nt-assignment1 soln.pdf

Upload: screaming-silence

Post on 01-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 NT-Assignment1 soln.pdf

    1/11

    MTH 4436 Section 5.2 Homework Solutions

    Fall 2009

    Pat Rossi Name

    1. Use Fermat’s Theorem to verify that 17 divides 11104 + 1

    Observe:  17 is prime and 17 -  11. Hence, by Fermat’s Theorem, 1117−

    1 ≡ 1(mod17) .

    i.e., 1116 ≡ 1(mod17)

    Next, note that  104 = (6) (16) + 8.

    Finally, note that since  1116 ≡ 1(mod17) ,  we have:

    1116 − 1 ≡ 0(mod17) ⇒ (118 + 1) (118 − 1) ≡ 0(mod17) ⇒ either:

    (118 + 1)  ≡   0(mod17)  or  (118 − 1)  ≡   0(mod17) .(because there are no zero divisors

    mod 17, since 17 is prime)

    If  (118 − 1) ≡ 0(mod17) ,  then (114 + 1) (114 − 1) ≡ 0(mod17) ⇒ either:

    (114 + 1) ≡ 0(mod17)  or  (114 − 1) ≡ 0(mod17) .

    But neither (114 + 1) ≡ 0(mod17)  nor  (114 − 1) ≡ 0(mod17) .

    Therefore, (118 + 1) ≡ 0(mod17) .

    ⇒ 118 ≡ −1(mod17)

    Hence,

    11104 = 11(6)(16)+8 = 11(6)(16) · 118 = (1116)6· 118 ≡ (1)6 · (−1)(mod17) ≡ −1(mod17)

    i.e., 11104 = −1(mod17) ⇒ 11104 + 1 = 0 (mod 17)

    Hence, 17 divides 11104 + 1.Proof.

  • 8/9/2019 NT-Assignment1 soln.pdf

    2/11

    2. ~

    (a) If  gcd (a, 35) = 1,  show that  a12 ≡ 1(mod35)

    Proof.  Let the hypothesis be given (i.e., suppose that  gcd (a, 35) = 1.)

    Since 35 = 5 · 7,  it follows that  5  -  a  nor does  7  -  a.

    (If   5|a,   then   gcd(a, 35)   ≥   5   and if   7|a,   then   gcd(a, 35)   ≥   7,  contrary to ourhypothesis.)

    Hence, by Fermat’s Theorem, we have:   a5 ≡   a (mod 5) and   a7 ≡   a (mod7) ,  orequivalently, a4 ≡ 1(mod5)  and  a6 ≡ a (mod 7) .

    The latter pair of congruences yield:   a12 = (a4)3≡ 13 (mod5) ≡ 1(mod5)

    and:   a12 = (a6)2≡ 12 (mod 7) ≡ 1(mod7)

    i.e.,  a12 ≡ 1(mod5)  and  a12 ≡ 1(mod7)

    ⇒ 5| (a12 − 1) and  7| (a12 − 1) .

    Since gcd (5, 7) = 1,  it follows that  (5  · 7) | (a12 − 1)

    i.e.,  a12 ≡ 1(mod35)

    Remark 1  Our proof made use of the fact that if  a|c and  b|c and if  gcd (a, b) = 1,then  ab|c.

    (b) If  gcd (a, 42) = 1,  show that  168 = 3 · 7 · 8  divides  a6 − 1.

    Proof.  Let the hypothesis be given (i.e., suppose that  gcd (a, 42) = 1.)

    Since 42 = 2 · 3 · 7, it follows that neither 2, 3, nor  7  divide  a.

    (If  2|a, then gcd (a, 42) ≥ 2, if  3|a, then gcd(a, 42) ≥ 3, and if  7|a, then gcd (a, 42) ≥7, contrary to our hypothesis.)

    Hence, by Fermat’s Theorem, we have:   a2 ≡ a (mod 2) , a3 ≡ a (mod 3) , and a7 ≡a (mod 7) ,  or equivalently,  a ≡ 1(mod2) , a2 ≡ 1(mod3) ,  and  a6 ≡ 1(mod7) .

    The three congruences yield:   a6 = 16 (mod 2) ≡ 1(mod2) ,

    a6 = (a2)3 ≡ 13 (mod 3) ≡ 1(mod3) ,

    and:   a6 = 1 (mod 7)

    Our concern here is that our proposed divisor 168 has factorization   23 · 3  ·  7.Thus, it will probably not be enough for us to have that   a6 = 1(mod2) .   Wewill probably need to show that  a6 ≡ 1(mod23) .  (i.e., we will need to show thata6 ≡ 1(mod8) .)

    2

  • 8/9/2019 NT-Assignment1 soln.pdf

    3/11

    To get this result, note that  a ≡ 1(mod2) ⇒ a − 1 ≡ 0(mod2)

    ⇒ a + 1 = (a − 1) + 2 ≡ 2 + 2 (mod 2) ≡ 0(mod2)

    i.e.,  a + 1 ≡ 0(mod2)  also.

    Claim:   Either   (a− 1)   ≡   0(mod4)   and   (a + 1)   ≡   2(mod4)   OR   (a − 1)   ≡

    2(mod4) and  (a + 1) ≡ 0(mod4)

    To see this, note that since both   (a − 1)   and   (a + 1)   are even, neither can becongruent to 1 or 3 modulo 4.

    We observe that it is impossible for  both   (a − 1) and (a + 1) to be congruent to 2modulo 4, for if  (a − 1) ≡ 2(mod4) , then (a + 1) = (a − 1)+2 ≡ 2+2(mod4) ≡0(mod4) .

    A similar argument shows that it is impossible for  both   (a − 1) and  (a + 1)  to becongruent to 0 modulo 4.

    Claim:   (a2 − 1) ≡ 0(mod8) .

    From the previous claim, we can assume, without loss of generality, that (a − 1) ≡0(mod4) and  (a + 1) ≡ 2(mod4) .

    Hence, (a2 − 1) = (a − 1) | {z } 

    divis by 4

    · (a + 1) | {z } 

    divis by 2

    Therefore, (a2 − 1)  is divisible by 8 and is congruent to 0 modulo 8.

    Claim:   a6 ≡ 1(mod8)

    Observe:   a6

    − 1 = (a2

    − 1) (a4

    + a2

    + 1) ≡ 0 · (a4

    + a2

    + 1) (mod 8) ≡ 0(mod8)

    ⇒ a6 ≡ 1(mod8)

    Thus, we  finally have the congruences:   a6 ≡ 1(mod8) ,

    a6 ≡ 1(mod3) ,

    and:   a6 ≡ 1(mod7)

    i.e.,  a6 ≡ 1(mod2) , a6 ≡ 1(mod3) , and a6 ≡ 1(mod7) .

    ⇒ 8| (a6 − 1) ,  3| (a6 − 1) ,  and  7| (a6 − 1) .

    Since gcd (3, 7) = gcd (3, 8) = gcd (7, 8) = 1,  it follows that  (3 · 7 · 8) | (a6 − 1)

    i.e.,  a6 ≡ 1(mod168)

    3

  • 8/9/2019 NT-Assignment1 soln.pdf

    4/11

  • 8/9/2019 NT-Assignment1 soln.pdf

    5/11

    3. From Fermat’s Theorem, deduce that for any integer n ≥ 0, 13| (1112n+6 + 1) .

    Proof.   Since 13  -  11, Fermat’s Theorem tells us that  1112 ≡ 1(mod13) .

    ⇒ (1112)n

    ≡ 1n (mod 13) ⇒ 1112n ≡ 1(mod13)

    Hence, (1112n − 1) ≡ 0(mod13) .

    When n  = 1, we have  (1112 − 1) ≡ 0(mod13) .

    ⇒ (116 + 1) (116 − 1) ≡ 0(mod13)

    Since 13 is prime, there are no zero divisors mod 13, and hence:

    either (116 + 1) ≡ 0(mod13)  or  (116 − 1) ≡ 0(mod13)

    ⇒ either 116 ≡ −1(mod13)  or  116 ≡ 1(mod13).

    Since, given   k   ∈   {2, 3, . . . , p − 1} , p − 1  is the smallest positive power of   k   that iscongruent to 1 modulo p, we have:

    116 ≡ −1(mod13)

    Observe:   (1112n − 1) ≡ 0(mod13) ⇒ (1112n − 1) · 116 ≡ 0 · 116 (mod 13)

    ⇒ (1112n+6 − 116) ≡ 0(mod13) ⇒ (1112n+6 − (−1)) ≡ 0(mod13)

    ⇒ (1112n+6 + 1) ≡ 0(mod13)

    Hence, 13| (1112n+6

    + 1)

    5

  • 8/9/2019 NT-Assignment1 soln.pdf

    6/11

    4. Derive each of the following congruences:

    (a)   a21 ≡ a (mod 15)  ∀a.

    Proof.  By Fermat’s Theorem,  a5 ≡ a (mod5)  for all  a

    ⇒ (a5)4≡ a4 (mod 5) ⇒ a20 ≡ a4 (mod 5)

    ⇒ a21 = a20 · a ≡ a4 · a (mod 5) ≡ a5 (mod5) ≡ a (mod 5)

    i.e.,  a21 ≡ a (mod 5)   ∀a.

    Next, observe that  a3 ≡ a (mod3)

    ⇒ a21 = (a3)7≡ a7 (mod 3) ≡ a6 · a (mod 3) ≡ (a3)

    2· a (mod3) ≡ a2 · a (mod3)

    ≡ a3 (mod 3) ≡ a (mod 3) a ≡ 0(mod3) ⇒ a21 ≡ 021 (mod 3) ≡ 0(mod3)

    ≡ a (mod 3)

    i.e.,  a21 ≡ a (mod 3)   ∀a.

    Thus, we have:   a21 − a ≡ 0(mod5)  and  a21 − a ≡ 0(mod3)

    ⇒ 5| (a21 − a) and  3| (a21 − a) .

    Since gcd (3, 5) = 0,  we have:   (5 · 3) | (a21 − a) .

    i.e., (a21 − a) ≡ 0(mod15) ⇒ a21 ≡ a (mod15)

    (b)   a7 ≡ a (mod 42)  ∀a

    Proof.  By Fermat’s Theorem,  a7 ≡ a (mod7)  ∀a

    Also,  a3 ≡ a (mod3) ⇒ (a3)2≡ a2 (mod 3) ⇒ a6 ≡ a2 (mod 3) ⇒

    a6 · a ≡ a2 · a (mod 3) ⇒ a7 ≡ a3 (mod 3) ≡ a (mod 3)

    i.e.,  a7 ≡ a (mod 3) ∀a

    Finally, a2 ≡ a (mod2) ⇒ (a2)3≡ a3 (mod 2) ⇒ a6 ≡ a3 (mod2)

    ⇒ a6 · a ≡ a3 · a (mod 2) ⇒ a7 ≡ a4 (mod 2) ≡ (a2)2

    (mod 2) ≡ a2 (mod2)

    ≡ a (mod2)i.e.,  a7 ≡ a (mod 2) ∀a

    Hence, 2| (a7 − a) ; 3| (a7 − a) ;   and 7| (a7 − a) .

    Since gcd (2, 3) = gcd (2, 7) = gcd (3, 7) = 1,  it follows that  (2 · 3 · 7) | (a7 − a)

    i.e., (a7 − a) ≡ 0(mod42) ⇒ a7 ≡ a (mod42)

    6

  • 8/9/2019 NT-Assignment1 soln.pdf

    7/11

    (c)   a13 ≡ a (mod3 · 7 · 13)   ∀a

    Proof.  By Fermat’s Theorem,  a13 ≡ a (mod13)

    a3 ≡ a (mod 3)

    and a7 ≡ a (mod7)

    Observe:   a3 ≡ a (mod3) ⇒ a12 = (a3)4 ≡ a4 (mod 3) ≡ a3 · a (mod 3)

    ≡ a · a (mod3) ≡ a2 (mod3)

    i.e.,  a12 ≡ a2 (mod 3)

    ⇒ a13 = a12 · a ≡ a2 · a (mod 3) ≡ a3 (mod3) ≡ a (mod 3)

    i.e.,  a13 ≡ a (mod 3)

    Also, if   7 -  a,  then  a6 ≡ 1(mod7)

    Since  a7 ≡ a (mod 7) ,  we have  a13 = a7 · a6 ≡ a · 1 (mod 7)≡ a (mod7)

    i.e.,  a13 ≡ a (mod 7) if  7  -  a

    If  7|a, then  a ≡ 0(mod7) ⇒ a13 ≡ 013 (mod 7) ≡ 0(mod7) ≡ a (mod7)

    i.e.,  a13 ≡ a (mod 7) if  7|a.

    Thus,  a13 ≡ a (mod7)   ∀a.

    Thus, we have:   a13 ≡ a (mod3);   a13 ≡ a (mod7);   and a13 ≡ a (mod13)

    ⇒ 3| (a13 − a) ; 7 (a13 − a) ;   and 13 (a13 − a) .

    Since 3, 7, 13  are pairwise relatively prime, it follows that  (3 · 7 · 13) | (a13 − a) ,

    or equivalently: a13 ≡ a (mod3 · 7 · 13)

    7

  • 8/9/2019 NT-Assignment1 soln.pdf

    8/11

    (d)   a9 ≡ a (mod 30)   ∀a.

    Proof.  By Fermat’s Theorem,  a2 ≡ a (mod2)

    a3 ≡ a (mod 3)

    and a5 ≡ a (mod5)

    Observe:   a2 ≡ a (mod2) ⇒ a8 = (a2)4 ≡ a4 (mod2)

    ≡ (a2)2

    (mod2) ≡ a2 (mod2) ≡ a (mod 2)

    i.e.,  a8 ≡ a (mod 2) .

    Thus,  a9 = a8 · a ≡ a · a (mod2) ≡ a2 (mod 2) ≡ a (mod 2)

    i.e.,  a9 ≡ a (mod 2)

    Also,  a3 ≡ a (mod3) ⇒ a9 = (a3)3≡ a3 (mod 3) ≡ a (mod 3)

    i.e.,  a9 ≡ a (mod 3) .

    Finally, if  5  -  a,  then  a4 ≡ 1(mod5)

    This combined with the fact that  a5 ≡ a (mod 5) yields:

    a9 = a5 · a4 ≡ a · 1 (mod 5) ≡ a (mod 5) .

    i.e.,  a9 ≡ a (mod 5) if  5  -  a.

    If  5|a, then  a ≡ 0(mod5) ⇒ a9 ≡ 09 (mod 5) ≡ 0(mod5) ≡ a (mod5)

    i.e., If  5|a, then  a9 ≡≡ a (mod5) .

    Thus,  a9 ≡ a (mod 5)   ∀a.

    So we have:   a9 ≡ a (mod2);   a9 ≡ a (mod3);   and a9 ≡≡ a (mod 5) , or equivalently:

    2| (a9 − a) ; 3| (a9 − a) ;   and 5| (a9 − a) .

    Since 2, 3, 5 are pairwise relatively prime, it follows that  (2 · 3 · 5) | (a9 − a) .

    i.e.,  a9 ≡ a (mod 30)   ∀a.

    8

  • 8/9/2019 NT-Assignment1 soln.pdf

    9/11

  • 8/9/2019 NT-Assignment1 soln.pdf

    10/11

    6. ~

    (a) Find the units digit of  3100 by the use of Fermat’s Theorem.

    First, let’s recognize that the units digit of  3100 is the same as  3100 (mod 10) .

    Next, note that since neither 2 nor 5 divide 3, that by Fermat’s Theorem:

    3 ≡ 1(mod2) ,  and hence,  3100 ≡ 1100 (mod 2) ≡ 1(mod2) .

    i.e., 3100 ≡ 1(mod2) .

    Hence, 2| (3100 − 1) .

    Also:   32 ≡ −1(mod5) ,  and hence,  3100 = (32)50≡ (−1)50 (mod5) ≡ 1(mod5) .

    i.e., 3100 ≡ 1(mod5) .

    Hence, 5| (3100 − 1) .

    Since 2  and 5  are relatively prime,  (2  · 5) | (3100 − 1) .

    i.e., 3100 ≡ 1(mod10) .

    (b) For any integer a,  verify that  a5 and a have the same digits unit.

    Proof.  From part 6.a, it suffices to show that  a5 ≡ a (mod10) .

    By Fermat’s Theorem,  a5 ≡ a (mod5)   ∀a ∈ Z

    ⇒ 5| (a5 − a)

    Also:   a2

    ≡ a (mod 2)   ∀a ∈ Z

    ⇒ a4 = (a2)2≡ a2 (mod2) ≡ a (mod2)

    i.e.,  a4 ≡ a (mod 2)

    ⇒ a5 = a4 · a ≡ a · a (mod 2) ≡ a2 (mod2) ≡ a (mod2)

    i.e.,  a5 ≡ a (mod 2)   ∀a ∈ Z

    ⇒ 2| (a5 − a)

    Since 2 and 5 are relatively prime, we have:

    (2 · 5) | (a5 − a) .

    i.e.,  a5 ≡ a (mod 10)   ∀a ∈ Z

    10

  • 8/9/2019 NT-Assignment1 soln.pdf

    11/11