november 2001 - course 3 soa solutions...b g b 0.998g question #8 key: a solution: let z be the...

29
Course 3 Solutions November 2001 Exams

Upload: others

Post on 23-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Course 3 Solutions November 2001 Exams

Page 2: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

November, 2001Society of Actuaries

Question #1Key: E

Solution:

e p dt p p dt

e dt e e dt

e e e

t t

t ds t

o25 25 25 15 25 400

10

0

15

04 04

0

15 05

0

10

60 60 50

0

15

104

1105

1

112797 43187

1560

:

. . .

. . .

. .. .

.

= +

= + zFHG

IKJ

= − + −LNM

OQP

= +=

zzz z− − −

− − −d i d i

Question #2Key: C

Solution:

5 60 1

60 1 60 2 63 64 651 1 1 1 1

0 89 0 87 0 85 0 84 0 83

0 4589

p

q q q q q

+

+ +

=

− − − − −

=

=

e je jb gb gb gb gb gb gb gb g. . . . .

.

Page 3: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question # 3Key: E

Solution:

12501

0 08 0 04. . .= =+

⇒ + = ⇒ = =ax µ δµ δ µ δ

A

A

x

x

=+

=

=+

=

µµ δ

µµ δ

0 5

213

2

.

Var aA A

Tx xe j =

=−

=

2 2

2

1

3

1

4

0 001652 083

δ

..

S.D.= =52 083 7 217. .

Page 4: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question # 4Key: D

Solution:

v d= ⇒ =090 010. .A dax x= − = − =1 1 010 5 0 5&& . .b gb g

Benefit premium π =−5000 5000A vqa

x x

x&&

=−

=5000 0 5 5000 0 90 0 05

5455

b gb g b gb g. . .

1010

1010

1

0 2 15

4

Va

a

aa

xx

x

xx

= −

= − ⇒ =

+

++

&&

&&

.&&

&&

A da

V A ax x

x x

+ +

+ +

= − = − =

= − = − =10 10

10 10 10

1 1 010 4 0 6

5000 5000 0 6 455 4 1180

&& . .

&& .

b gb gb gb g b gb gπ

Page 5: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #5Key: D

Solution:

v is the lowest premium to ensure a zero % chance of loss in year 1 (The present value of the paymentupon death is v, so you must collect at least v to avoid a loss should death occur).Thus v = 0.95.

E Z 0.95 0.25 0.95 0.75 0.2

0.3729

b g b g= + = × + × ×

=+vq v p qx x x

21

2

E Z 0.95 0.25 0.95 0.75 0.2

0.3478

2 2 41

2 4d i b g b g= + = × + × ×

=+v q v p qx x x

Var Z E Z E Z 0.3478 0.3729 0.21b g d i b gc h b g= − = − =2 2 2

Question # 6Key: D

Solution:

Severityafter increase

Severityafter increase and

deductible 60 0120 20180 80300 200

Expected payment per loss = × + × + × + ×0 25 0 0 25 20 0 25 80 0 25 200. . . . = 75

Expected payments = Expected number of losses × Expected payment per loss = 75 300× = 22,500

Page 6: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question # 7Key: A

Solution:

E (S) = E (N) E (X) = 50× 200 = 10,000

Var S E N Var E Var Nb g b g b g b g b gb gb g d ib g

= +

= +

=

X X 2

250 400 200 100

4 020 000, ,

Pr , Pr, ,

, ,

Pr

S Z

Z

< = <−F

HGIKJ

= < − ≅

8 0008 000 10 000

4 020 000

16%

b gb g0.998

Question #8Key: A

Solution:

Let Z be the present value random variable for one life.Let S be the present value random variable for the 100 lives.

E Z e e dt

e

t tb gb g

=

=+

=

− +

z10

10

2 426

5

5

δ µ

δ µ

µ

µδ µ

.

E Z e

e

2 2 2 5

2

102

10 11233

d i

d i

b g=+

FHG

IKJ

= FHG

IKJ =

− +

µδ µ

δ µ

0.040.16

0.8 .

Var Z E Z E Zb g d i b gc h= −

= −=

2 2

211233 2 426

5348

. .

.

E S E Z

Var S Var Z

b g b gb g b g

= =

= =

100 2426

100 5348

.

.F

F− = → =242 6534 8

1645 281.

..

Page 7: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #9Key: D

Solution:

Prob{only 1 survives} = 1-Prob{both survive}-Prob{neither survives}

= − × − − −

= − − − −

==

1 1 1

1 0 0

3 50 3 50 3 50 3 50p p p pb ge jb gb gb gb gb gb g b gb g0.9713 0.9698 0.9682 0.9849 0.9819 0.9682 1 .912012 1 .93632

0.1404610.912012 0.936320

1 24444 34444 1 24444 34444

Question # 10Key: C

Solution:

The tyrannosaur dies at the end of the first day if it eats no scientists that day. It dies at the end of thesecond day if it eats exactly one the first day and none the second day. If it does not die by the end of thesecond day, it will have at least 10,000 calories then, and will survive beyond 2.5.

Prob (ruin) = +f f f0 1 0b g b g b g

= +

=

0 368 0 368 0368

0 503

. . .

.

b gb g

since fe

01

00368

1 0

b g = =−

!.

fe

11

10368

1 1

b g = =−

!.

Page 8: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #11Key: B

Solution:

Let X = expected scientists eaten.For each period, E X E X E X= × + ×dead Prob already dead alive Prob aliveb g b g

= × + ×0 Prob dead alive Prob aliveb g b gE X

Day 1, E X1 1=

Prob dead at end of day 1b g b g= = =−

fe

00

00 368

1 1

!.

Day 2, E X 2 0 0 368 1 1 0 368 0 632= × + × − =. . .b gProb (dead at end of day 2) = 0.503

[per problem 10]

Day 2.5, E X 2 5 0 0 503 0 5 1 0 503 0 249. . . . .= × + × − =b gwhere E X2 5 05. .alive = since only 1

2 day in period.

E E E E

E

X X X X

X

= + + = + + =

=1 2 2 5 1 0 632 0 249 1881

10 000 18 810. . . .

, ,

Question # 12Key: C

Solution:

This solution applies the equivalence principle to each life. Applying the equivalence principle to the100 life group just multiplies both sides of the first equation by 100, producing the same result for P.

APV P APV q v p q v Pp p vPrems Benefitsb g b g= = = + +10 1070 70 712

70 712

PP

P

P

= +−

+− −

= + +

= =

10 0 03318

108

10 1 0 03318 0 03626

108

1 0 03318 1 0 03626

1080 3072 0 3006 0 7988

0 60780 2012

3 02

2 2

b gb g b gb gb g b gb g.

.

. .

.

. .

.. . .

.

..

(APV above means Actuarial Present Value).

Page 9: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #13Key: C

Solution:

For a binomial random variable with n p q= = =100 0 0331870and . , simulate number of deaths:

i p f F= − = = =0 1 0 03424 0 0100: .b g b g b g

Since 018 0. ,> Fb g continue

i f f n p p= = −

=

=

1 1 0 1

0 03424 100 0 03318 0 96682

011751

: /

. . / .

.

b g b gb gb g b gb gb gb g b g

F F f

F

1 0 1 0 03424 011751 015175

018 1

b g b g b gb g

= + = + =

>

. . .

. ,Since continue

i f f n p p= = − −

=

=

2 2 1 1 2 1

011751 99 2 0 03318 0 96682

019962

: / /

. / . / .

.

b g b g b g b g b gb gb gb g

F F f

F

2 1 2 015175 019962 0 35137

018 2 2 20

b g b g b gb g

= + = + =

< = =

. . .

. , , .Since number of claims so claim amount

Page 10: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #14Key: C

Solution:

For the Pareto parameters given, the mean is θα −

=1

1000,so the annual premium is 2 1000 11 2200b gb g. .=

Simulating the times of claims, we use the formula t x= − −0 5 1. lnb g to get the times betweenclaims to be 0.886, 0.388, 0.327, … so claims occur at times 0.886, 1.274, and 1.601, so weonly have to worry about the first claim.

For the Pareto, F xx

b g = −+

FHG

IKJ1

10001000

2

, so inverting gives xF u

=−

−1000

11000b g .

Using this on the first value provided gives a severity of 1000

1 0891000 2015

−− =

..

Clearly this will not cause ruin, since more than 15 of premium has been collected by time0.886, so final surplus = initial surplus + premium – losses = 2000 + 2200 – 2015 = 2185.

Page 11: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #15Key: E

Solution:

One approach is to recognize an interpretation of formula 7.4.11 or exercise 7.17a:

Level benefit premiums can be split into two pieces: one piece to provide terminsurancefor n years; one to fund the reserve for those who survive.

If you think along those lines, you can derive formula 7.4.11:

P P P Vx x n x n n x= +: :1 1

And plug in to get

0 090 0 00864 0 563

0 0851

1

1

. . .

.

:

:

= +

=

P

P

x n

x n

b gb g

Another approach is to think in terms of retrospective reserves. Here is one such solution:

n x x x n x n

x x nx n

n x

x x n

x n

x n x n

x x n

x n

V P P s

P Pa

E

P Pa

P a

P P

P

= −

= −

= −

=−

: :

::

:

:

: :

:

:

&&

&&

&&

&&

1

1

11

1

1

e j

e j

e j

e je j

0 563 0 090 0 00864

0 090 0 00864 0 563

0 0851

1

1

. . / .

. . .

.

:

:

= −

= −

=

P

P

x n

x n

e j

b gb g

Page 12: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #16Key: A

Solution:

δ = =ln 105 0 04879. .b g

A p t e dt

xe dt

xa

x t x xtx

tx

x

=

=−

=−

−−

−−

zz

µ

ω

ω

δω

δω

ω

b g0

0

1

1

for DeMoivre

From here, many formulas for 10 40V Ac h could be used. One approach is:

Since

Aa

aA

Aa

aA

P A

V A A P A a

5050

5050

4060

4040

40

10 40 50 40 50

5018 71

500 3742

112 83

6019 40

600 3233

11387

0 32331387

0 02331

03742 0 02331 12 83 0 0751

= = = =−F

HGIKJ =

= = = =−F

HGIKJ =

= =

= − = − =

.. .

.. .

..

.

. . . . .

so

so

so

δ

δ

c hc h c h b gb g

Page 13: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #17Key: D

Solution:

A E v E v NS E v SxT x T x T x= = × + ×

=+

FHG

IKJ × +

+FHG

IKJ ×

=

b g b g b gb g b gProb NS Prob S

0 030 03 0 08

0 700 6

0 06 0 08030

03195

.. .

..

. ..

.

Similarly, 2 0 030 03 016

0 700 06

0 06 0160 30 01923Ax =

+FHG

IKJ × +

+FHG

IKJ × =.

. ..

.. .

. . .

Var aA A

T xx x

b gFH

IK =

−=

−=

2 2

2

2

2

01923 0 31950 08

141δ

. ..

. .

Question #18Key: B

Solution:

Let S denote aggregate losses before deductible.

E S = × =2 2 4, since mean severity is 2.

fe

S 02

001353

2 0

b g = =−

!. , since must have 0 number to get aggregate losses = 0.

fe

S 12

113

0 09022

b g =FHG

IKJFHG

IKJ =

!. , since must have 1 loss whose size is 1 to get aggregate losses = 1.

E S f f f fS S S S∧ = × + × + × − −

= × + × + × − −

=

2 0 0 1 2 1 0 1

0 01353 1 0 0902 2 1 01353 0 0902

16392

b g b g b g b gc hb g. . . .

.

E S E S E S− = − ∧

= −=

+2 2

4 16392

2 3608

b g.

.

Page 14: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #19Key: D

Solution:

Poisson processes are separable. The aggregate claims process is therefore equivalent to two independent

processes, one for Type I claims with expected frequency 13

3000 1000FHG

IKJ =b g and

one for Type II claims.

Let SI = aggregate Type I claims.N I = number of Type I claims.X I = severity of a Type I claim (here = 10).

Since X E X XI I I= = =10 10 0, , .a constant ; Varb g b g

Var Var VarS E N X N E XI I I I Ib g b g b g b g b gb gb g b gb g

= +

= +

=

2

21000 0 1000 10

100 000,

Var Var Var since independent

2,100,000 = 100,000 + Var

S S S

S

Var S

I II

II

II

b g b g b gb g

b g

= +

= 2 000 000, ,

Page 15: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #20Key: A

Solution:

5 50 5 501

5 502

0 05 5100 55100 50

09 0 7788 0 7009

p p p

e

τb g b g b g

b gb g

b gb g

= ′ ′

=−−

FHG

IKJ

= =

− .

. . .

Similarly

10 500 05 10100 60

100 50

0 8 0 6065 0 4852

p eτb g b g b g

b gb g= −

−FHG

IKJ

= =

− .

. . .

5 5 50 5 50 10 50 0 7009 0 4852

0 2157

q p pτ τ τb g b g b g= − = −

=

. .

.

Question #21Key: C

Solution:

Only decrement 1 operates before t = 0.7

0 7 401

4010 7 0 7 010 0 07. . . . .′ = ′ = =q qb g b gb g b gb g since UDD

Probability of reaching t = 0.7 is 1-0.07 = 0.93

Decrement 2 operates only at t = 0.7, eliminating 0.125 of those who reached 0.7

q402 093 0125 011625b g b gb g= =. . .

Page 16: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #22Key: B

Solution:

Let π1 = long run probability of being in R at the start of a tripLet π 2 = probability of being in S

π1 π 2

City R City Sπ1 City R 0.2 0.8π 2 City S 0.3 0.7

0 2 0 3 08 031 2 1 1 2. . . .π π π π π+ = ⇒ = π π1 238

=

π π π π π π π1 2 2 2 2 2 1138

1118

18

113

11+ = ⇒ + = = = =

E(R) = expected profit per trip if in city R= × + × =0.2 0.8 1.81 2E(S) = expected profit per trip if in city S= × + × =0.3 1.2 0.7 1.442

⇒ In the long run, the profit per trip = × + × =1.8 1.44 1.543

118

11

Page 17: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #23Key: D

Solution:

Let states 0, 1, 2, 3 correspond to surplus of 0, 1, 2, 3.

One year transition matrix

T =

L

N

MMMM

O

Q

PPPP

100 0 00 0 00 0 00

0 20 0 40 0 25 015

0 20 0 00 0 40 0 40

0 00 0 20 0 00 080

. . . .

. . . .

. . . .

. . . .

T2

100 0 00 0 00 0 00

0 33 019 0 20 0 28

0 28 0 08 016 0 48

0 04 0 24 0 05 0 67

=

L

N

MMMM

O

Q

PPPP

. . . .

. . . .

. . . .

. . . .

T3

1000 0 000 0 000 0 000

0 408 0132 01275 0 3325

0 328 0128 0 084 0 460

0 098 0 230 0 080 0592

=

L

N

MMMM

O

Q

PPPP

. . . .

. . . .

. . . .

. . . .

0 0 0 1 0 098 0 230 0 080 05923× =T . . . .

Prob of starting in 3 and ending in 0 = 0.098 1 – 0.098 = 0.902or 0.230 + 0.080 + 0.592 = 0.902.

If you anticipate how T3 will be used, you see it is sufficient to calculate only the fourth row of it, oreven only column 1 of row 4.

Alternatively, it is certainly correct, and probably shorter, to calculateM T T T M T M× × × × =b g rather than where3 0 0 0 1, .

See problem 29 for an example of that method.

Page 18: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #24Key: C

Solution:

ππ π

1 10002 22 80

280

803

2 80 82+ = + +p v Avq v p qe j

π π1083910

106665 75

0 080302 106

0 83910 0 09561

2 1062 3+F

HGIKJ = + + ×F

HGIKJ

.

..

..

. .

.b g b g

π π

π

π

174680 66575 0 07156

167524 665 75

397 41

. . .

. .

.

b g b gb g

= +

=

=

Where 2 803 284 5423 914 365

0 83910p = =, ,, ,

.

Or 2 80 1 0 08030 1 0 08764 083910p = − − =. . .b gb g

Page 19: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #25Key: E

Solution:

At issue, actuarial present value (APV) of benefits

=

=

= = =

∞ −

zz

z

b v p t dt

e e p t dt

p t dt q

tt

t

t tt

t

650 65

0

0 04 0 0465 65

65 650 65

1000

1000 1000 1000

µ

µ

µ

b gd id i b g

b g

. .

APV of premiums = =+

FHG

IKJ =π π πa65

10 04 0 02

16 667. .

.

Benefit premium π = =1000 16 667 60/ .

2 2 67 650 67

0 04 2

0

0 0467 65

2

1000 2 60 16 667

V b v p u du a

e e p u du

uu

u

u uu

= + −

= + −

+

+∞ −

zz

µ π

µ

b gb g b gb gb g. . .

= + −

= − = − =

z1000 2 1000

108329 1000 108329 1000 8329

0 0867 650

67

e p u du

q

u.

. . .

µ b g

Page 20: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #26Key: B

Solution:

(1) a a Ex x x: :

&&20 20 201= − +

(2) &&:

:aA

dxx

2020

1=

(3) A A Ax x x: : :20 201

201= +

(4) A A E Ax x x x= + +:201

20 20

0 28 0 25 0 40

018

201

201

. . .

.

:

:

= +

=

A

A

x

x

b gb g

Now plug into (3): Ax:

. . .20

018 0 25 0 43= + =

Now plug into (2): &&.

. / ..

:a

x 20

1 0 430 05 105

1197=−

=b g

Now plug into (1): ax:

. . .20

1197 1 0 25 1122= − + =

Page 21: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #27Key: A

Solution:

E N E E N E= = =Λ ΛΛ Λ 2

Var Var VarN E N E N

E Var

= +

= + = + =

Λ Λ

Λ Λ

Λ Λ

Λ Λ 2 4 6

Distribution is negative binomial.

Per supplied tables:

r r

r r

β β β

ββ

β

= + =

+ ==

= =

2 1 6

1 3

2

2 1

and b g

pr

r1

1

1 21

1 2

1 30 22= = =+

β

β!1+b gb gb gb gb g .

Alternatively, if you don’t recognize that N will have a negative binomial distribution, derive gammadensity from moments (hoping α is an integer).

Mean = =θα 2

Var E E= − = + −

= =

Λ Λ2 2 2 2 2 2

2 4

θ α α θ α

θ α

e j

θθ αθα

α θαθ

= = =

= =

2 42

2

1

Page 22: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

p p f de e

d

e d

e e

1 10

1

0

2

20

3

2

3

2

0

12

1

12

12

23

49

29

0 22

= =

=

= − −FHG

IKJ

= =

∞ −∞−

−∞

− −∞

z zz

λ λ λλ λ

λλ

λ λ

λ

λ λ

α

λ λ

c h b g b gb g

b g

!

Integrate by parts; not shown

/

.

/

Γ

Page 23: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #28Key: C

Solution:

Limited expected value =

1 08 0 2 40 200 40 126 40 02 0 001 0 02 0 001

0

1000

0

1000

0

1000

− = + = − − = +− − − −zz F x dx e e dx e ex x x xb gc h d i d i. . .. . . .

= 166.4

Question #29Key: E

Solution:

M

T

=

=

L

N

MMMM

O

Q

PPPP

Initial state matrix = 1 0 0 0

One year transition matrix =

0.20 0.80 0 0

0.50 0 0.50 0

0.75 0 0 0.25

1.00 0 0 0

M T

M T T

M T T T

× =

× × =

× × × =

0 20 0 80 0 0

0 44 016 0 40 0

0 468 0 352 0 08 010

. .

. . .

. . . .

b gb gc h

Probability of being in state F after three years = 0.468.

Actuarial present value = =0 468 500 1713. vd ib g

Notes:1. Only the first entry of the last matrix need be calculated (verifying that the four sum

to 1 is useful “quality control.”)2. Compare this with solution 23. It would be valid to calculate T 3 here, but advancing

M one year at a time seems easier.

Page 24: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #30Key: B

Solution:

Let Yi be the number of claims in the ith envelope.

Let X 13b g be the aggregate number of claims received in 13 weeks.

E Y

E Y

E X

X

Z

X

X

i

i

= × + × + × + × =

= × + × + × + × =

= × × =

= × × =

≤ = =

⇒−

≤RST

UVW≤

1 0 2 2 0 25 3 0 4 4 015 2 5

1 0 2 4 0 25 9 0 4 16 015 7 2

13 50 13 2 5 1625

13 50 13 7 2 4680

0 90 1282

13 16251282

13

2

. . . . .

. . . . .

.

.

. .

.

b g b g b g b gb g b g b g b g

b gb gb gm r b g

b g

b g

Var

Prob X 13

Prob 4680

1712.7

Φ

Note: The formula for Var X 13b g took advantage of the frequency’s being Poisson.

The more general formula for the variance of a compound distribution,

Var Var VarS E N X N E Xb g b g b g b g b g= + 2 , would give the same result.

Question #31Key: C

Solution:

118

12 115

0 5

+ = =

=

θ

θb gb g .

.θ > 0 so (C)

Page 25: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #32Key: D

Solution:

No real issues with #1. It matches the real survival process.

#2 is never valid. Even if x = y, so that Prob (x dies first) = 0.50, the conditional future lifetime of xwould not follow De Moivre.

Question #33Key: E

Solution:

µω

µω

ω

M

F

601

60

1

75 60

1

15

601

601

1535

125

85

b g

b g

=−

=−

=

=′ −

= × = ⇒ ′ =

tM

tF

pt

pt

65

60

110

125

= −

= −

Let x denote the male and y denote the female.e

e

et t

dt

tt

dt

t tt

x

y

xy

o

o

o

=

=

=

=

=

−FHG

IKJ −FHG

IKJ ⋅

− +FHG

IKJ ⋅

− +FHG

IKJ = − × +

= − + =

zz

5

12 5

110

125

1750 250

7100 750

107

100100

1000750

10 743

133

0

10

2

0

10

23

0

10

mean for uniform distribution over 0,10

mean for uniform distribution over 0,25

b gc hb gc h.

e e e exy x y xy

o o o o= + − = + − = + − =5

252

133

30 75 266

1317.

Page 26: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #34Key: B

Solution:

A

A

x

x

=+

=

=+

=

µµ δ

µµ δ

13

215

2

P Axc h = =µ 0 04.

Var LP A

A Axx xb g c h e j= +

FHG

IKJ

= +FHG

IKJ − F

HGIKJ

FHG

IKJ

= FHG

IKJFHG

IKJ

=

1

10 04

0 08

1

5

1

3

32

445

15

2

2 2

2 2

2

δ

.

.

Question #35Key: B

Solution:

Mean excess loss =− ∧−

=−

=

E X E X

F

b g b gb g

100

1 100

331 910 8

300.

E X E X Fb g b g b g= ∧ =1000 1000 10since .

Page 27: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #36Key: E

Solution:

Expected insurance benefits per factory = − +E X 1b g = × + × =0 2 1 01 2 0 4. . . .

Insurance premium = (1.1) (2 factories) (0.4 per factory) = 0.88.

Let R = retained major repair costs, then

f

f

f

R

R

R

0 0 4 016

1 2 0 4 0 6 0 48

2 0 6 0 36

2

2

b gb gb g

= =

= × × =

= =

. .

. . .

. .

Dividend = − − −3 0 88 015 3. . ,R b gb g if positive

= −167. ,R if positive

E Dividendb g b gb g b gb g b gb g= − + − + =016 167 0 0 48 167 1 0 36 0 0 5888. . . . . .

[The (0.36)(0) term in the last line represents that with probability 0.36, 167. − Rb g isnegative so the dividend is 0.]

Question #37Key: A

Solution:

E X =−

=−

= ⇒ = −αθα

αα

α α1

41

8 4 8 8

α = 2

F 6 16

146

2

b g = − FHG

IKJ = − F

HGIKJ

θ α

= 0 555.

s F6 1 6 0 444b g b g= − = .

Page 28: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #38Key: B

Solution:

2 641

641

64 651q q p qb g b g b g b g= + τ

p64 1 0 025 1 0 035 1 0 200 0 75270τb g b gb gb g= − − − =. . . .

q p64 641

0 24730

τ τb g b g= −= .

′ = − =p641 1 0 025 0 975b g b g. .

qp

pq64

1 641

64

64

0 975

0 752700 2473 0 02204b g b g

b gb g b g

b g b g=′

= =ln

ln

ln

lnττ .

.. .

2 641 0 02204 0 75270 0 02716 0 04248qb g b gb g= + =. . . .

Page 29: November 2001 - Course 3 SOA Solutions...b g b 0.998g Question #8 Key: A Solution: Let Z be the present value random variable for one life. Let S be the present value random variable

Question #39Key: B

Solution:

e p p px x x x= + + + =2 3 1105... .

Annuity = + × × +

=

=

= − − = FHG

IKJ × =

=

=

v p v p

v p

v p

v e

x x

k kk x

k

k xk

x

33

44

3

3

3

3

33

1000 1000 104

1000 104

1000

1000 0 99 0 98 10001

1049 08 8072

. ...

.

. ..

.

b gb g

b g

Let π = benefit premium.

π

ππ

1 0 99 0 98 8072

2 8580 8072

2824

2+ + =

==

. .

.

v ve j

Question #40Key B

Solution:

π π&&: :

a A P IA A3010 30 30 10

110 301000 10= + +b g b ge j

π =− −

1000

1030

30 10 30 101

10 30

A

a IA A&&: :b g

=− −1000 0102

7 747 0 078 10 0 088

.

. . .b g

b g = 102

6 789. = 15 024.