november 04, 2016 - mr herman's webpagework energy presentation part 1 2016.notebook 3 november 04,...

24
Work Energy Presentation Part 1 2016.notebook 1 November 04, 2016 www.njctl.org Algebra Based Physics Work and Energy Table of Contents Work and Energy Click on the topic to go to that section Energy and the WorkEnergy Theorem Forces and Potential Energy Conservation of Energy Power https://www.njctl.org/video/?v=zFxiRGMN5RE Work and Work Energy Theorem Return to Table of Contents Work and the WorkEnergy Theorem https://www.njctl.org/video/?v=gpIGt6ANfFU Dec 76:03 PM The most powerful concepts in science are called "conservation principles". These principles allow us to solve problems without worrying too much about the details of a process. We just have to take a snapshot of a system initially and finally; by comparing those two snapshots we can learn a lot. Conservation Principles Dec 76:03 PM If you know that there are 50 pieces of candy at the beginning. And you know that none of the pieces have been taken out or added...you know that there must be 50 pieces at the end. Conservation Principles A good example is a bag of candy. Dec 76:03 PM Conservation Principles You can change the way you arrange them by moving them around...but you still will have 50 pieces.In that case we would say that the number of pieces of candy is conserved. That is, we should always get the same amount, regardless of how they are arranged.

Upload: others

Post on 06-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Work Energy Presentation Part 1 2016.notebook

    1

    November 04, 2016

    www.njctl.org

    Algebra Based PhysicsWork and Energy

    Table of Contents

    Work and EnergyClick on the topic to go to that section

    • Energy and the WorkEnergy Theorem

    • Forces and Potential Energy

    • Conservation of Energy

    • Power

    https://www.njctl.org/video/?v=zFxiRGMN5RE

    Work and Work Energy Theorem

    Return toTable ofContents

    Work and the WorkEnergy Theorem

    https://www.njctl.org/video/?v=gpIGt6ANfFU

    Dec 76:03 PM

    The most powerful concepts in science are called "conservation principles".  These principles allow us to solve problems without worrying too much about the details of a process.  

    We just have to take a snapshot of a system initially and finally; by comparing those two snapshots we can learn a lot.

    Conservation Principles

    Dec 76:03 PM

    If you know that there are 50 pieces of candy at the beginning.  And you know that none of the pieces have been taken out or added...you know that there must be 50 pieces at the end.

    Conservation Principles

    A good example is a bag of candy.  

    Dec 76:03 PM

    Conservation Principles

    You can change the way you arrange them by moving them around...but you still will have 50 pieces.In that case we would 

    say that the number of pieces of candy is conserved. 

    That is, we should always get the same amount, regardless of how they are arranged. 

    https://www.njctl.org/video/?v=zFxiRGMN5REhttps://www.njctl.org/video/?v=gpIGt6ANfFU

  • Work Energy Presentation Part 1 2016.notebook

    2

    November 04, 2016

    Dec 76:03 PM

    Energy is a conserved property of nature.  It is not created or destroyed. Therefore in a closed system we will always have the same amount of energy.  

    The only way the energy of a system can change is if it is open to the outside...this means that energy has been added or taken away.

    Conservation of Energy

    Dec 76:03 PM

    We may not be able to define energy, but because it is a conserved property of nature, it's a very useful idea.

    What is Energy?

    It turns out that energy is so fundamental, like space and time, that there is no good answer to this question. However, just like space and time, that doesn't stop us from doing very useful calculations with energy.

    Dec 76:03 PM

    If we call the amount of energy that we start with "Eo" and the amount we end up with as "Ef" then we would say that if no energy is added to or taken away from a system that 

    Eo = EfIt turns out there are only two ways to change the energy of a system. One is with heat (which we won't deal with here) the 

    other is with Work, "W".

    If we define positive work as that work which increases the energy of a system our equation becomes:

    Eo + W = Ef

    Conservation of Energy

    Dec 76:03 PM

    Work can only be done to a system by an external force; a force from something that is not a part of the system.

    Work

    So if our system is a plane on an aircraft carrier and we come along and push the plane, we can increase the energy of the plane…

    We are essentially doing work on the plane.

    Dec 76:03 PM

    The amount of work done, and therefore the amount of energy increase that the system will experience is given by the equation:

    Work

    There are some important points to understand about this equation.

    W = Fdparallel

    Meaning, work is the product of the force applied which moves the object a parallel displacement

    Dec 76:03 PM

    WorkIf the object that is experiencing the force does not move

    (if dparallel = 0) then no work is done. 

    The energy of the system is unchanged; a state ofequilibrium.

  • Work Energy Presentation Part 1 2016.notebook

    3

    November 04, 2016

    Jul 110:16 AM

    Acceleration occurs due to the unbalanced force.Work is the ability to cause change.

    Positive Work

    DisplacementMF

    If the object moves in the same direction as the direction of the force(for instance if force and displacement are in the same direction)

    then the work is positive: W > 0. 

     The energy of the system is increased.

    Jul 110:16 AM

    If the object moves in the direction opposite the direction of the force (for instance if force and displacement are in opposite directions) then the work is negative: W 

  • Work Energy Presentation Part 1 2016.notebook

    4

    November 04, 2016

    Two Dimensional Forces and Work

    FAPP

    Fparallelv  Fperpendicular

    Δx

    θ

    After breaking FAPP into components that are parallel and perpendicular to the direction of motion, we can see that no work is done by the perpendicular component; work is only done by the parallel component. 

    Two Dimensional Forces and Work

    Using trigonometry, we find that Fparallel = FAPPcosθ

    Two Dimensional Forces and Work

    FAPP

    Fparallelv  Fperpendicular

    Δx

    θ

    In words, the work done on an object by a force is the product of the magnitude of the force and the magnitude of the displacement times the cosine of the angle between them.

    Two Dimensional Forces and Work

    W = Fparalleld becomes:

    W = (FAPPcosθ)Δx = FAPPΔxcosθ

    Two Dimensional Forces and Work

    This is really no more difficult a case.  We just have to find the component of force that is parallel to the object's displacement.

    Two Dimensional Forces and Work

    Instead of pulling the objectat an angle to the horizontal,what if it is pushed?

    Two Dimensional Forces and Work

    The interpretation is the same, just determine the angle between the force and displacement and use:

    W = FAPPΔxcosθ

    Fparallel

    FperpendicularθFAPP

    Δx

    Two Dimensional Forces and Work

    Even though Fperpendicular is in the negative direction (it was positive when the object was pulled), it does not affect the work  as only the parallel component contributes to the work.

    Dec 76:03 PM

    Eo + W = Ef

    Since the work changed the energy of a system: the units of energy must be the same as the units of work

    The units of both work and energy are the Joule.

    Units of Work and Energy

    James Joule

    Dec 76:31 PM

    1 A +24 N force is applied to an object that moves 10 m in the same direction during the time that the force is applied.  How much work is done to the object?

    Answ

    er

    https://www.njctl.org/video/?v=63FEFiw9qg

    https://www.njctl.org/video/?v=63FEFi-w9qg

  • Work Energy Presentation Part 1 2016.notebook

    5

    November 04, 2016

    Dec 76:31 PM

    2 A barbell of mass "m" is lifted vertically upwards, at a constant velocity, to a distance "h" by an outside force.  How much work does that outside force do on the barbell? 

    A mgB mghC mghD 0E mg

    Hint: Do a free body diagram to determine a formula for the outside force (Fapp); then use the formula for work: W = Fdparallel.

    Answ

    er

    https://www.njctl.org/video/?v=F9K5YlPoZk

    Gravitational Potential Energy

    Gravitational Potential Energy

    Return to Tableof Contents

    Gravitational Potential Energy

    We'll start with a quick review of Gravitational Potential Energy as presented in the Algebra Based Physics course.  Then, the impact of motion in two dimensions will be analyzed. 

    Gravitational Potential Energy

    Fapp

    mg

    A book of mass, m, is lifted vertically upwards a displacement, h, by an external force (a person) at a constant velocity. How much work does the external force do on the book? 

    Gravitational Potential Energy

    Gravitational Potential Energy

    Fapp

    mg

    a = 0Apply Newtons' Second Law to the FBD:

    ΣFy = Fapp  mg = may = 0   (since v = const)

    Fapp = mg

    Use the definition of work:  W = FΔxparallel

    W = (mg)Δxparallel = mgΔx   (since Fapp is parallel to Δx)

    W = mgh   (since Δx = h)

    Gravitational Potential Energy

    Gravitational Potential Energy

    Apply the WorkEnergy equation, Eo + W = Ef.  If the book started and finished at rest (KE0 = KEf = 0), then Eo = 0.  The equation becomes:

    W = Ef

    But we just showed that the external force did W = mgh to lift the book... so 

    mgh = Ef  or Ef = mgh 

    We conclude that the energy of a mass is increased by an amount mgh when it is raised by a displacement, h.

    Gravitational Potential Energy

    Gravitational Potential Energy

    The name for this form of energy is Gravitational Potential Energy (GPE).

    GPE = mgh

    One important thing to note is that changes in gravitational potential energy are important, but their absolute value is not. This is because h represents Δx, or the change in height.

    You can define any point to be zero meters in height when it represents the original position of an object. This would give you  zero for GPE at that point.  But no matter what height you choose to call zero, changes in heights will still result in changes of GPE.

    https://www.njctl.org/video/?v=F-9K5YlPoZk

  • Work Energy Presentation Part 1 2016.notebook

    6

    November 04, 2016

    Gravitational Potential Energy

    Gravitational Potential EnergyThe book is moving up at a constant velocity and travels a displacement h.  Note that the force exerted by gravity is in the opposite direction of its motion (antiparallel).

    So, Wgrav = FgravΔxparallel 

    Wgrav = (mg)(Δx) = mgh

    GPE = Wgrav = mgh

    Which, of course, gives us the same result for GPE.

    Fapp

    mg

    a = 0

    Gravitational Potential Energy problem

    3 What is the change of GPE for a 5.0 kg object which is raised from an initial height of 1.0 m above the floor to a final height of 8.0 m above the floor?

    Answ

    erGravitational Potential Energy problem

    4 A librarian takes a book off of a high shelf and refiles it on a lower shelf.  Which of the following explain the work done on the book by the librarian and the earth's gravitational field as its GPE is lowered?  Select two answers.

    A The librarian does positive work on the book.

    B The librarian does negative work on the book.

    C The gravitational field does positive work on the book.

    D The gravitational field does negative work on the book. Ans

    wer

    B, C

    GPE on an Incline

    GPE on an Incline

    h d

    θ

    Let's put together the concepts of two dimensional motion and forces with GPE.

    We'll use a box being pushed up an incline.

    It all depends on what we can measure.  Assume it's easier to measure the displacement (d) the box travels.

    How do we find its change in GPE? 

    GPE on an Incline

    GPE on an Incline

    h d

    θ

    The box starts with no velocity, and after it is pushed up a displacement d, the block slides up, and it momentarily stops before sliding back down.  

    Does ΔGPE = mgd? 

    GPE on an Incline

    GPE on an Incline

    h d

    θ

    No!  The formula for ΔGPE was calculated from the work formula, and it assumed the gravitational force (or the force that opposed it to lift the object) was in the same direction of the object's motion.

    The gravitational force points down. Since work only includes the distance and force components that are in parallel, ΔGPE involves h and not d in the picture.

    How is h calculated from d?

  • Work Energy Presentation Part 1 2016.notebook

    7

    November 04, 2016

    GPE on an Incline

    GPE on an Incline

    h d

    θ

    ΔGPE = mgh

    When motion is along an incline, the change in height can be related to the distance traveled using trigonometry.

    sinθ = h/d

    h = dsinθ

    Mar 37:09 PM

    5 What is the change in GPE for a 10.0 kg object which is raised from an initial height of 1.0 m above the floor to a final height of 10.0 m above the floor?

    Answ

    er

    https://www.njctl.org/video/?v=HRfzm3aIJs

    Mar 37:11 PM

    6 What is the change in height of a 1/2 kg object which lost 20 J of GPE?

    Answ

    er

    https://www.njctl.org/video/?v=m2Grf6ZpXcU

    GPE on an Incline problem

    7 A 5.0 kg block is at the top of a 6.0 m long frictionless ramp, which is at an angle of 370.  What is the height of the ramp?

    37o Answ

    er

    GPE on an Incline problem

    8 The 5.0 kg block slides to the bottom of the 6.0 m long frictionless ramp, which is at an angle of 37o.  What is the change in its GPE?

    37o Ans

    wer

    Jul 710:06 AM

    Answ

    er

    9 As an object falls downward, its GPE always _____.

    A increases 

    B decreases 

    C stays the same 

    https://www.njctl.org/video/?v=5BOfc00McQs

    https://www.njctl.org/video/?v=HRfzm-3aIJshttps://www.njctl.org/video/?v=m2Grf6ZpXcUhttps://www.njctl.org/video/?v=5BOfc00McQs

  • Work Energy Presentation Part 1 2016.notebook

    8

    November 04, 2016

    Dec 76:03 PM

    Kinetic Energy

    Imagine an object of mass "m" at rest at a height "h".  If dropped, how fast will it be traveling just before striking the ground?

    Use your kinematics equations to get a formula for v2.

    Since vo  = 0, ∆x = h, and a = g

    We can solve this for "gh"

    We're going to use this result later.

    v2 = vo2 + 2a∆x

    v2 = 2gh

    gh = v2 / 2 

    https://www.njctl.org/video/?v=AjT9BMKfze0

    Dec 76:03 PM

    Kinetic Energy

    In this example, we dropped an object.  While it was falling, its energy was constant...but changing forms.

    It only had gravitational potential energy, GPE, at beginning, because it had height but no velocity.

    Just before striking the ground (or in the example on the right, before hitting the hand) it only had kinetic energy, KE, as it had velocity but no height.

    In between, it had some of both.

    Dec 76:03 PM

    Kinetic EnergyNow let's look at this from an energy perspective.

    No external force acted on the system so its energy is constant.  Its original energy was in the form of GPE, which is "mgh".

    W = 0 and E0 = mgh

    Solving for gh yields

    Now let's use our result from kinematics(gh = v2/2)

    This is the energy an object has by virtue of its motion: its kinetic energy

    Eo + W = Ef

    mgh=Ef

    gh=Ef/m

    v2/2=Ef/m

    Ef=(1/2)mv2

    Divide both sides by m

    Dec 76:03 PM

    Kinetic Energy

    The energy an object has by virtue of its motion is called its kinetic energy. The symbol we will be using for kinetic energy is KE. 

    Like all forms of energy, it is measured in Joules (J).

    The amount of KE an object has is given by:

    KE = 1/2 mv2

    Jul 710:05 AM

    10 As an object falls, its KE always _____. A decreasesB increases

    C stays the same.

    Answ

    er

    https://www.njctl.org/video/?v=mcuU9nMfPdU

    Jul 710:03 AM

    11 A ball falls from the top of a building to the ground below.  How does the kinetic energy (KE) compare to the potential energy (PE) at the top of the building?A KE = PE

    B KE > PE

    C KE 

  • Work Energy Presentation Part 1 2016.notebook

    9

    November 04, 2016

    Dec 76:49 PM

    12 What is the kinetic energy of a 12 kg object with a velocity of 10 m/s?

    Answ

    er

    https://www.njctl.org/video/?v=bdSb4Fqh9vg

    Dec 89:08 AM

    13 A 3 kg object has 45 J of kinetic energy. What is its velocity?

    Answ

    er

    https://www.njctl.org/video/?v=XMqEio3puV0

    Jul 710:20 AM

    14 If the speed of a car is doubled, the KE of the car is:A quadrupled 

    B quartered 

    C halved 

    D doubled 

    Answ

    er

    https://www.njctl.org/video/?v=QuLGUEmsN7c

    Jul 710:20 AM

    15 If the speed of a car is halved, the KE of the car is:A quadrupled 

    B quartered 

    C halved 

    D doubled 

    Answ

    er

    https://www.njctl.org/video/?v=ISOCvADZWtc

    Jul 710:21 AM

    16 Which graph best represents the relationship between the KE and the velocity of an object accelerating in a straight line?

    KE

    v

    KE

    v

    KE

    v

    KE

    v

    A  

    B  

    C  

    D   Ans

    wer

    https://www.njctl.org/video/?v=c9drhr5pCY

    Jul 710:35 AM

    17 The data table below lists mass and speed for 4 objects.  Which 2 have the same KE?

    A A and D 

    B B and D

    C A and C 

    D B and C 

    Answ

    er

    https://www.njctl.org/video/?v=Dw91asRRhSk

    https://www.njctl.org/video/?v=bdSb4Fqh9vghttps://www.njctl.org/video/?v=XMqEio3puV0https://www.njctl.org/video/?v=QuLGUEmsN7chttps://www.njctl.org/video/?v=ISOCvADZWtchttps://www.njctl.org/video/?v=c9d-rhr5pCYhttps://www.njctl.org/video/?v=Dw91asRRhSk

  • Work Energy Presentation Part 1 2016.notebook

    10

    November 04, 2016

    Dec 1512:18 PM

    Elastic Potential Energy

    Energy can be stored in a spring, this energy is called Elastic Potential Energy.

    Robert Hooke first observed the relationship between the force necessary to compress a spring and how much the spring was compressed.

    https://www.njctl.org/video/?v=V7FjkmolSZk

    Dec 1512:18 PM

    Hooke's Law

    Fspring = kx

    k represents the spring constant and is measured in N/m. 

    x represents how much the spring is compressed and is measured as you would expect, in meters.

    The  sign tells us that this is a restorative force. (if you let the spring go once it is compressed, it

    will go back to its original position)

    Dec 1512:18 PM

    Hooke's Law

    Fspring = kx

    F(N)

    x (m)Force (effort required to stretch)

    Displacement (elongation)

    If we graph the relationship between force and elongation the mathematical relationship 

    can be experimentally confirmed.

    Dec 1512:18 PM

    Hooke's Law

    Fspring = kx

    Varying the displacement/elongation (x)

    F(N)

    x (m)small elongations require small forces

    F(N)

    x (m)large elongations require large forces

    Dec 1512:18 PM

    Hooke's LawFspring = kx

    Varying the spring constant k (the stiffness of the spring)The spring constant is related to the slope the line.

    F(N)

    x (m)

    Spring C

    onstant = slope of lin

    e (Newto

    ns/meter)

    Dec 1512:18 PM

    Hooke's LawFspring = kx

    Varying the spring constant k (the stiffness of the spring)The spring constant is related to the slope the line.

    F(N)

    small spri

    ng constan

    tlarge spring constant

    x (m)

    https://www.njctl.org/video/?v=V7FjkmolSZk

  • Work Energy Presentation Part 1 2016.notebook

    11

    November 04, 2016

    Mar 1712:41 PM

    18 Which spring requires a greater force to stretch?

    A blueB greenC the same force is required

    F(N)

    x (m)

    small spri

    ng constan

    tlarge spring constant

    Answ

    er

    https://www.njctl.org/video/?v=V7FjkmolSZk

    Mar 1712:36 PM

    19 An ideal spring has a spring constant of 25N/m. Determine the force required to elongate/displace the spring by 2 meters.

    Answ

    er

    https://www.njctl.org/video/?v=7tvI8d7Pd4A

    Mar 1712:39 PM

    20 A force of 100 newtons is applied to a spring with a constant of 25 N/m.  Determine the resulting displacement/elongation.

    Answ

    er

    https://www.njctl.org/video/?v=7tvI8d7Pd4A

    Dec 1512:25 PM

    Elastic Potential EnergyThe work needed to compress a spring is equal to the area 

    under its force vs. distance curve.

    W = 1/2 (x)(F)

    W = 1/2 (x)(kx)

    W = 1/2kx2

    Work = EPE

    Area of a triangle = 1/2 b h

    F = kx(N)

    x (m)Area under curve is work done.

    Area under curve is the elastic potential energy.

    Area is in the shape of a triangle.

    https://www.njctl.org/video/?v=nwaX5D0W1GU

    Dec 1512:34 PM

    Elastic Potential Energy

    The energy imparted to the spring by this work must be stored in the Elastic Potential Energy (EPE) of the spring:

    Like all forms of energy, it is measured in Joules (J).

    EPE = 1/2 k x2

    Dec 1512:25 PM

    Elastic Potential EnergyWork done when varying the displacement/enlongation (x)

    Remember the elastic potential energy stored is equal to the area under the curve.

    F = kx(N)

    x (m)

    F = kx(N)

    x (m)small elongation large elongation

    small area

    small EPE

    large area

    large EPE

    EPE = 1/2  k  x2Remember large elongations do large amounts of work.

    https://www.njctl.org/video/?v=V7FjkmolSZkhttps://www.njctl.org/video/?v=7tvI8d7Pd4Ahttps://www.njctl.org/video/?v=7tvI8d7Pd4Ahttps://www.njctl.org/video/?v=nwaX5D0W1GU

  • Work Energy Presentation Part 1 2016.notebook

    12

    November 04, 2016

    Dec 1512:25 PM

    Elastic Potential EnergyWork done when varying the displacement/enlongation (x)

    Remember the elastic potential energy stored is equal to the area under the curve.

    F = kx(N)

    x (m)

    F = kx(N)

    x (m) 6

    1 work unit

    3 3

    4 work units

    elongation of 3 x units

    will give one unit of

    work done or energy stored.

    stretching the spring TWICE as far to 6 x units

    will require more work (and effort).

    Doubling the stretch will require FOUR

    times the amount of work done and energy

    stored.EPE = 1/2 k x2

    EPE is directly proportional to the square of the 

    elongation. Stretching the spring twice as far requires 

    twice the force but FOUR times WORK.

    Dec 1512:25 PM

    Resistance Bands and EPE

    Resistance bands are used for resistance training! These bands allow us to get a 'workout' them because  stretching the bands 

    requires AND expends energy.

    Resistance bands are available in different tensions (spring constants) and are color coded accordingly.

    Dec 1512:25 PM

    Elastic Potential EnergyWork done when varying the spring constant (k). 

    EPE = 1/2 k x2

    EPE is directly proportional to the value for the spring constant!  Similar displacements require different amounts of work. The large spring constant requires more work and stores more elastic potential energy with similar elongation.

    F(N)

    x (m)

    F(N)

    x (m)

    large spring constant

    small area = small worklarge area = large work

    small spri

    ng constan

    t

    Dec 1512:31 PM

    21 Determine the elastic potential energy stored in a spring whose spring constant is 250 N/m and which is compressed 8 cm.

    Answ

    er

    https://www.njctl.org/video/?v=osLRYNZUXR8

    Dec 1512:37 PM

    22 What is the spring constant of a spring that is compressed 5 cm and has 0.65 J of elastic potential energy stored in it?

    Answ

    er

    Conservation of Energy

    Return toTable ofContents

    Conservation of Energy

    https://www.njctl.org/video/?v=GuIp7jaJ8E

    https://www.njctl.org/video/?v=osLRYNZUXR8https://www.njctl.org/video/?v=GuIp7ja-J8E

  • Work Energy Presentation Part 1 2016.notebook

    13

    November 04, 2016

    Dec 1512:27 PM

    A roller coaster is at the top of a track that is 80 m high. How fast will it be going at the bottom of the hill?

    Eo + W = Ef

    Eo = Ef

    GPE = KE

    mgh = 1/2mv2

    v2 = 2gh

    v2 = 2 (9.8m/s2) 80m v =39.6 m/s

    W = 0

    E0 = GPE, Ef = KE

    Substitute GPE and KE equations

    Solving for v yields

    Conservation of Energy

    Mar 37:19 PM

    23 A spring gun with a spring constant of 250 N/m is compressed 5 cm.  How fast will a 0.025 kg dart move when it leaves the gun?

    Answ

    er

    https://www.njctl.org/video/?v=qA9MABYv0uc

    Mar 37:21 PM

    24 A spring gun with a spring constant of 250 N/m is compressed 15 cm.  How fast will a 0.025 kg dart go when it leaves the gun?

    Answ

    er

    https://www.njctl.org/video/?v=tLxezl4ohfg

    Mar 37:29 PM

    25 A student uses a spring (with a spring constant of 180 N/m) to launch a marble vertically into the air.  The mass  of the marble is 0.004 kg and the spring is compressed 0.03m. What is the maximum height the marble will reach?

    Answ

    er

    https://www.njctl.org/video/?v=uCMQdPMV7SA

    Mar 37:36 PM

    26 A student uses a spring gun (with a spring constant of 120 N/m) to launch a marble vertically into the air.  The mass of the marble is 0.002 kg and the spring is compressed 0.04 m.How fast will the marble be traveling when it leaves the gun?

    Answ

    er

    https://www.njctl.org/video/?v=12z8LAx_9no

    Mar 37:43 PM

    27 A roller coaster has a velocity of 25 m/s at the bottom of the first hill.  How high was the hill?

    Answ

    er

    https://www.njctl.org/video/?v=rN8dHTR4eL0

    https://www.njctl.org/video/?v=qA9MABYv0uchttps://www.njctl.org/video/?v=tLxezl4ohfghttps://www.njctl.org/video/?v=uCMQdPMV7SAhttps://www.njctl.org/video/?v=12z8LAx_9nohttps://www.njctl.org/video/?v=rN8dHTR4eL0

  • Work Energy Presentation Part 1 2016.notebook

    14

    November 04, 2016

    Mar 37:51 PM

    28 A student uses the lab apparatus shown above.  A 5 kg block compresses a spring 6 cm.  The spring constant is 300 N/m.What is the blocks velocity be when the spring loses all of the stored elastic potential energy?

    Answ

    er

    https://www.njctl.org/video/?v=pCFbGfs3FFg

    Mar 37:55 PM

    29 How much work is done in stopping a 5 kg bowling ball rolling with a velocity of 10 m/s?

    Answ

    er

    https://www.njctl.org/video/?v=jYIHIVoUs2M

    Mar 37:58 PM

    30 How much work is done in compressing a spring with a 450 N/m spring constant a distance of 2 cm?

    Answ

    er

    https://www.njctl.org/video/?v=dTCGGwafpIc

    Power

    Return toTable ofContents

    Power

    https://www.njctl.org/video/?v=BRuTWJSCRu8

    Jun 511:37 AM

    Power

    It is often important to know not only if there is enough energy available to perform a task but also how much time will be required. 

    Power is defined as the rate that work is done (or energy is transformed) : 

       W    t

    P =

    100 Watt light bulbs convert 100 Joulesof electrical energy to heat and lightevery second.

    Jun 511:37 AM

    Power

    Since work is measured in Joules (J) and time is measured in seconds (s) the unit of power is Joules per second (J/s).

    However, in honor of James Watt, who made critical contributions in developing efficient steam engines, the unit of power is also know as a Watt (W).

       W    t

    P =

    https://www.njctl.org/video/?v=pCFbGfs3FFghttps://www.njctl.org/video/?v=jYIHIVoUs2Mhttps://www.njctl.org/video/?v=dTCGGwafpIchttps://www.njctl.org/video/?v=BRuTWJSCRu8

  • Work Energy Presentation Part 1 2016.notebook

    15

    November 04, 2016

    Jun 2812:28 AM

    Since W = Fd parallel 

    Regrouping this becomes

    Since v = d/t

      

    Power

    So power can be defined as the product of the force applied and the velocity of the object parallel to that force.

    Jun 2812:33 AM

    A third useful expression for power can be derived from our original statement of the conservation of energy principle.

    Power

    So the power absorbed by a system can be thought of as the rate at which the energy in the system is changing.

    Since W = Ef  E0 

    Jun 2812:33 AM

    31 A steam engine does 50 J of work in 12 s. What is the power supplied by the engine?

    Answ

    er

    https://www.njctl.org/video/?v=NXLuYIRc9F4

    Jun 2812:35 AM

    32 How long must a 350 W engine run in order to produce 720 kJ of work?

    Answ

    er

    https://www.njctl.org/video/?v=IRYweBGBdI

    Jun 2812:36 AM

    33 A 12 kW motor runs a vehicle at a speed of 8 m/s. What is the force supplied by the engine?

    Answ

    er

    https://www.njctl.org/video/?v=2O7vv19xrmo

    Jun 2812:36 AM

    34 An athlete pulls a sled with a force of 200N burning 600 Joules of food/caloric energy every second.  What is the velocity of the athlete? 

    Answ

    er

    https://www.njctl.org/video/?v=TiRXw1qIltg

    https://www.njctl.org/video/?v=NXLuYIRc9F4https://www.njctl.org/video/?v=IR-YweBGBdIhttps://www.njctl.org/video/?v=2O7vv19xrmohttps://www.njctl.org/video/?v=TiRXw1qIltg

  • Work Energy Presentation Part 1 2016.notebook

    16

    November 04, 2016

    Mar 38:30 PM

    35 A 3.0 kg block is initially at rest on a frictionless, horizontal surface. The block is moved 8.0m in 2.0s by the application of a 12 N horizontal force, as shown in the diagram below. What is the power developed when moving the block?

    A 24 B 32 C 48 D 96 

    8.0 m

    3.0 kgF = 12 N

    Frictionlesssurface

    https://www.njctl.org/video/?v=GotMGnt9Idw

    GPE, KE and EPE Problem

    36 A spring launcher fires a marble at an angle of 520.  In calculating the energy available for transformation into GPE and KE, what value of x is used in EPE = 1/2 kx2?

    A The horizontal displacement of the spring.

    B The vertical displacement of the spring.

    C The straight line displacement of the spring, independent of the x and y axes.

    Answ

    er

    C

    Energy Problem Solving

    Energy Problem SolvingWhat is the final velocity of a box of mass 5.0 kg that slides 6.0 m down a frictionless incline at an angle of 420 to the horizontal? 

    vo = 0

    v = ?

    The system will be the block.  Since there is no friction, there are no external forces and we can use the Conservation of Energy (the gravitational force is taken care of by GPE). What types of energy are involved here?

    Energy Problem Solving

    Energy Problem Solving

    Only three types of energy have been discussed so far.  And in this case, there is only GPE and KE: 

    vo = 0

    d=6.0m

    θ=420

    m = 5.0 kg

    v = ?

    (KE + EPE +GPE)0 = (KE + EPE + GPE) 

    becomes:

    (KE + GPE)0 = (KE +GPE)

    to save subscripts, we'll assume that no subscript implies a final quantity (KE = KEf)

    Energy Problem Solving

    Energy Problem Solving

    vo = 0

    d=6.0m

    θ=420

    m = 5.0 kg

    v = ?

    h0=4.0m

    Let's put in the equations now:

    Given (and using trig to find the value of h0 from d):

    Find: v

    Energy Problem Solving

    Energy Problem Solving

    vo = 0

    d=6.0m

    θ=420

    m = 5.0 kg

    v = ?

    h0=4.0m

    The velocity at the bottom of the incline is 8.9 m/s.

    https://www.njctl.org/video/?v=GotMGnt9Idw

  • Work Energy Presentation Part 1 2016.notebook

    17

    November 04, 2016

    Energy Problem Solving

    Energy Problem Solving

    .

    Consider the inclined plane problem that was just worked, but add a spring at the bottom of the incline.

    The spring will be compressed a distance Δx and then released.  Find the velocity of the box when it rises back to where it was first compressed  a height of Δh.

    What energies do we have to consider? 

    Energy Problem Solving

    Energy Problem Solving

    .

    Once compressed, the box has EPE, GPE and zero KE.

    When it loses touch with the spring at Δh above its fully compressed point, it will have KE, GPE and zero EPE. 

    (KE + EPE + GPE)0 = (KPE + EPE + GPE) 

    becomes:

    (EPE + GPE)0 = (KE + GPE)

    Energy Problem Solving

    Energy Problem Solving

    .

    Before we proceed further with the solution, think how hard this problem would be to solve without using Conservation of Energy.

    Once the object is released and the spring starts moving away from its compressed state, the force is no longer constant  it will require mathematical integration (calculus) to solve.  Free body diagrams are not the best way to find the velocity of the object.

    Energy Problem Solving

    Energy Problem Solving

    .

    Let's put in the equations and rearrange them to solve for v.                                 

    Energy Problem Solving

    Energy Problem Solving

    .

    We now have the equation for the velocity when the block rises a vertical displacement of Δh.

    But if we're only given Δx, how do we find Δh?                                 

    Use trigonometry and recognize that Δh = Δxsinθ.

    Energy Problem

    37 A box on an inclined plane is in contact with a spring.  The box is released, compressing the spring.  For every increment Δx, the box moves down the incline, how much does its height, Δh, change?

    A  Δx2

    B  Δxcosθ

    C  Δxsinθ

    D √Δx

    E  Δxtanθ

    Answ

    er

    C

  • Work Energy Presentation Part 1 2016.notebook

    18

    November 04, 2016

    Energy Problem

    38 A box is held on top of a spring on an inclined plane of angle          θ = 310.  The box is released, compressing the spring.  If the   spring moves 7.0 m down the plane, how much does its height,  Δh, change?

    A  7.0 m

    B  6.5 m

    C  6.0 m

    D  3.6 m

    E  3.0 m

    Answ

    er

    D

    Energy Problem

    39 A box of mass m is on an inclined plane that makes an angle of θ  with the horizontal and is in contact with a spring of spring  constant k.  The box is released, and it compresses the spring an amount Δx before rebounding.  In terms of m, g, k and θ, what is the value of Δx?

    Answ

    erEnergy Problem

    40 A spring (k = 150 N/m) on an incline of  θ = 540 is compressed a distance of Δx = .060 m along the incline by a mass of 0.042 kg and then released.  What is its velocity when it passes the point where it was first compressed and loses touch with the spring?

    Answ

    er

    Energy Problem

    41 A marble launcher shoots a marble vertically and then shoots a marble in the horizontal direction.  Describe why the exit velocity of the marble in the two cases is different.  Which exit velocity is greater?

    Answ

    er

    In both cases, the EPE is the same.  For the vertical case, part of the EPE is transformed into an increase in GPE as the exit point of the marble is higher than its compressed point.  In the horizontal direction, there is no ΔGPE, hence the EPE is transformed totally into KE.  The marble's velocity is greater in the x direction.

    Conservation of Energy Problem Solving

    Conservation of Energy Problem Solving

    Return to Tableof Contents

    Falling Objects

    Falling Objects  the Energy way

    .

    An object, at rest, falls from a height, h0, to the ground, and you want to find out what its velocity is right before it hits the ground (assume no air friction).

    Before you learned the Conservation of Energy, you would draw a free body diagram and then use a Kinematics equation to find the velocity.  Review this with your group and then remove the screen below to check:

    mg

  • Work Energy Presentation Part 1 2016.notebook

    19

    November 04, 2016

    Falling Objects

    Falling Objects  the Energy way

    Now, let's use the Conservation of Energy to solve this problem.  Define the system as the object and GPE at the ground as zero.  Since there is no friction, the work on the system will be zero.

    In this case, both methods take about the same amount of effort.  But, in cases where the motion, or the forces acting on the object are more complex or are changing, the Energy approach is easier.

    Falling Objects problem

    42 A ball of mass 0.45 kg falls from a building of height = 21 m.  What is the ball's speed right before it hits the ground?

    A 14 m/s

    B 20 m/s

    C 210 m/s

    D 410 m/s

    Answ

    er

    B

    Falling Objects problem

    43 Two objects, one with a mass of 0.43 kg, and the other with a mass of 42.5 kg, fall from a height of 31.1 m.  Which object has the greater velocity right before it hits the ground? (assume no friction)

    A Both have the same velocity.

    B The 0.43 kg object

    C The 42.5 kg object

    Answ

    er

    A

    Spring Problem

    44 A spring gun, aimed in the horizontal direction with k = 250 N/m is compressed 0.05 m and released.  How fast will a 0.025 kg dart go when it exits the gun?

    Answ

    er

    Spring Problem

    45 A student uses a spring, with k = 180 N/m, to launch a marble vertically into the air.  The mass of the marble is 0.0040 kg and   the spring is compressed 0.030 m.  How high will the marble go above its initially compressed position?

    Answ

    er

    Spring Problem

    46 A student uses a spring gun (k = 120 N/m) to launch a marble at an angle of 520 to the horizontal (m = .0020 kg, Δx = 0.041 m).  What is the maximum height that the marble will reach above its initially compressed position?

    Answ

    er

  • Work Energy Presentation Part 1 2016.notebook

    20

    November 04, 2016

    GPE Problem

    47 A roller coaster car is pulled up to a height (A) of 50 m, where it then goes down the other side of the track.  It traverses two other loops, one at a height of 40 m (B), and the second at a height of  30 m (C).  Rank the velocities of the car at the three heights from greatest to least.

    A A > B > C

    B A > C > B

    C B > A > C

    D C > B > A

    E C > B > A

    F C > A > B

    Answ

    er

    E

    Energy Problem

    48 Four objects are thrown with identical speeds in different directions from the top of a building.  Which will be moving fastest when it strikes the ground? A  

    B  

    C  

    D  

    E All will have the same speed.

    h Ans

    wer

    E

    Energy Problem

    49 Four objects are thrown with identical speeds in different directions from the top of a building.  Which will hit the ground first?

    A  B  

    Answ

    er

    D

    C  

    D  

    E All will hit at the same time.

    h

    Energy Problem

    50 Four objects are thrown with identical speeds in different directions from the top of a building.  Which will go the highest?

    A  B  

    Answ

    er

    A

    C  

    D  

    E All will reach the same height.

    h

    Energy Problem

    51 Four objects are thrown with identical speeds in different directions from the top of a building.  Which will land furthest from the base of the building? A  

    B  

    Answ

    er

    B

    C  

    D  

    E All will land at the same place.

    h

    Energy Problem

    52 Four objects are thrown with identical speeds in different directions from the top of a building.  Which will have the greatest horizontal component of its velocity at its maximum height?

    A  B  

    Answ

    er

    C

    C  

    D  

    E All will be the same.

    h

  • Work Energy Presentation Part 1 2016.notebook

    21

    November 04, 2016

    Energy Problem

    53 Three objects are thrown with identical speeds in different directions from the top of a building.  Which will have the greatest kinetic energy at its maximum height?

    A  B  

    C  

    D All will have the same.

    h Ans

    wer

    C

    GPE and Escape Velocity

    GPE and Escape Velocity

    Return to Tableof Contents

    GPE  expanded

    GPE  expanded

    The expression GPE = mgh only works near the surface of and is specific to the planet.  Recall that: 

    As an object's height above the surface of the planet increases, its distance from the center of the planet is not just the radius of the planet.  Thus, a more general expression is needed based on Newton's Universal Gravitational Force equation: 

    Rplanet = radius of planetMplanet = mass of planet

    rplanetobject = distance from center of the planet to the object

    GPE  expanded

    GPE  expandedDeriving a more general formula for the potential energy of an object that moves further away from the earth requires calculus, because the gravitational force is not constant  it must be "integrated (calculus)" over the distance the object moves.

    We'll just present the result, and use a more common physics term for gravitational potential energy, UG.

    What do you think the negative sign in this expression means?

    GPE  expanded

    GPE  expanded

    In solving the integral, an assumption was made that the gravitational potential energy between two objects an infinite distance apart is zero.  

    Add this assumption to the fact that the gravitational force is always an attractive force, and the negative sign pops up.

    How can we reconcile this negative sign with the fact that we normally think of Gravitational Potential Energy as a positive number?                                                                                Think of what GPE really means....

    GPE expanded

    GPE  expanded

    UG

    GPE measured for objects near the surface of the earth is really mg(hh0), and h0 is normally set to zero.

    So, it's the change in height above the earth's surface that is important  GPE is not an absolute number.

    On the graph above, notice as r (the distance from the center of the earth) increases (the object moves above the surface of the earth), UG becomes less negative.  The difference between the final UG and the initial UG will be positive!  So, mgh will still be a positive number.

  • Work Energy Presentation Part 1 2016.notebook

    22

    November 04, 2016

    GPE problem

    54 Why can't the expression GPE = mgh be used to determine the GPE between the earth and a weather satellite in geosynchronous orbit above the earth (35.8 km)?  Select two answers.

    A The satellite's orbital period is twice that of the earth's rotational period.

    B The satellite is moving at a great speed.

    C The value of g is different at the earth's surface and at the satellite.

    D The distances between the surface of the earth and the satellite from the center of the earth are mathematically significant.

    Answ

    er

    C, D

    GPE problem

    55 Describe how the negative sign in the generalized potential energy equation was determined.

    Answ

    erEscape Velocity

    Escape Velocity

    Let's apply this new definition of GPE between two masses to the problem of escape velocity.

    Escape velocity is the minimum velocity an object (such as a spaceship) needs to attain to "escape" the earth's gravitational pull.  Actually, since the force of gravity has an infinite range, this is never really possible, but the force will be extremely tiny at great distances.

    We're going to use conservation of energy, and our system is going to be the earthspaceship system.  If we're looking for the minimum velocity, what will the magnitude of the potential energy and kinetic energy of the spaceship when it is an infinite distance from the earth?

    Escape Velocity

    Escape Velocity

    Since we're looking for the minimum required velocity to escape the earth, we want it to get to infinity with zero kinetic energy.  Potential energy was already defined to be zero at infinity.  Using the Conservation of Energy:

    Escape Velocity

    Escape Velocity

    Note that escape velocity is independent of the mass of the escaping object.  It only depends on the mass and radius of the object being escaped from.  

    Using this fact, can you explain why despite the fact that Hydrogen and Helium are the most abundant elements in the universe, there are only trace amounts of each element in our atmosphere?

    Escape Velocity

    Escape Velocity

    When the earth was first formed, the atmosphere contained significant amounts of both elements.

    However  Hydrogen and Helium are the lightest elements, so for a given atmospheric temperature, they would move faster than the heavier elements.

    Over time, their average speeds exceeded the escape velocity of earth, thus they left the planet.

  • Work Energy Presentation Part 1 2016.notebook

    23

    November 04, 2016

    Escape Velocity Problem

    56 A rocket of mass 5,000 kg will have  ____________escape velocity than a rocket with mass 10,000 kg.

    A a larger

    B a smaller 

    C an equal

    Answ

    er

    C

    Escape Velocity Problem

    57 What is the escape velocity on the planet Earth?                 (Mearth = 5.97x1024 kg, re = 6.38x106 m, G = 6.67x1011 Nm2/kg2)

    Answ

    erNov 49:09 AM Nov 49:05 AM

  • Attachments

    watch.webloc

    [InternetShortcut]URL=http://www.youtube.com/watch?v=qZ4FFWvZtyo&feature=related

    SMART Notebook

    Page 1Page 2Page 3Page 4Page 5Page 6Page 7Page 8Page 9Page 10Page 11Page 12Page 13Page 14Page 15Page 16Page 17Page 18Page 19Page 20Page 21Page 22Page 23Attachments Page 1