„novel mechanisms of anaerobic methane...

29
„Novel mechanisms of anaerobic methane oxidation" Rudolf K. Thauer Max Planck Institute for Terrestrial Microbiology 06. 01. 11

Upload: phamkhuong

Post on 01-Mar-2018

232 views

Category:

Documents


1 download

TRANSCRIPT

„Novel mechanisms of anaerobic methane oxidation"

Rudolf K. Thauer

Max Planck Institute for Terrestrial Microbiology

06. 01. 11

0

50

100

150

CH4 mmol dm3

Depthmm

2 4

0 10 20 30SO4

2 mmol dm3

0

SO42

Archaea and Bacteria

CH4

Zone ofAnaerobic oxidation of methane(AOM)

Oxic

Pioneering work (1970s):C. Barnes, E. Goldberg;C. Martens, W. Reeburgh

CH4 + SO42- + 2H+ CO2 + H2S +

2H2O

ΔGo´= - 21 kJ/molInhibited by BES

-10 20100Temperature °C

30

15

10

5

0Methane gas+ water ice

Methane gas+ water

Methanehydrate

Methanehydrate +water ice

Ove

rpre

ssur

e (

bar)

22 ml CH4per l H2O

22 l CH4per l H2O

220 ml CH4per l H2O

-10 20100Temperature °C

30

15

10

5

0Methane gas+ water ice

Methane gas+ water

Methanehydrate

Methanehydrate +water ice

Ove

rpre

ssur

e (

bar)

22 ml CH4per l H2O

22 l CH4per l H2O

220 ml CH4per l H2O

Methane seep area in the western Black Sea

methane seeping area

The largest anoxic water body on earth

No oxygen below 130 m

Anaerobic microorganisms are not restricted to the sediment

High High sulfatesulfate (25 (25 mMmM))

TemperatureTemperature nearnear thethe bottombottom10 10 ooCC

Working Plattform and sampling equipment

The Russian research VesselProf. Logachev

The German submersible JagoImages: GHOSTDABS

CH4 + SO42- + Ca2+ = CaCO3 + H2S +H2O

Microbial mats in the Black Sea (composed mainly of methanotrophicarchaea and sulfate reducing bacteria).

Archaea (ANME-1)Bacteria

In the laboratory microbial mats from the Black Seacatalyze (no pure culture available):

CH4 + SO42- + 2H+ ⇌ CO2 + H2S + 2H2O

ΔGo´= - 21 kJ/mol

apparent Km for CH4 10 bar

specific rate of AOM at 1 bar CH4 1 nmol/min/mg protein

The methanotrophic archaea in the Black Sea mats contain high concentration of methyl-coenzyme M reductase (three lines of evidence)

Methane oxidation with sulfate is inhibited by bromoethane sulfonate, a specific inhibitor of methyl-coenzyme M reductase

Conclusion:First step in AOM with sulfate is catalyzed by methyl-coenzyme M reductase

HS NH

O H CO2-

CH3

H O

CH4

+

Methyl-coenzyme M Coenzyme B

Heterodisulfide

+

SS N

H

O H CO2-

CH3

H O

-O3S

-O3SS

CH3

PO32-

PO32-

Methyl-CoM Reductase from methanogenic archaeaΔGo´= -30±10 kJ/mol

αα22ββ22γγ22

F430Ni(II)

F430Ni(I)

EEoo´= ´= -- 650 mV650 mV1 e1 e--

1 e1 e--

F430Ni(III)

EEo o > + 1> + 1VV

F430Ni(II)

F430Ni(I)

EEoo´= ´= -- 650 mV650 mV1 e1 e--

1 e1 e--

F430Ni(III)

EEo o > + 1> + 1VV

F430Ni(II)

F430Ni(I)

EEoo´= ´= -- 650 mV650 mV1 e1 e--

1 e1 e--

F430Ni(III)

EEo o > + 1> + 1VV

F430Ni(II)

F430Ni(I)

EEoo´= ´= -- 650 mV650 mV1 e1 e--

1 e1 e--

F430Ni(III)

EEo o > + 1> + 1VV

F430Ni(II)

F430Ni(I)

EEoo´= ´= -- 650 mV650 mV1 e1 e--

1 e1 e--

F430Ni(III)

EEo o > + 1> + 1VV

F430Ni(II)

F430Ni(I)

EEoo´= ´= -- 650 mV650 mV1 e1 e--

1 e1 e--

F430Ni(III)

EEo o > + 1> + 1VV

N

N N

N

H

H

HOOC

O

HN

O

Ni

905 Da905 Da

1512

13

19

172

1

5

1020

18

H2NOC

COOH

COOH

COOH

COOH

H3CCH3

3

N

N N

N

H

H

HOOC

O

HN

O

N

905 Da905 Da

1512

13

19

172

1

5

1020

18

H2NOC

COOH

COOH

COOH

COOH

H3

CH3

3

173

++

HS NH

O H CO2-

CH3

H O

CH4

+

Methyl-coenzyme M Coenzyme B

Heterodisulfide

+

SS N

H

O H CO2-

CH3

H O

-O3S

-O3SS

CH3

PO32-

PO32-

Methyl-CoM Reductase from methanogenic archaea

ΔΔGGoo´́= = -- 30 30 ±±10 kJ/mol10 kJ/mol

•The presence of coenzyme M andcoenzyme B in methanotrophicarchaea has not been shown.

•MCR has not been shown to catalyze the oxidation of methane

?

©Michaelis/GHOSTDABS, Hamburg

CH4 + SO42- + Ca2+ = CaCO3 + H2S +H2O

Isolation of MCR from

the microbial mats

Microbialmat

Cellextraction

Pellet Supernatant

Chromatographyon anion exchangeresins

MCR

MCR crystalls

Methyl-coenzym M reductase from ANME-1

Coenzyme B

Coenzyme M

6.3 Å

2.4 Å

Shima et al. 2010

Coenzyme F430

Coenzyme B

Coenzyme M

Coenzyme F430

positiveelectrondensity

COOH

N

N N

N

HH3C

H2NOC

H

HOOC

O

COOH

COOH

HN

O

H3

COOH

Ni

C

SSCHCH33

++

951.28 Da951.28 Da

H COOH

N

N N

N

HH3C

H2NOC

H

HOOC

O

COOH

COOH

HN

O

H3

COOH

Ni

C

SSCHCH33

++

951.28 Da951.28 Da

H

F430 in methyl-coenzyme M reductase from ANME-1J. Am. Chem. Soc. 130, 10758-10767 (2008)

HS NH

O H CO2-

CH3

H O

CH4

+

Methyl-coenzyme M Coenzyme B

Heterodisulfide

+

SS N

H

O H CO2-

CH3

H O

-O3S

-O3SS

CH3

PO32-

PO32-

ΔGo´= -30 kJ/molCan MCR catalyze the back reaction and ifyes at sufficient rates to account for the in vivomethane oxidation rates?

?

13CH4 + CoM-S-S-CoB ⇌13CH3-S-CoM + HS-CoB ∆Go = + 30 kJ/mol

12CH3-S-CoM + HS-CoB ⇌ 12CH4 + CoM-S-S-CoB ∆Go = – 30 kJ/mol

13CH4 + 12CH3-S-CoM ⇌ 12CH4 + 13CH3-S-CoM ∆Go = 0 kJ/mol

Nature 2010

Nature 2010

Nature 2010

CH4 +S

S NH

O H CO2-

CH3

H O

-O3SPO3

2-

HS NH

O H CO2-

CH3

H OMethyl-coenzyme M Coenzyme B

+-O3SS

CH3

PO32-

Methyl-CoM Reductase from M. marburgensis

Specific rate 12 nmol/min/mgat 1 bar CH4

Apparent Km 10 bar)

In the laboratory microbial mats from the Black Seacatalyze (no pure culture available):

CH4 + SO42- + 2H+ ⇌ CO2 + H2S + 2H2O

ΔGo´= - 21 kJ/mol

apparent Km for CH4 10 bar

specific rate of AOM at 1 bar CH4 1 nmol/min/mg protein

CH4

H2CO2

CH3COOH

Biomass(3 Gt/a) methano-

genicarchaea

bacteriaprotozoafungi

Methane deposits(> 10,000 Gt)

anox

ic e

nviro

nmen

ts

o

xic

tr

opos

pher

e

Lignin(0.3 Gt/a) thermogenic

formation- both very slow -

microbial or

BiomassBiomass(140 (140 GtGt/a)/a)

CO2 (380 ppm)

net primary production via oxygenic photo-

synthesis + .OH

+ O2

+ NO2-

+ FeIII

+ MnIV

+ SO42-

photochemical oxidation(0.5- 0.6 Gt CH4/a)

aerobic bacteria ( 0.6 Gt CH4/a)

N2-forming bacteria (?Gt CH4/a)

bacteria ? (? Gt CH4/a)

methanotrophic archaea with sulfate-reducing bacteria (up to 0.3 Gt CH4/a)

oxid

atio

n (1

GtC

H4/a

)

(1 Gt CH4/a)

diffusion(0.5 Gt CH4/a)

CH4(1.8 ppm)

geochemicalformation

aerobic oxidation

anaerobic oxidation

CO32- + 8 [H] from

serpentinization

sedi

mta

tion

bein

gbu

ried

+ O2

+ NO3-, FeIII, MnIV, or SO4

2-

2 NO2- 2 NO

N2

O2

CH4

CH3OH CO22e-

2e-

NO dis-mutase?

pMMO

Methane formation/oxidationMeike BrefortReinhard BöcherAnne KasterSeigo Shima

ETH ZürichBernhard JaunStefan MayrSilvan Scheller

University of OxfordJeffry Harmer

MPI für Biophysik FrankfurtUlrich ErmlerKristian Parey

MPI BremenMPI BremenFritz WiddelMartin KruegerMartin Krueger