nov*18,*2013:*viral*evolu:on*iiand* crickets*viacubical...

31
MATH:7450 (22M:305) Topics in Topology: Scien:fic and Engineering Applica:ons of Algebraic Topology Nov 18, 2013: Viral Evolu:on II and Crickets via cubical homology. Fall 2013 course offered through the University of Iowa Division of Con:nuing Educa:on Isabel K. Darcy, Department of Mathema:cs Applied Mathema:cal and Computa:onal Sciences, University of Iowa hVp://www.math.uiowa.edu/~idarcy/AppliedTopology.html

Upload: hathuan

Post on 28-Feb-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

MATH:7450  (22M:305)  Topics  in  Topology:  Scien:fic  and  Engineering  Applica:ons  of  Algebraic  Topology  

 

Nov  18,  2013:  Viral  Evolu:on  II  and  Crickets  via  cubical  homology.  

 Fall  2013  course  offered  through  the    

University  of  Iowa  Division  of  Con:nuing  Educa:on    

Isabel  K.  Darcy,  Department  of  Mathema:cs  Applied  Mathema:cal  and  Computa:onal  Sciences,  

University  of  Iowa    

hVp://www.math.uiowa.edu/~idarcy/AppliedTopology.html  

hVp://www.pnas.org/content/110/46/18566.full  

vol.  110  no.  46,  18566–18571,      2013  

Monday  December  09,  2013  10:15am-­‐11:05am  The  Topology  of  Evolu:on  Raul  Rabadan  (Columbia  University)    

hVp://upload.wikimedia.org/wikipedia/commons/7/79/RPLP0_90_ClustalW_aln.gif  

Mul:ple  sequence  alignment  

Linking algebraic topology to evolution.

Chan J M et al. PNAS 2013;110:18566-18571 ©2013 by National Academy of Sciences

Re:cula:on  

hVp://www.web-­‐books.com/MoBio/Free/Ch8D2.htm  

Homologous  recombina:on  

hVp://www.virology.ws/2009/06/29/reassortment-­‐of-­‐the-­‐influenza-­‐virus-­‐genome/  

Reassortment  

Reconstructing phylogeny from persistent homology of avian influenza HA. (A) Barcode plot in dimension 0 of all avian HA subtypes.

Chan J M et al. PNAS 2013;110:18566-18571 ©2013 by National Academy of Sciences

Influenza:    For  a  single  segment,    

no  Hk  for  k  >  0      no  horizontal  transfer    (i.e.,  no  homologous  recombina:on)  

Persistent homology of reassortment in avian influenza.

Chan J M et al. PNAS 2013;110:18566-18571 ©2013 by National Academy of Sciences

www.virology.ws/2009/06/29/reassortment-­‐of-­‐the-­‐influenza-­‐virus-­‐genome/  

For  mul:ple  segments,  non-­‐trivial  Hk    

k  =  1,  2.    Thus    horizontal  transfer  via  reassortment  but  not  homologous  recombina:on  

Barcoding plots of HIV-1 reveal evidence of recombination in (A) env, (B), gag, (C) pol, and (D) the concatenated sequences of all three genes.

Chan J M et al. PNAS 2013;110:18566-18571 ©2013 by National Academy of Sciences

HIV  –  single  segment  (so  no  reassortment)    Non-­‐trivial  Hk    

k  =  1,  2.    Thus  horizontal  transfer  via  homologous  recombina:on.        

TOP  =  Topological  obstruc:on        =  maximum  barcode  length  in  non-­‐zero  dimensions    TOP  ≠  0  è  no  addi:ve  distance  tree    

TOP  is  stable  

ICR  =  irreducible  cycle  rate                  =  average  number  of  the  one-­‐dimensional  

irreducible  cycles  per  unit  of  :me  Simula:ons  show  that  ICR  is  propor:onal  to  and  provides  a  lower  bound  for  recombina:on/reassortment  rate  

Persistent  homology                      Viral  evolu:on  Filtra:on  value  ε                    Gene:c  distance                                                                                                                        (evolu:onary  scale)  β0  at  filtra:on  value  ε        Number  of  clusters  at  scale  ε  Generators  of  H0                          A  representa:ve  element  of  

 the  cluster  Hierarchical                                          Hierarchical  clustering  rela:onship  among    H0  generators   β1                                                                            Number  of  re:culate  events  

                         (recombina:on  and    reassortment)  

Persistent  homology                      Viral  evolu:on  Generators  of  H1                          Re:culate  events    Generators  of  H2                          Complex  horizontal    

genomic  exchange    Hk    ≠  0  for  some  k  >  0            No  phylogene:c  tree  

representa:on    No.  of                                                                Lower  bound  on  rate  of    higher-­‐dimensional                                                        re:culate  events    generators  over  :me    (irreducible  cycle  rate)  

hVp://upload.wikimedia.org/wikipedia/commons/8/8d/Cricket900ppx_crop.jpg  

Cricket  

2012  

Thursday  December  12,  2013  9:00am-­‐9:50am  Structure  of  the  Afferent  Terminals  in  Terminal  Ganglion  of  a  Cricket  and  Persistent  Homology  Tomas  Gedeon  (Montana  State  University)    

2012  dense  nerve  center  

Nerve  endings  

Terminal  Ganglion  

distal          vs          proximal  closest  15%  

proximal  data:    long,    medium,  short  42428,  27442,  29297  

distal  data:    long  sparse  since  harder  to  obtain  (6194).  

furthest  30%  

Proximal  data  was  filtered:    1.)    remove  outliers  (noise)      experimental  error      using  data  obtained  from  many    

different  crickets    2.)    remove  (redundant)  points  in  densest  regions  to  improve  computa:onal  speed      Performed  comparison  using  data  sampled  from  a  Gaussian  Mixture  Model.  

cubical  homology:  for  reducing  memory  requirements  (bitmap).  To  calculate  persistent  homology:  Mrozek,  Batko  and  Wanner’s  

cubPersistenceMD.  To  find  cycles:    

Homcubes  in  CHomP.  

cubical  homology  To  calculate  persistent  homology:  Mrozek,  Batko  and  Wanner’s    cubPersistenceMD.  www.ii.uj.edu.pl/~mrozek/sooware/homology.html    Kaczynski  T,  Mischaikow  K,  Mrozek  M  (2004)  Computa:onal  Homology.  Applied  Mathema:cal  Sciences.  Springer.      hVp://chomp.rutgers.edu    hVp://www.sagemath.org/doc/reference/homology/sage/interfaces/chomp.html    

To  find  cycles:  Homcubes  in  CHomP.  

medium+small