, xixAleksandrov body, 411Aleksandrov–Fenchel inequality, 393Aleksandrov–Fenchel–Jessen theorem,

    448Aleksandrov’s projection theorem, 449Alesker’s irreducibility theorem, 365analogous (polytopes), 110antisummand, 139, 170area centroid, 314area measure, 214, 215Asplund sum, 517associated convex function, 51asymmetric Lp affine energy, 613asymmetric Lp zonotope, 609asymmetry class, 170, 472asymmetry function, 170

    Baire space, 132ball

    closed, xxiopen, xxi

    Ball–Barthe inequality, 601Banach–Mazur distance, 589barycentre function, 19

    barycentric coordinates, 6Binet ellipsoid, 590Blaschke

    addition, 459, 463body, 463diagram, 387–Groemer inequality, 539–Minkowski homomorphism, 460–Santaló inequality, 548, 563

    Lp, 568selection theorem, 63sum, 459

    Blaschke’s rolling theorem, 164body of constant width, 140Bonnesen inequality, 388brightness function, 529Brunn–Minkowski theorem, 369Brunn–Minkowski theory

    Lp, 489dual, 507

    Busemann intersection inequality, 580Busemann–Petty problem, 583Busemann random simplex inequality, 539

    canal class, 440cancellation law, 48, 139cap, 17, 91

    body, 87covering theorem, 91

    Carathéodory’s theorem, 3category

    first, 132Cauchy’s surface area formula, 301centred support function, 262centroaffine surface area, 555centroid, 314centroid body

    p-, 567Orlicz, 568

    characteristic function, xx, 329

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 730 Subject index

    Chebyshev set, 10Choquet simplex, 532chord power integral, 534Christoffel’s problem, 470, 472circumball, 142circumradius, 142class reduction, 576closed

    ball, xxiconvex function, 36convex hull, 6halfspace, xxsegment, xix

    combinationaffine, xixconvex, 1linear, xixpositive, 2

    commonantisummand, 467summand, 467support plane, 103

    concaveα-, 520function, 20

    cone-volume measure, 501cone-volume probability measure, 495conjugate face, 75conjugate function, 37constant width, 140continuous convex set, 59convex, 1

    body, 8combination, 1cone, 1floating body, 561function, 19hull, 2

    convolution body, 381, 561covariogram, 528Crofton’s intersection formula, 245cross covariogram, 530cross measure, 607current representation, 217curvature

    centroid, 314function, 545image, 547measure, 214

    cyclically monotonic, 30cylinder, 341

    diameter, xxi, 49difference body, 140, 529

    inequality, 530

    dilatate, xxidilatation, xxidimension, 7direct sum, xxdirect summand, 156directly indecomposable, 156discriminant

    mixed, 322dissection, 346distance, xxidual

    Lp John ellipsoid, 593affine quermassintegral, 515Brunn–Minkowski theory, 507cone, 35harmonic quermassintegral, 514mixed volume, 508quermassintegral, 508

    Dupin indicatrix, 126

    economic cap covering, 104edge, 105effective domain, 20ellipsoid

    Lp John, 592dual, 593

    Binet, 590John, 587Legendre, 590Loewner, 587LYZ-, 591

    elliptic type, 547p, 555

    epigraph, 20equidissectable, 346Euler

    characteristic, 214, 230point, 127relation, 337-type relation, 339

    Euler’s theorem, 115even measure, 192even valuation, 353exceptional, 103exposed

    r-, 76normal vector, 85support plane, 85

    r-skeleton, 76face, 75normal vector, 85point, 18support plane, 85

    exterior normal vector, 11, 81external angle, 109

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Subject index 731

    extreme, 85(K1, . . . , Kn−1), 87r-, 76

    normal vector, 85support plane, 85

    normal vector, 85support plane, 85point, 16ray, 17

    face, 16i-, 74-function, 78

    facet, 74, 105Fenchel conjugate, 40first category, 132first fundamental form, 114flag measure, 227flat, xxfloating body, 561flotation body, 560form body, 386formula

    Cauchy’s surface area, 301Crofton’s intersection, 245Kubota’s, 301principal kinematic, 239Steiner, 208

    local, 213fully additive, 330function

    affine, 20barycentre, 19characteristic, xxconcave, 20conjugate, 37convex, 19gauge, 53indicator, xx, 21support, 44

    gauge function, 53gauge transform, 42, 55Gauss map, 113Gauss–Kronecker curvature, 115general Brunn–Minkowski theorem,

    406general relative position, 474generalizedM-body, 191curvature measure, 213principal curvature, 129triangle body, 201zonoid, 195

    generated Minkowski class, 190

    generating measure, 193generating set, 160, 167generic, 132Geometric Barthe inequality, 597Geometric Brascamp–Lieb inequality, 597geometric convex function, 41geometric Minkowski combination, 494geominimal surface area, 549gradient, 26Grassmannian, xxiiGrothendieck group, 172

    half-flat, xxhalf-open segment, xxHanner polytope, 564harmonic

    p-combination, 512Blaschke addition, 513Blaschke linear combination, 513quermassintegral, 514

    Hausdorffasymmetry index, 390distance, 61measure, xximetric, 61, 68

    hedgehog, 526Helly’s theorem, 4hérisson, 526Hessian matrix, 28Hessian measure, 228homogeneous, 341homothet, xxihomothetic, xxi

    positively, xxihomothety, xxihull

    affine, xixclosed convex, 6convex, 2linear, xixpositive, 2

    hyperbolic polynomial, 323hyperbolicity cone, 323hyperplane, xxhyperspace, 70

    improper rigid motion, xxiiinclusion measure, 418inclusion–exclusion principle, 330indecomposable, 164indecomposable pair, 171independent

    affinely, xixindex function, 231indicator function, xx, 21

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 732 Subject index

    inequalityLp Busemann–Petty centroid, 568affine Lp Sobolev, 610, 611affine Sobolev, 610Aleksandrov–Fenchel, 393Ball–Barthe, 601Blaschke–Groemer, 539Blaschke–Santaló, 548, 563Bonnesen, 388Busemann intersection, 580Busemann random simplex, 539difference body, 530Geometric Barthe, 597Geometric Brascamp–Lieb, 597geominimal surface area, 549Hölder’s for integrals, 509isodiametric, 382isoperimetric, 376, 382Jensen, 20Kneser–Süss, 460Minkowski’s, 382

    first, 382for integrals, 509second, 382

    Petty projection, 572affine, 579

    Prékopa–Leindler, 373reverse Brunn–Minkowski, 380Rogers–Shephard, 530Urysohn, 382Zhang projection, 573

    infimal convolution, 39inner radius, 143inradius

    relative, 148internal, 7intersection body, 580

    Lp, 581mixed, 583

    intersectional family, 330intrinsic (r + 1)-moment, 314intrinsic volume, 208, 214irreducible, 169isodiametric inequality, 382isoperimetric inequality, 376, 382

    affine, 545isotropic

    constant, 605measure, 595

    normalized, 596position, 604

    Jensen’s inequality, 20Jessen radius of curvature, 125John ellipsoid, 587

    John position, 596John’s theorem, 587

    Kirchberger’s theorem, 14Klain

    embedding, 356function, 356map, 356

    Kneser–Süss inequality, 460Krein–Milman theorem, 18Kubota’s integral recursion, 301

    Lφ affine surface area, 556Lψ affine surface area, 557Ln-star, 511Lp

    addition, 490Brunn–Minkowski theory, 489John ellipsoid, 592Minkowski problem, 498Minkowski valuation, 617dual affine surface area, 559dual geominimal surface area, 559harmonic Blaschke addition, 513metric, 71surface area measure, 494zonoid, 606

    -norm, 602lattice endomorphism, 34Legendre

    ellipsoid, 590transform, 40transformation, 40

    length measure, 465Lévy–Prokhorov distance, 480lift zonoid, 205line-free, 16lineality space, 16linear

    combination, xixhull, xixparameter system, 542

    linearity direction, 25local parallel set, 209local parallel volume, 121local Steiner formula, 213locally determined, 215locally embeddable, 157locally similar (polytopes), 110Loewner ellipsoid, 587Loewner position, 596log-concave function, 517lower curvature, 113lower radius of curvature, 113lower semi-continuous hull, 38

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Subject index 733

    LYZ body, 611LYZ ellipsoid, 591

    M-addition, 495maximal common summand, 171McMullen decomposition, 341meagre, 132mean

    curvature, 115dual affine quermassintegral, 516section body, 265, 477width, 50, 173, 297, 519

    measurable, 209measure

    Hausdorff, xxiof non-convexity, 144

    metric entropy, 72metric projection, 9metric tensor, 316minimal common anti-summand, 170minimal pair, 170, 472Minkowski

    addition, 48additive, 48, 172class, 189difference, 146endomorphism, 177functional, 53, 208linear, 172problem

    Lp, 498subtraction, 146symmetrization, 181tensor, 317valuation, 364, 586, 616

    Lp, 617Minkowski’s

    existence theorem, 455inequality, 382theorem, 17

    Minkowskian integral formulae, 297, 309mixed

    p-affine surface area, 559affine surface area, 548area measure, 279, 280body, 262, 463discriminant, 124, 322integral, 521intersection body, 583moment tensor, 321moment vector, 313projection body, 570quermassintegral, 427valuation, 345volume, 277, 280

    width integral, 513moment body, 566

    asymmetric Lp, 568moment matrix, 589moment vector, 312multiplier transformation, 180

    nearest-point map, 9normal, 125

    bundle, 127, 132, 209cone, 81point, 127vector, xx, 106

    normalized convex body, 164normalized isotropic measure, 596

    o-symmetric, xxobverse, 42odd valuation, 353open ball, xxiorder cancellation law, 139order isomorphism, 34Orlicz

    centroid body, 568projection body, 575sum, 496zonotope, 609

    outernormal vector, 11, 81parallel body, 128, 208unit normal vector, 106volume ratio, 599

    p-addition, 490affine surface area, 554curvature function, 554geominimal surface area, 555linear combination, 490scalar multiplication, 490sum, 490tangential body, 86

    parallel bodyinner, 148outer, 148

    parallel chord movement, 543perfect face, 84Petty projection inequality, 572

    affine, 579polar

    Lp addition, 512body, 32curvature image, 546projection body, 570set, 32

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 734 Subject index

    polarization, 325polarization formula, 277polynomial

    hyperbolic, 323valuation, 363

    polytope, 3, 104porous, 136position, 596positive

    basis, 15combination, 2hull, 2reach, 224

    positively homogeneous, 24positively homothetic, xxiPrékopa–Leindler inequality, 373principal curvature, 114, 127

    generalized, 129principal kinematic formula, 239principal radius of curvature, 116projection body, 302, 569

    Lp, 575asymmetric, 575polar, 575

    Lp mixed, 587Orlicz, 575

    projection generating measure, 308proper

    (convex function), 19(face), 74(rigid motion), xxiiseparation, 12

    quasi-concave, 520quermassintegral, 208, 213quermassvector, 314

    r-singular, 83r-skeleton, 76radial

    p-combination, 508pth mean body, 574addition, 507Blaschke linear combination, 509Blaschke–Minkowski homomorphism,

    512Blaschke sum, 509function, 57linear combination, 507map, 89metric, 507sum, 507valuation, 620

    Radon’s theorem, 3rational homogeneous, 341ray, xxrecession cone, 16reduced pair, 170, 472reducible, 169regular, 83

    normal vector, 87supporting halfspace, 84

    relativeboundary, xxindecomposability, 171interior, xx

    residual, 132reverse

    Brunn–Minkowski inequality, 380isoperimetric inequality, 599second fundamental form, 116spherical image, 88

    map, 88Weingarten map, 116

    rigid motion, xxiRogers–Shephard inequality, 530rolling theorem, 164, 168roots of Steiner polynomial, 224rotation, xxiirotor, 189

    Santaló point, 546Santaló region, 562second fundamental form, 114semiaxis function, 59separate, 12shadow system, 542shaking, 539Shapley–Folkman lemma, 141Shapley–Folkman–Starr theorem, 143shearing, 347similarity, xxiisimple

    (polytope), 109(valuation), 346

    simplex, 3simplicial, 109singular relative position, 251slicing problem, 606sliding freely, 156smooth, 83smooth valuation, 366Sobolev distance, 71special position, 238, 240specific curvature, 274

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • Subject index 735

    sphericalharmonic, 623image, 88

    map, 88, 113Laplace operator, 119

    stable convex body, 78star body, 57, 507star duality, 507starshaped, 57Steiner

    ball, 421formula, 208point, 50, 315, 319

    abstract, 181polynomial, 208

    roots, 224symmetral, 536symmetrization, 536

    Steinitz’s theorem, 14Straszewicz’s theorem, 18strict separation, 12strict subspace concentration inequality,

    504strictly convex, 87strong separation, 12strongly isomorphic, 109subdifferential, 29subgradient, 29sublevel set, 20sublinear, 24subspace concentration condition, 504summand, 139, 147, 156sup-convolution, 517support, 11

    cone, 81element, 59, 127, 209function, 44, 518measure, 213number, 276plane, xx, 11, 45set, 45vector, 293

    supporting halfspace, 11, 45surface area measure, 214, 215

    Lp, 494surface body, 562symmetric difference metric, 71

    T-equidissectable, 346tangent space, 112tangential body, 86tangential radius of curvature, 126

    telescoping, 443theorem

    Aleksandrov’s projection, 449Aleksandrov–Fenchel–Jessen, 448Alesker’s irreducibility, 365Blaschke selection, 63Brunn–Minkowski, 369

    general, 406Carathéodory, 3Euler, 115Groemer’s extension, 338Helly, 4John, 587Kirchberger, 14Krein–Milman, 18Minkowski, 17Minkowski’s existence, 455Radon, 3

    coloured, 5Shapley–Folkman–Starr, 143Steinitz, 14Straszewicz, 18Tverberg, 8

    thickness, 49touching cone, 85translate, xxitranslation, xxi

    invariant, 341mixture, 262

    triangle body, 201type

    a-, 109typical, 132

    umbilical point, 484unit ball, xxiunit sphere, xxiuniversal approximating class, 186universal convex body, 200upper

    curvature, 113level set, 520radius of curvature, 113

    Urysohn’s inequality, 382

    valuation, 172, 329vertex, 105vertical (halfspace), 36virtual polytope, 526volume functional, 57volume product, 563

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

  • 736 Subject index

    volume ratio, 597inner, 597outer, 599

    weaklycontinuous, 348monotonic, 179positive measure, 179

    weighted floating body, 562Weingarten map, 113width, 49

    constant, 140function, 49, 140

    integral, 514Wills functional, 310Wulff shape, 411, 418

    Zhang projection inequality, 573zonal signed measure, 177zonoid, 191, 192

    Lp, 606equation, 203generalized, 195

    zonotope, 191antisymmetric Lp, 609Orlicz, 609

    www.cambridge.org© in this web service Cambridge University Press

    Cambridge University Press978-1-107-60101-7 - Encyclopedia of Mathematics and its Applications: Convex Bodies: The Brunn–Minkowski Theory: Second Expanded EditionRolf SchneiderIndexMore information

    ExcerptIndex

    http://www.cambridge.org/9781107601017http://www.cambridge.orghttp://www.cambridge.org

    http://www: cambridge: org:

    9781107601017: