nucleon scattering d dd dd dd dd dd d | i,i 3 | 1, 1 | 1, 1 | 1 0 if the strong interaction is...

35
ucleon Scattering d d d d d d | I,I 3 | 1, 1 | 1,1 | 1 0 If the strong interaction is I 3 -invariant These reactions must occur with equal strengths…equal probabilities… equal CROSS SECTIONS involve identical matrix elements

Post on 21-Dec-2015

258 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

Nucleon Scattering

d d

d d

d d

| I,I3 | 1, 1

| 1,1

| 1 0

If the strong interactionis I3-invariant

These reactions must occur withequal strengths…equal probabilities…

equal CROSS SECTIONS

involve identical matrix elements

Page 2: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

p + p d +

p + n d +

n + n d +

Now consider these (possible and observed) collisions

| 1, 1 >

| 1,-1 >

< 1, 1 |

< 1, 0 |

< 1,-1 |

<pp|L|d+> : <pn|L|d0> : <nn|L|d>

(|1,0 + |1,1)2

1

1 : : 1

ppd+ : pnd0 : nnd : = 2 : 1 : 2

1/2

Then the ratio of cross sections:

Page 3: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

p p

n n

p p

Consider the scattering reactions:

The strong force does not discriminate between nucleon or pion charge.

What can we expect for the cross section of these three reactions?

Page 4: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

If we enforce conservation of isospin we can only connect initial and final states of the same total I, I3

| I,I3 > | 3/2, 3/2 >

| 3/2, -3/2 >

But

<p|L|p> = M + M 3

1

3

2

2

1-

2

3

2

1-

2

1

this interaction involves two matrix elements

p p

n n

+ p + p

means combining:

1 ½ 1 ½

-1 -½ -1 -½

-1 ½ -1 ½

| 1 -1 > | 1/2, 1/2 > = |3/2, -1/2 > |1/2, -1/2 > )3

1

3

2

Page 5: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

+ p + p

+ p + n

+ p + pa.

b.

c.

elastic scattering

but only one of the above can also participate in a

charge exchange process

1,1

1,-1

1,-1

½ ,½

½ ,½

½ ,½ 1, 0 ½ ,½

This IS observed!

So all strong interactions not SIMPLY charge independent.

I3 ISOSPIN independence is more general.

? ?

Page 6: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

+ p + p

+ p + n

+ p + pa.b.c.

elastic scattering

charge exchange process

These three interactions involve the ISOSPIN spaces:

p p

n

23

23

21

2111

21

21

21

23

21

2111 -

21

21

21

23

21

2101

13

23

23

13

Recall: if

L 2= Mfi

221

21

21

21 L

21

23

21

23 L

23

23

23

23

L

M3/2 same byI3-indep.

Let’s denote:

1,1

1,-1

1,-1

½ ,½

½ ,½

½ ,½ 1, 0 ½ ,½

Page 7: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

+ p + p

+ p + n

+ p + pa.b.c.

elastic scattering

charge exchange process

p p

n

23

23

21

21

21

23

21

21

21

23

13

23

23

13

21

21

21

21 L

21

23

21

23 L

23

23

23

23

L

M3/2

a.b.c.

a M3/2

2

b | M3/2 + M1/2|21

323

c | M3/2 M1/2|22

323

Page 8: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

+ p + p

+ p + n

+ p + pa.b.c.

a M3/2

2

b | M3/2 + M1/2|21

323

c | M3/2 M1/2|22

323

a : b : c = : : M3/2 |M3/2 +2M1/2|22 19 |M3/2 M1/2|22

9

for the combined cross section of both processes22

2223

23 11

449

1 MMMM

22

2223

23 11

29

1 42 MMMM

22

223 1

69

1 3 MM

Now if M3/2=M1/2 then +p = -p total

but also -p0n= 0

Page 9: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

2H target

S1 S2 S3 S4

beam

Total Cross

Section T

(10-27 cm2)

+ p

+ p

40 100 200 400Lab Energy of Pion Beam (MeV)

200180

160

140

120

100

80

60

40

20

0

Measured the depletion of pion beamrepeated with the tank full, emptyrepeated with + and - beam

for KE 195 MeV (the resonance of the 3/2-spin )

3 cb

a

Page 10: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

a : b : c = : : M3/2 |M3/2 +2M1/2|22 19 |M3/2 M1/2|22

922

223 1

69

1 3 MM a : b + c = : M3/2

2

3 cb

a

223 1

MM

a : b : c = 9 : 1 : 2

Page 11: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

Symmetry implies any transformation still satisfies the same Schrödinger equation, same Hamiltonian:

H dt

di (U) (U) H

dt

di U† U

U†H U= Hmeans we must demand:

[H ,U]= 0Which means that the operator U must be associated with a CONSERVED quantity!

Though U are UNITARY, not necessarily HERMITIAN, but remember:GieU where the G is Hermitian!

!2

)(1

2GiGiU

since you’ve already shown

[H ,U]= 0 [H ,G]= 0The GENERATOR of any SYMMETRY OPERATION is an

OPERATOR of a CONSERVED OBSERVABLE (quantum number!)

Page 12: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

Mesons

isospin mass chargeParticle I3 MeV/c2 states Q

nucleon 938.280 p +1 939.573 n 0

pion 139.569 + +1 134.964 0 0 139.569 1

delta 1232. ++ +2 + +1 0 0

1

rho 770. + +1 0 0

1

eta 548.8 0 0

+1/21/2

+1 01

0+1 01

+3/2+1/21/23/2

Spin-0

BaryonsSpin-1/2

Spin-3/2

omega 783.0 0 00

Page 13: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

Q = I3 + ½Y “hypercharge” or BARYON NUMBER

because =1 for baryons 0 for mesons

Page 14: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

1947 Rochester and Butler

cloud chamber cosmic ray event

of a neutral object decaying into two pions

K0 +

Page 15: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

1947 Rochester and Butler cloud chamber cosmic ray event

of a neutral object decaying into two pions

K0 +

1949 C. F. Powell photographic emulsion event

K+

m = 497.72 MeV

m = 493.67 MeV

Page 16: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

p

p + m=1115.6 MeVmp=938.27 MeV

1950 Carl Anderson (Cal Tech)

Page 17: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

1952 Brookhaven Cosmotron 1st modern accelerator

artificially creating these particles for study

1954 6.2-GeV p synchrotron Lawrence,Berkeley

1960 28-GeV p synchrotron CERN, Geneva 33-GeV p synchrotron Brookhaven Lab

1962 6-GeV e synchrotron Cambridge

1963 12.5-GeV p synchrotron Argonne Lab

1964 6.5-GeV p synchrotron DESY,Germany

1966 21-GeV e Linac SLAC (Standford)

Page 18: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

Spin-0 Pseudoscalar Mesons

nucleon 938.280 p +1 939.573 n 0

pion 139.569 + +1 134.964 0 0 139.569 1

rho 770. + +1 0 0

1

eta 548.8 0 0

+1/21/2

+1 01

0+1 01

Spin-1/2 Baryons

omega 783.0 0 00

isospin mass charge Particle I3 MeV/c2 states Q

lambda 1115.6 0

Sigma 1385. + +1 0 0

1

+1 01

Cascade 1533. + +1 1

+1/21/2

0

kaon 493.67 K+ +1 497.72 K0 0

+1/21/2

kaon 497.72 K0 0 493.67 K 1

+1/21/2

Page 19: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

Delta 1232. ++ +2 + +1 0 0

1

+3/2+1/21/23/2

Spin-3/2 Baryons

isospin mass chargeParticle I3 MeV/c2 states Q

Sigma-star 1385. + +1

0 0

1

+1 01

Cascade-star 1533. *+ +1

* 1

+1/21/2

Page 20: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These
Page 21: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These
Page 22: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These
Page 23: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These
Page 24: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These
Page 25: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These
Page 26: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

pdg.lbl.gov/pdgmail

Page 27: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

FRANK & EARNEST

Page 28: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

These new heavier particle states were produced as copiously as s

in nuclear collisions (and in fact decay into s)

all evidence of STRONG INTERACTIONS

these new states decayed slowly like the weak decaysp n + e + +

which decay via neutrinos(accepted as the “signature” of a weak decay)

but unlike

STRONG production/decay phenomena like nuclear resonances

(all with final decay products, like the ) which decay “instantly”,

i.e., as readily as they are produced

ELECTROMAGNETIC production/decay phenomena

atomic (electron) resonances (all with decay)

or

Page 29: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

What else was about them?

Observed

+ p+ K+ + K + K +

NEVER Observed

+ p+ + + K + n +

all still conserve mass, charge, isospin

“Associated production”

Also NEVER observe: + p+ +

but DO see: + p+ + +

Page 30: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

K+

K

K

K

+1+1111

Q = I3 + ½Y YB+S

1952-53 (Pais, Gell-man) “Strangeness”

Page 31: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

Spin-0 Pseudoscalar Mesons

nucleon 938.280 p +1 939.573 n 0

pion 139.569 + +1 134.964 0 0 139.569 1

rho 770. + +1 0 0

1

eta 548.8 0 0

+1/21/2

+1 01

0+1 01

Spin-1/2 Baryons

omega 783.0 0 00

isospin mass charge StrangenessParticle I3 MeV/c2 states Q S

lambda 1115.6 0

Sigma 1385. + +1 0 0

1

+1 01

Cascade 1533. + +1 1

+1/21/2

0

kaon 493.67 K+ +1 497.72 K0 0

+1/21/2

kaon 497.72 K0 0 493.67 K 1

+1/21/2

000

000

0

0

00

+11

11

1 1122

1

Page 32: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

SU(2) Combining SPIN or ISOSPIN ½ objects gives new statesdescribed by the DIRECT PRODUCT REPRESENTATION

built from two 2-dim irreducible representations: one 2(½)+1 and another 2(½)+1 yielding a 4-dim space.

isospinspace

½

=

=

which we noted reduces to 2 2 = 1 3

the isospin 0singlet state

( 12

ispin=1triplet

Page 33: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

SU(2)- Spin added a new variable to the parameter space defining all state functions

- it introduced a degeneracy to the states already identified; each eigenstate became associated with a 2+1 multiplet of additional states

- the new eigenvalues were integers, restricted to a range (- to + ) and separated in integral steps

- only one of its 3 operators, J3, was diagonal, giving distinct eigenvalues. The remaining operators, J1 and J2, actually mixed states.

- however, a pair of ladder operators could constructed: J+= J1 + iJ2 and J= J1 - iJ2

which stepped between eigenstates of a given multiplet.

n

-1/2 +1/2 -1 0 1

Page 34: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

010

100

000

6

000

001

010

1

000

00

00

2 i

i

001

000

100

4

00

000

00

5

i

i

00

00

000

7

i

i

000

010

001

3

3200

0310

0031

8

The SU(3) Generators are Gi = ½i

just like the Gi = ½i are for SU(2)

The ½ distinguishesUNITARY from ORTHOGONAL

operators.

i appear in the

SU(2) subspacesin block diagonal

form.3’s diagonal entries

are just the eigenvaluesof the isospin projection.

8 is ALSO diagonal! It’s eigenvalues must represent a NEW QUANTUM number!

Notice, like hypercharge (a linear combination of conserved quantities),8 is a linear combinations of 2 diagonal matrices: 2 SU(2) subspaces.

Page 35: Nucleon Scattering d dd dd dd dd dd d | I,I 3  | 1, 1  | 1,  1  | 1 0  If the strong interaction is I 3 -invariant These

In exactly the same way you found the complete multipletsrepresenting angular momentum/spin, we can define

T± G1± iG2

U± G6± iG7

V± G4± iG5

The remaining matrices MIX states.

000

001

010

1

000

00

00

2 i

i

000

010

001

3

T±, T3 are isospin operators

By slightly redefining our variables we can associate the eigenvalues of

8 with HYPERCHARGE.

831

832 )()( GY

3200

0310

0031

3

18