numerical 3d-hydrodynamic modellingicc.ub.edu/congress/grbinbcn/documents/reitberger.pdf · 2013....

13
* Workshop on Variable Galactic Gamma-Ray Sources N UMERICAL 3D- HYDRODYNAMIC M ODELLING OF C OLLIDING W INDS IN M ASSIVE S TAR B INARIES : particle acceleration & -ray emission K. Reitberger (1) , R. Kissmann (1) , A. Reimer (1) , G. Dubus (2) , and O. Reimer (1) Barcelona, 04/18/2013 1 Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Innsbruck 2 Institut de Planétologie et d’Astrophysique de Grenoble

Upload: others

Post on 02-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • *

    Workshop on Variable Galactic Gamma-Ray Sources

    NUMERICAL 3D-HYDRODYNAMIC MODELLING OF

    COLLIDING WINDS IN MASSIVE STAR BINARIES:

    particle acceleration & 𝛾-ray emission

    NUMERICAL 3D-HYDRODYNAMIC MODELLING OF

    COLLIDING WINDS IN MASSIVE STAR BINARIES:

    particle acceleration & 𝛾-ray emission

    K. Reitberger(1), R. Kissmann(1), A. Reimer(1), G. Dubus(2), and O. Reimer(1)

    Barcelona, 04/18/2013

    1 Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Innsbruck 2 Institut de Planétologie et d’Astrophysique de Grenoble

  • *

    * numerical hydrodynamic models simulating the dynamics of wind

    acceleration and collision in

    course of orbital cycle.

    (e.g., Pittard 2009)

    * analytical models solving a transport eq. for accelerating

    particles and subsequently com-

    puting 𝛾-ray fluxes.

    (e.g., Reimer et al. 2006)

    Workshop on Variable Galactic Gamma-Ray Sources

    The current project combines both approaches in a numerical framework.

    Barcelona, 04/18/2013

  • • Stellar parameters (R,T,m)i , i=1,2

    • Wind parameters (M , v∞) i , i=1,2

    • Orbital parameters:

    • semi-major axis

    • Eccentricity

    • inclination

    • etc.

    physics

    For any 3D grid-point:

    • Wind: ρ, v, T

    • Particle spectra (electrons and nucleons)

    • Components of 𝛾-ray emission along line of sight

    • any other interesting

    quantity (energy losses etc.)

    Input Output

    Workshop on Variable Galactic Gamma-Ray Sources Barcelona, 04/18/2013

  • I compute stellar wind evolution: • hydrodynamic description (similar to Pittard 2009)

    • radiative line-acceleration, gravity and orbital motion

    • radiative cooling in wind collision region (WCR)

    • isothermal plasma outside WCR

    II accelerate particles: • solving transport equation for each grid cell and particle species

    • diffuse shock acceleration (DSA), losses by Inverse Compton (IC)

    cooling, synchrotron emission, bremsstrahlung, collisions etc.

    • particle advection with stellar wind plasma

    III 𝜸-ray emission • Use 4D particle distribution in energy and space to compute

    • IC-emission (anisotropic - depending on scattering angle)

    • Relativistic bremsstrahlung

    • 𝜋0-decay and ensuing 𝛾-ray emission

    C R O N O S

    *

    Workshop on Variable Galactic Gamma-Ray Sources Barcelona, 04/18/2013

  • *CRONOS (see Kissmann et al. 2008)

    • finite-volume hydro/MHD code developed by Ralf Kissmann

    • second-order accurate in space

    • Using approximate Riemann solvers (hll, hllc for hydro)

    • Cartesian, cylindrical and spherical grid layouts possible

    • C++ basis

    • all modules MPI-parallel

    • modular setup allows for easy expansion

    • highly portable

    Applied to hydrodynamic variables 𝜌, 𝒗, 𝑇

    plus 𝑠 ⋅ 𝑛𝐸 advected scalar fields representing 𝑛𝐸 energy bins of 𝑠 different particle species

    e.g., electrons and protons with 50 -100 logarithmic bins in interval [1MeV,10 TeV]

    Workshop on Variable Galactic Gamma-Ray Sources Barcelona, 04/18/2013

  • *

    𝜕𝜌

    𝜕𝑡+ 𝛻 ∙ 𝜌𝒖 = 0

    𝜕𝜌𝒖

    𝜕𝑡+ 𝛻 ∙ 𝜌𝒖𝑢 + 𝑃 = 𝜌𝒇

    𝜕𝑒

    𝜕𝑡+ 𝛻 ∙ 𝑒 + 𝑃 𝒖 =

    𝜌

    𝑚𝐻

    2

    Λ 𝑇 + 𝜌𝒇 ∙ 𝒖

    governed by

    radiative cooling term Λ 𝑇 (following Schure et al. 2009)

    force term 𝒇 = (−𝐺𝑀∗,𝑖 𝒓𝑖

    𝑟𝑖3

    2𝑖=1 + 𝒈𝐿,𝑖)

    with line acceleration computed

    according to Kudritzki et al. 1989

    (modified CAK approximation)

    Workshop on Variable Galactic Gamma-Ray Sources Barcelona, 04/18/2013

    O+O system, a= 400 R⊙

    res. 256x256x64

  • *governed by transport equation

    with 𝐸 = 𝐸 𝐷𝑆𝐴 + 𝐸 𝑙𝑜𝑠𝑠 + 𝐸 𝑎𝑑𝑖𝑎𝑏 and 𝑄 =𝜂𝑖𝑛𝑐𝜌

    𝜇𝑚𝑝

    1

    𝑑𝑡

    solution via semi-Lagrangian scheme following Crouseilles et al. 2010

    Workshop on Variable Galactic Gamma-Ray Sources Barcelona, 04/18/2013

    𝜕𝑁(𝐸)

    𝜕𝑡+ 𝛻 ⋅ 𝒗𝑁 𝐸 +

    𝜕

    𝜕𝐸𝐸 𝑁 𝐸 = 𝑄𝛿(E − E0)

    • compression ratio determined by hydrodynamics 𝑐𝑟 =𝜌𝑝𝑜𝑠𝑡𝑠ℎ𝑜𝑐𝑘

    𝜌𝑝𝑟𝑒𝑠ℎ𝑜𝑐𝑘

    • shock velocity approximated by 𝑉𝑠 = 𝒗 ⋅ 𝛁𝝆

    |𝛁𝝆|

    • diffusion coefficient set to multiple of Bohm diffusion

    • B-field approximated following Usov & Melrose 1992

    • electrons: 𝐸 𝑙𝑜𝑠𝑠 contains IC-cooling (full Klein-Nishina cross-section), synchrotron emission, bremsstrahlung & Coulomb losses

    • protons: 𝐸 𝑙𝑜𝑠𝑠 contains losses by nucleon-nucleon interaction & Coulomb losses

  • *

    remaining free parameters: surface magnetic field 𝐵𝑠,

    diffusion efficiency 𝜁, injection fractions 𝜂𝑖𝑛𝑗𝑒 , 𝜂𝑖𝑛𝑗

    𝑝

    Workshop on Variable Galactic Gamma-Ray Sources Barcelona, 04/18/2013

    Determine position of shock by

    condition 𝛻 ⋅ 𝒗 < 0

    diffusive shock acceleration only

    active in shock

    wind parameters 𝜌, 𝒗, 𝑇 relevant for loss terms in 𝐸

  • left:

    e- at ~1 MeV log(E2N [MeV cm-3])

    left:

    p at ~1 MeV log(E2N [MeV cm-3])

    right:

    p at ~100 MeV log(E2N [MeV cm-3])

    right:

    e- at ~100 MeV log(E2N [MeV cm-3])

  • Workshop on Variable Galactic Gamma-Ray Sources Barcelona, 04/18/2013

    green: N [MeV-1 cm-3] ~102 red: N [MeV-1 cm-3] ~105

    electrons at 10 MeV

    3D- iso-surface plots

  • *

    Workshop on Variable Galactic Gamma-Ray Sources

    independent of previous steps. Load simulation results from file for further

    calculation.

    inverse Compton scattering (anisotropic) • Parameters: inclination and angle between projected line of sight

    and apastron

    • Simplifications: radiation field monochromatic, stars as point sources

    • integration over electron spectrum

    • Summation over all contributing grid cells

    relativistic Bremsstrahlung • integration over electron spectrum

    • following Blumenthal & Gould (1970)

    • assume ISM metallicity

    𝜋0-decay • integration over proton spectrum to get pion spectrum (formalism by

    Pfrommer & Enslin 2004)

    • integration over pion spectrum to get 𝛾-ray emission

    Barcelona, 04/18/2013

  • *IC-flux as determined by our procedure for a single grid-

    cell close to the WCR of an average B+WR binary

    Comparison to the

    analytical result of a

    similar system in

    Reimer et al. 2006

    Workshop on Variable Galactic Gamma-Ray Sources Barcelona, 04/18/2013

    • radiation field of both stars considered

    • monochromatic approximation of photons

    • isotropic electron distribution

    • declining scattering rate with decreasing

    scattering angle

    • variations with orbital phase

  • *• extensive testing and parameter studies

    • add pion decay induced γ-ray emission

    • publishing detailed description and documentation

    • consider additional physics (γ-γ absorption etc.)

    • application to specific binary systems like WR 140, η Carinae, etc.

    Thank you for your attention!

    Questions? Advice? Concerns?

    Barcelona, 04/18/2013 Workshop on Variable Galactic Gamma-Ray Sources