nuclear magnetic resonance (nmr)...

23
Nuclear Magnetic Resonance (NMR) Spectroscopy Kurt Wuthrich Chemistry-2002 Richard Ernst Chemistry -1991 Felix Bloch & Edward Purcell Physics-1952 Paul Lauterbur & Peter Mansfield Medicine-2003 Brian Sykes Lewis Kay

Upload: truongdung

Post on 22-May-2018

233 views

Category:

Documents


2 download

TRANSCRIPT

Nuclear Magnetic Resonance (NMR) Spectroscopy

Kurt WuthrichChemistry-2002

Richard ErnstChemistry -1991

Felix Bloch & Edward PurcellPhysics-1952

Paul Lauterbur & Peter MansfieldMedicine-2003

Brian Sykes Lewis Kay

Principles of NMR Protein Spectroscopy

What does NMR tell us ?

1) Primary structure characterization2) Dynamics - psec-sec timescales3) Equilibrium binding4) Folding/Unfolding5) Three dimensional structure

Some Advantages 1) Solution based2) Non-destructive3) Residue specific information

Principles of NMR Protein Spectroscopy

Wavelength (nm)

10 100 1000 104 105 106 107 108 109

UV/Vis

IR NMR

Nuclear spintransitions

Electrontransitions

Crystallography

X-rays Radio waves

Principles of NMR Protein Spectroscopy

Absorption of energy by nucleus - depends on nuclear spin (I) = sum of unpaired protons + neutrons (spin 1/2)

1H 1/2 1 012C 0 6 613C 1/2 6 714N 1 7 715N 1/2 7 8

Nucleus I # Protons # Neutrons

I≠0 - NMR observed - spin will have magnetic moment µ=γI For proteins 1H, 13C, 15N (31P)

Principles of NMR Protein Spectroscopy

mI = -1/2 β

N

S

S

NN

S

m=(-I, -I+1 ….I-1, I)

mI = +1/2 α

Bo

Principles of NMR Protein Spectroscopy

x

y

z

Bo

µ=-γIz

Normal Magnetic Field (Bo)

Principles of Protein NMR Spectroscopy

mI = -1/2 β

N

S

S

NN

SmI = +1/2 α

So how does this give us an “NMR signal” ?

α

β

Principles of Protein NMR Spectroscopy

α

β

This occurs for all 1H, 13C, 15N in magnetic field

B0

1H 26.75 13C 6.73

15N -2.72

γ (∗107 rad / T sec)

Principles of Protein NMR Spectroscopy

α

β

ΔE = γhB0 = hν ν = γB02π

(Hz) ω = γB0 (rad)

Larmor Precession

1H 26.75 600.00 13C 6.73 150.8715N -2.71 60.82

γ (∗107 rad / T sec)Nucleus ν at 14.09 T

Principles of Protein NMR Spectroscopy

α

β

NMR is an insensitive method 1H N=106

11.75T 18.79T499,980

500,020

499,968

500,032

Principles of Protein NMR Spectroscopy

Sensitivity

nα-nβ = Δn = NγhBo

2kTMo=nαµzα + nβµzβ = Δnµzα= 1 γhΔn = 1 N (γh)2Bo

2 4kT

x

y

z

Bo

x

y

z

Bo

Principles of Protein NMR Spectroscopy

Net Magnetization

x

y

z

x

y

z

Mo

Bo Boωo

Rotating Frame

Principles of Protein NMR Spectroscopy

How is the NMR Signal Obtained ?

x

y

z

Mo

Bo

-employ a rf pulse at ν of desired nucleus

x

y

z

“rf pulse”

θ

B1 B1

Principles of Protein NMR Spectroscopy

x

y

z

Mo

Box

y

z

θ = π/2π/2

rfon off

B1 B1

pw = 6 µsec γB1 = 41 kHz

Principles of Protein NMR Spectroscopy

x

y

z

π/2

rfon off

B1

x

y

z

Mo

Bo

B1

x

y

z

B1receiver

FT

time ν

Principles of Protein NMR Spectroscopy

x

y

z

off

B1

x

y

z

B1

receiver

time

T1

x

y

z

B1

T2

Mz(t) = Mo(1-e-t/T1)

My(t) = My(0)*e-t/T2

Principles of Protein NMR Spectroscopy

100 10 1 0.1 0.01 0.001Correlation Time, τc (nsec)

Molecular Weight

T1, T2 (sec)

100

10

1

0.1

0.01

0.001

T1

T2

Linewidths

MW 100

0.5 Hz

MW 20,000

10 Hz

Principles of Protein NMR Spectroscopy

NMR Instrumentation

Magnet - Bo 18.79 T

vacuum

N2(l)

He(l)

magnet

22.31 T (2006)probe

Principles of Protein NMR Spectroscopy

Magnet Technology

Principles of Protein NMR Spectroscopy

Magnet Technology

Principles of Protein NMR Spectroscopy

Probe Technology

Bo

B1

Principles of Protein NMR Spectroscopy

Cold “Cryogenic” Probe

S/N ~ 1/{Rs*(Ts+Tpa)+(Rc*(Tc +Tpa)}1/2

Tpa, Tc - lowered 298˚K 20˚K

Rs, Ts - near 298˚K

3-4 time more sensitive

500 MHz + cold probe = 1.6x S/N 800 MHz

Principles of Protein NMR Spectroscopy

Block Diagram of NMR Spectrometer

Probe

Transmitter Preamplifier

Duplexer

CPU Receiver

Computer

obs, lk

obs, lkobs, dec, lk