notes lecture 4 - princeton university

12
Spring 2013 Moshe Matalon University of Illinois at UrbanaChampaign 1 Lecture 4 Deflagrations and Detonations Moshe Matalon plane, steady, one-dimensional flow involving exothermic chemical reactions in which the properties become uniform as |x| →⇥. One-dimensional flow -v 0 u 0 =0 p 1 , 1 T 1 , Y i 1 p 0 , 0 T 0 , Y i 0 in the laboratory frame heat conduction species diusion viscous dissipation chemical reactions u 1 The objective is to determine (i) the state of the burned gas and (ii) the wave speed, or propagation speed V wave = -v 0 . Moshe Matalon

Upload: others

Post on 01-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   1  

Lecture 4 Deflagrations and Detonations

Moshe  Matalon  

plane, steady, one-dimensional flow involving exothermic chemical reactions in

which the properties become uniform as |x| � ⇥.

One-dimensional flow

�v0

u0 =0

p1 , ⇢1

T1 , Yi1

p0 , ⇢0

T0 , Yi0

in the laboratory frame

heat conduction

species di↵usion

viscous dissipation

chemical reactions

u1

The objective is to determine (i) the state of the burned gas and (ii) the wave

speed, or propagation speed Vwave = �v0.

Moshe  Matalon  

Page 2: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   2  

p0�0T0

Yi0

p1�1T1Yi1

v0 v1

coordinate attached to a wave propagating to the left at speed v0

fluid particle velocity u = v + Vwave

here Vwave = �v0

�v0

u0 =0 u1=v1�v0

p1 , ⇢1

T1 , Yi1

p0 , ⇢0

T0 , Yi0

in the laboratory frame

Moshe  Matalon  

Steady, one dimensional flow

h =NX

i=1

Yi

ho

i

+

ZT

T

o

cp

dT

p = �RT/W

d

dx

(⇢v) = 0

d

dx

(⇢v2) = �dp

dx

+d

dx

✓4

dv

dx

d

dx

(⇢vh) = v

dp

dx

+4

✓dv

dx

◆2� dq

dx

d

dx

(⇢vYi) +d

dx

(⇢YiVi) = !i i = 1, 2, . . . , N

Moshe  Matalon  

Page 3: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   3  

p = ⇢RT/W

d

dx

(⇢vYi + ⇢YiVi) = !i

d

dx

✓⇢v(h+

1

2v

2)� 4

3µv

dv

dx

+ q

◆= 0

d

dx

✓p+ ⇢v

2 � 4

dv

dx

◆= 0

d

dx

(⇢v) = 0

p0/⇢0T0 = p1/⇢1T1 = ��1� cp

Note that cp � cv = R/W implies

R/W = ��1� cp

where � = cp/cv

⇢0v0 = ⇢1v1

p0 + ⇢0v20 = p1 + ⇢1v21

h0 +12v

20 = h1 + 1

2v21

!i0

!= 0 , !i1 = 0 i = 1, 2, . . . , N

Moshe  Matalon  

h1 � h0 =NX

i=1

(Yi1�Y

i0)ho

i

+ cp

(T1 � T0)

= �Q+ cp

(T1 � T0)

assume cpi⌘ cp and Wi ⌘ W for all i (or take some average value)

Q here is the heat of combustion per unit mass of combustible mixture

h =NX

i=1

Yi

ho

i

+

ZT

T

o

cp

dT

⇢0v0 = ⇢1v1

p0 + ⇢0v20 = p1 + ⇢1v21

cpT0 +12v

20 = cpT1 + 1

2v21 �Q

p0/⇢0T0 = p1/⇢1T1 = ��1� cp

eliminate the temperature, using the equation of state,

yields two equations for p1 and v1

Moshe  Matalon  

Page 4: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   4  

after some manipulations (and use of the equation of state to eliminate T )

let m = �0v0 = �1v1

they determine the relation between the end and initial states

Rayleigh Line

Hugoniot curverelation between thermodynamic variables only

p1 � p01/⇢1 � 1/⇢0

= �m2

� � 1

✓p1

⇢1

� p0⇢0

◆� 1

2

✓1

⇢1

+1

⇢0

◆(p1 � p0) = Q

Moshe  Matalon  

upstream state corresponds to p = v = 1

(also the specific volume)

possible downstream states are intersections of the Hugoniot and Rayleigh line

Dimensionless variables

p = p1/p0 , ⇢ = ⇢1/⇢0 , v = v1/v0

µ = m2/p0⇢0 , q = Q/(p0/⇢0) = Q/(�a20)

provide p, v (and consequently ⇢, T ) for a given µ

p� 1

v � 1= �µ

p =2q + �+1

��1 � v�+1��1v � 1

Moshe  Matalon  

Page 5: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   5  

µ =m2

⇢0p0=

⇢20v20

⇢0p0=

v20p0/⇢0

=�v20a20

= �M20

µ =m2

⇢0p0=

⇢21v21⇢0p0

=p1p0

⇢1⇢0

v21p1/⇢1

=p1p0

⇢1⇢0

�v21a21

=�p

vM2

1

µ =�p

vM2

1

M21 =

v

pM2

0

a relation between upstream and downstream Mach numbers

where M0 = v0/a0 is the upstream Mach number

µ = �M20

where M1 = v1/a1 is the downstream Mach number

Moshe  Matalon  

1

1  

q

q = 0

Hugoniot curves

Hugoniot is a rectangular hyperbola that asymptotes tov = (� � 1)/(� + 1) as p ! 1p = �(� � 1)/(� + 1) as v ! 1

solutions restricted to

��1�+1 v 2q + �+1

��1

0 p 1

p

v = 1/⇢

Moshe  Matalon  

Page 6: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   6  

1

1  

solutions further restricted to

��1�+1 v < 1 and 1+(� � 1)q p 1

1+

��1� q < v 2q + �+1

��1 and 0 p < 1

Detonations

Deflagrations

Ralyleigh line always goes through (1,1) and has a negative slope

v = 1/⇢

p

Moshe  Matalon  

1

1  

 

the other solution, for a subsonic incident wave, would correspond to a

rarefaction wave, but is not acceptable because it violates the 2

ndlaw.

there is only one solution for each supersonic incident velocity

it is a shock wave, with p, � and T increasing behind the shock,

the gas slows down (v < 1) behind the shock and is subsonic.

q = 0

v = 1/⇢

p

shock

wave

Moshe  Matalon  

Page 7: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   7  

1

1  

 

   

 

 

 

s

t

r

o

n

g

d

e

t

o

n

a

t

i

o

n

w

e

a

k

d

e

t

o

n

a

t

i

o

n

w

e

a

k

d

e

fl

a

g

r

a

t

i

o

n

s

t

r

o

n

g

d

e

fl

a

g

r

a

t

i

o

n

CJ

CJ

q > 0

v = 1/⇢

p

Moshe  Matalon  

Deflagrations

there is a maximum value of µ and, as a consequence, a maximum wave speed

corresponding to Chapman-Jouguet (CJ) deflagration;

for µ < µCJ there are two solutions, weak and strong deflagrations

Detonations

there is a minimum value of µ and, as a consequence, a minimum wave speed

corresponding to Chapman-Jouguet (CJ) detonation

for µ > µCJ there are two solutions, strong and weak detonations

passing through a detonation wave

v < 1 the gas slows down

⇢ > 1 the gas is compressed

p > 1 the pressure increases

passing through a deflagration wave

v > 1 the gas speeds up

⇢ < 1 the gas expands

p < 1 the pressure decreases

Moshe  Matalon  

Page 8: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   8  

� (� + 1)p+ (� � 1)

(� + 1)v � (� � 1)=

p� 1

v � 1

[(� + 1)p+ (� � 1)][v � 1] + [p� 1][(� + 1)v � (� � 1)] = 0

[2(� + 1)v � 2�)]p� 2v = 0

Chapman-Jouget Waves

p� 1

v � 1= �µ , p =

2q + �+1��1 � v

�+1��1v � 1

Rayleigh line Hugoniot

equate the slopes

dp

dv

✓� + 1

� � 1v � 1

◆+ p

✓� + 1

� � 1

◆= �1

dp

dv

����R

= �µ =p� 1

v � 1

dp

dv

����H

= � (� + 1)p+ (� � 1)

(� + 1)v � (� � 1)

Moshe  Matalon  

p =v

(� + 1)v � � )v

�p

1� p

v � 1= 1 µ =

�p

v

Since µ =�p

vM2

1 ) M21 = 1

For Chapman-Jouguet (CJ) waves the downstream gas velocity relative to the

wave (for both, detonations and deflagrations) is sonic; i.e. (M1)CJ = 1

)

p =v

(� + 1)v � �

p =2q + �+1

��1 � v�+1��1v � 1

) � + 1

� � 1v2 � � + 1

2q +

2�

� � 1

�v + 2q +

� + 1

� � 1= 0

and a similar equations for p.

Then µ is calculated from µ�p/v = 1.

Moshe  Matalon  

Page 9: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   9  

One findp± = 1 + q(� � 1)(1±�)

v± = 1 + q� � 1

�(1⌥�)

µ± = � + q(�2 � 1)(1±�)

where � = [1 + 2�/q(�2 � 1)]1/2, and +/� stand for detonation/deflagration,respectively.

detonations are supersonic waves (1 < M0 < 1) and

deflagrations are subsonic waves ( 0 < M0 < 1).

Using µ = �M20 we have

M0± =

s

1 +q(�2 � 1)

2�±

sq(�2 � 1)

2�

which implies that

Moshe  Matalon  

����dp

dv

����H

>

����dp

dv

����R

����dp

dv

����H

<

����dp

dv

����R

M21 < 1

M21 > 1

Note also that

for strong detonations and weak deflagrations:

for weak detonations and strong deflagrations:

Moshe  Matalon  

Page 10: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   10  

�v0 ��� u = v1 � v0u = 0v1�!v0 �!

as seen by an observer moving with the wave

as seen in the laboratory frame

u = v + Vwave is the fluid particle velocity

u < 0 for detonations and u > 0 for deflagrations

t

x

f

r

o

n

t

particle path

Unburned

t

x

f

r

o

n

t

particle path

Unburned

Detonations

Deflagrations

the flow follows the detonation wave, but

cannot catch up with it (since v1 < a1).

Moshe  Matalon  

Comment

The Rankine-Hugoniot analysis provides, for given conditions, the state of thegas downstream, but does not determine (except for the CJ waves) the wavespeed v0.

The possible existence of a final state based on this analysis does not guar-antee the existence of the solution. One needs to ensure that the initial andfinal states are connected smoothly by a solutions of the di�erential equationsand that this solution is stable.

Moshe  Matalon  

Page 11: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   11  

Deflagrations

• Expansion waves that propagate subsonically (0 < M0 < 1)

• The burned gas behind the front expands and accelerates away from the

front

• In a frame attached to the wave, the downstream flow beyond CJ waves

is sonic (M1 = 1); for weak deflagrations M1 < 1 and for for strong

deflagrations M1 > 1

• Wave structure considerations forbid strong deflagrations (there is no

structure that connects the burned and unburned states)

• There is a unique solution for the (weak) deflagration, giving a definite

wave speed for each gas mixture

• Weak deflagrations (flames) travel typically at 10 - 100 cm/s and

p1/p0 ⇠ 1, T1/T0 ⇠ 6, ⇢1/⇢0 ⇠ 1/6

Moshe  Matalon  

Detonations

• Compression waves that propagate supersonically (1 < M0 < 1)

• The wave retards the burned gas that compresses behind the front

• In a frame attached to the wave the downstream flow beyond CJ waves is

sonic (M1 = 1); for weak detonations M1 > 1 and for strong detonations

M1 < 1.

• A strong detonation can be produced by driving a piston at an appropriate

speed into the mixture

• There is only one wave speed at which a weak detonation can propagate

(but weak detonations are seldom observed)

• Self-sustained detonations are CJ detonations; in a hydrogen/air mixture

v0 ⇠ 2000� 3000m/s, and

p1/p0 ⇠ 20, T1/T0 ⇠ 10, ⇢1/⇢0 ⇠ 2

Moshe  Matalon  

Page 12: Notes Lecture 4 - Princeton University

Spring  2013  

Moshe  Matalon                                                                                  University  of  Illinois  at  Urbana-­‐Champaign   12  

Deflagrations (weak) are subsonic waves, so that disturbances behind the wave

can propagate ahead and a↵ect the state of the unburned gas before arrival of

the wave (this depends, of course, on the rear end boundary conditions, if open

or close, etc. . . ).

The expansion of the products can therefore cause a displacement of the re-

actants so that the wave moves faster than the flame speed (burning velocity

relative to the quiescent mixture).

In unconfined obstacle-free systems the mode of propagation is, generally speak-

ing, controlled by the ignition conditions; deflagrations are initiated by a mild

energy discharge (i.e, by a spark) while detonations are provoked by shock waves

via localized explosion.

Because of intrinsic instabilities, turbulence, obstacles, etc. . . the deflagra-

tion wave may accelerate and turn into a detonation, a process known as

Deflagration to Detonation Transition (DDT).

Moshe  Matalon