numerical modelling of steel beam-columns in case of · pdf filenumerical modelling of steel...

29
Numerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 Vila Real, P. M. M. a., Lopes, N. b, Simoes da Silva, L. c, Piloto, P. d, Franssen, J.-M. C n, b Department of Civil Engineering, University of Aveiro, 3810 Aveiro, Portugal Tel.: +351-234-370049; fax: +351-234-370094; e-mail: [email protected] * Corresponding author c Department of Civil Engineering, University ofCoimbra, 3030-290 Coimbra d Department of Mechanical Engineering, Polytechnic ofBraganc;;a, Braganc;;a, Portugal C Department M&S , University of Liege, Liege, Belgium ABSTRACT This paper presents a nllmerical study of the behaviour of steel/-beams subjected to fire and a combillation of axial force alld bending moments. A geometrical and material lion-linear fillite element program. specially established in Liege for the analysis of stmctures submitted to fire. has been used to determille the resistance of a beam- column at elevated temperature. using the material properties of Eurocode 3. part 1-2. The numerical resul!s have beell compared with those obtained with the Eurocode 3. part 1-2 (1995) and the new version of the same Eurocode (2002). The results hmJe confirmed that the Ilew proposal for Eurocode 3 (2002) is more consel1 J ative thallthe ENV-EC3 (1995) approach. Key words: beam-column, buckling, torsional-buckling, fire, Eurocode 3, numerical modelling

Upload: dinhkiet

Post on 06-Feb-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

Numerical Modelling of Steel Beam-Columns in Case of Fire -

Comparisons with Eurocode 3

Vila Real, P. M. M. a., Lopes, N. b, Simoes da Silva, L. c, Piloto, P. d, Franssen, J.-M. C

n, b Department of Civil Engineering, University of Aveiro, 3810 Aveiro, Portugal

Tel.: +351-234-370049; fax: +351-234-370094; e-mail: [email protected]

* Corresponding author

c Department of Civil Engineering, University ofCoimbra, 3030-290 Coimbra

d Department of Mechanical Engineering, Polytechnic ofBraganc;;a, Braganc;;a, Portugal

C Department M&S , University of Liege, Liege, Belgium

ABSTRACT

This paper presents a nllmerical study of the behaviour of steel/-beams subjected to fire

and a combillation of axial force alld bending moments. A geometrical and material

lion-linear fillite element program. specially established in Liege for the analysis of

stmctures submitted to fire. has been used to determille the resistance of a beam­

column at elevated temperature. using the material properties of Eurocode 3. part 1-2.

The numerical resul!s have beell compared with those obtained with the Eurocode 3.

part 1-2 (1995) and the new version of the same Eurocode (2002).

The results hmJe confirmed that the Ilew proposal for Eurocode 3 (2002) is more

consel1Jative thallthe ENV-EC3 (1995) approach.

Key words: beam-column, buckling, torsional-buckling, fire, Eurocode 3, numerical

modelling

Page 2: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

NOMENCLATURE

A Area of the cross-section

E Young' s modulus of elasticity

Iv Yield strength

K Stiffuess of the spring

K" Axial stiffuess of the beam

K ,'0 Axial stiffness of the beam at room temperature

k" 0 Reduction factor for the yield strength at temperature B a

k",o Reduction factor for the slope of the linear elastic range at temperature B.

M ~.IF1R Buckling resistance moment in the fire design situation given by SAFIR

M" ,ji,"d Design bending moment about y axis for the fire design situation

M ,".ji,O.Rd Design moment resistance about y axis of a Class 1 or 2 cross-section with a

uniform temperature 0 a

N ji.lld

N ji ,n ,Rd

Design axial force for the fire design situation

Design axial force resistance with a uniform temperature 0.

Elastic section modulus in y axis

Plastic section modulus in y axis

Greek

Imperfection factor and thermal elongation coefficient of steel

is the equivalent uniform moment factor corresponding to lateral-torsional

buckling, in this case CPAI.LT = PAl .)' =1.1)

Page 3: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

P M ,! , Is the equivalent uniform moment factor for the y aXIS, In this case

( p"")' = 1.1)

Y MO Partial safety factor (usually YM O = 1,0)

Y At ,ft Partial safety factor for the fire situation (usually Y "' .ft = 1.0 )

XLT Non-dimensional slenderness for lateral-torsional bucking at room

temperature

A,. Non-dimensional slenderness of the y axis for flexural buckling at room

temperature

A_ Non-dimensional slenderness of the z axis for flexural buckling at room

temperature

ALT ,{/ Non-dimensional slenderness for lateral-torsional buckling at temperature

A,..n Non-dimensional slenderness of the y aXIS for flexural buckling at

temperature eo

A" O Non-dimensional slenderness of the z aXIS for flexural buckling at

temperature eo

X LT,ji

X min.fi

Reduction factor for lateral-torsional buckling in the fire design situation

Is the minimum reduction factor of the y and z axis for flexural buckling in

the fire design situation

X )'.ft Is the reduction factor of the y axis for flexural buckling in the fire design

situation

X ' ,}i Is the reduction factor of the z axis for flexural buckling in the fire design

situation

Page 4: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

I . INTRODUCTION

Under fire conditions, axially and eccentrically loaded columns were studied by

Franssen et al [1-3] for the cases where the failure mode is in the plane of loading, who

proposed a procedure for the design of columns under fire loading, later adopted by

EC3 [4]. Analogously, Vila Real et al [5-7] studied the problem of lateral torsional

buckling of beams under fire loading, and equally proposed a design expression also

adopted by EC3 [4].

The 3D behaviour of members submitted to combined moment and axial loads, i.e.

the interaction between bending, buckling and lateral torsional buckling, was never

specifically studied and it is thus impossible to establish the level of safety and accuracy

provided by the current design proposals. It is the objective of the present paper to

address this issue, using a numerical approach.

2. NUMERICAL MODEL

2. 1 Basic Hypothesis

The program SAFIR [8] was chosen to carry out the numerical simulations, which is

a finite element code for geometrical and material non-linear analysis, specially

developed for studying structures in case of fire. In the numerical analyses, a three­

dimensional (3D) beam element has been used. It is based on the following

fo rmulations and hypotheses:

Displacement type element in a total co-rotational description;

Prismatic element;

The displacement of the node line is described by the displacements of the

three nodes of the element, two nodes at each end supporting seven degrees

Page 5: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

of freedom, three translations, three rotations and the warping amplitude,

plus one node at the mid-length supporting one degree of freedom, namely

the non-linear part of the longitudinal displacement;

The Bernoulli hypothesis is considered, I.e., 10 bending, plane sections

remam plane and perpendicular to the longitudinal aXIs and no shear

deformation is considered;

No local buckling is taken into account, which is the reason why only Class

J and Class 2 sections can be used [9];

The strains are small (von Karman hypothesis), i.e.

J all -- « J 2 ax (J)

where 11 IS the longitudinal displacement and x IS the longitudinal co-

ordinate;

The angles between the deformed longitudinal axis and the undeformed but

translated longitudinal axis are small, i. e. ,

sin <p;: <p and cOS<jl;: I

where <p is the angle between the arc and the cord of the translated beam

finite element;

The longitudinal integrations are numerically calculated usmg Gauss'

method;

Page 6: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

The cross-section is discretised by means of triangular or quadrilateral fibres .

At every longitudinal point of integration, all variables, such as temperature,

strain, stress, etc., are uniform in each fibre ;

The tangent stiffuess matrix is evaluated at each iteration of the convergence

process (pure Newton-Raphson method);

Residual stresses are considered by means of initial and constant strains (10];

The material behaviour in case of strain unloading is elastic, with the elastic

modulus equal to the Young's modulus at the origin of the stress-strain

curve. In the same cross-section, some fibres that have yielded may therefore

exhibit a decreased tangent modulus because they are still on the loading

branch, whereas, at the same time, some other fibres behave elastically. The

plastic strain is presumed not to be affected by a change in temperature [11];

The elastic torsional stiffuess at 20°C that is calculated by the code has been

adapted in an iterative process in order to reflect the decrease of material

stiffuess at the critical temperature [12].

2.2 Case study

A simply supported beam with fork supports was chosen to explore the validity of

the beam-column safety verifications, loaded with uniform moment in the major axis

and axial compression (Fig. I). An IPE 220 of steel grade S 235 was used, with a

uniform temperature distribution in the cross section.

A lateral geometric imperfection given by the following expression was considered:

( I . (m:) YX)=--SIn -1000 I

(2)

Page 7: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

Finally, the residual stresses adopted are constant across the thickness of the web and

of the flanges. Triangular distribution as in figure 2, with a maximum value of 0.3 x 235

MPa, for the S235 steel has been used [13].

3. THE EUROCODE MODELS FOR BENDING AND AXIAL FORCE UNDER FIRE

LOADING

3.1 Introduction

At this point the versions of Part 1.2 of Eurocode 3 from 1995 and 2002 for

combined bending and axial force under fire loading will be described.

3.2 Simple model according to Eurocode 3 (1995)

According to part 1-2 of the Eurocode 3 [14], elements with cross-sectional classes 1

and 2 submitted to bending and axial compression, in case of fire, must satisfY the

following condition:

where

and

N fl.Ed + K vM '·.fl .Ed ,,; 1

Xmin.fl AA ~ W k ~ Cv 0 pI,)' J',8

1.2 .' YAI .fl Y"' .fl

Ky =1 llyN fl.Ed

Xy.fl Ak f 1.2 y.a y

(3 )

(4)

Page 8: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

- [W -W ] /I = A , (2 f.I _ 4) pl, y d ,y r,· J.O PU .v . .. W

cl ,y

but f.1 ,,; 0.9 (5)

where

X m;".fi is the minimum reduction factor of the axis yy and zz;

Wp /,." is the plastic modulus in axis yy;

k,.,1} is the reduction factor of the yield strength at temperature e

Y AI.fi is the partial safety coefficient in case of fire (usually YM .fi = 1 );

PM,,, is the equivalent uniform moment factor, in this case (PAl v =1.1);

The reduction factor is calculated with the expressions from the part 1.1 ofEurocode

3 [9]. The reduction factor in case of fire, X y.fi and X =.fi' are determined like at room

temperature using the slenderness 1" .0 e,I"o given by equation (6). The constant 1.2 is

an empirical correction factor. In the calculation of the reduction factor in case of fire

the bucking curve used is the curve c (a.=0.49).

- -jEy,O Ay,O = A)' k

£,0

- -jEo A = A --"'--=,0 = k £,0

where:

/I.)' e A = are the slenderness ofthe axis yy and zz at room temperature;

k II 0 is the reduction factor of the elastic modulus at temperature e .

The following values are also defined:

I ,. N fi,O,l/d = Ak,.,o --' -

Y"' ,fi

M . =w k £ y,jl,O,Rd pl,y .1',0

Y"',fi

(6)

(7)

Page 9: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

In order to compare results, the maximum value of the design moment is divided by

the plastic moment resistance at temperature e. Solving equation (3) for M .... fl .Ed and

dividing by M v.fl .•. Rd from equation (7), yields

M .... fl,Ed --"-"='-- < --,--------~ M ... ,fl,. ,Rd

I _ _ -...:...fJ..!:.,,_N.£fl~, E::.a __

N fl,Ed 1---='----Xmin.fl N

1.2 fl,O.Rd

(8)

In addition, also from part 1.2 of Ee3 [14], a second condition related to lateral-

torsional buckling is also required, and the following formula must also be verified:

N fl,Ed + K LT Ad " .fl,Ed

X=.fl Ak f " X LT W k f y I 2 .1',0 I 2 pl.y .1'.0

. rM ,fl ' r Af •fl

~ I (9)

with

Il LT N fl,Ed K LT =1- but K LT ~ 1.0

X =.fl Ak f 1.2 )",0 y

(10)

and

fJLT =0.15A. =,o!3"I.Lt -0.15 but f.1 ~0.9 (II)

where

PM.LT IS the equivalent uniform moment factor corresponding to lateral-torsional

buckling, in this case (PM.LT = PM.J' =1.1);

The reduction factor for lateral-torsional buckling is calculated according to the

expressions of Eurocode 3, if the slenderness XLT •• at the temperature 9 exceeds 0.4.

Page 10: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

The reduction factor in case of fire, X LT.fl' is detennine like at room temperature using

the slenderness ILT 0 given by:

(12)

Again, in order to compare the results, the maximum value of the design moment is

divided by the plastic moment resistance at temperature e. Solving for M y .fl .Ed from

equation (9) and dividing by M y.Ji.O.Rd from equation (7), gives

M y, fi ,Ed < _ ---,-__ --'X=LT'--_ __ -;:-Il ___ N---"fic:::.E:::.d _ _

M y,fi.o.Rd X :.fi N

flLT N fi,Ed 1.2 fi.O.Rd 1.2 1- - ---'-'---

(13)

X :.fi N 1.2 fi.O,RdYM.fi

3.3 Simple model according to the new version ofEurocode 3 (2002)

According to the new version of Eurocode 3 [14] the elements with cross-sectional

classes sections I and 2 subjected to bending and axial compression, in case of fire,

must satisfY the condition:

N fl,Ed + K/v! y,fl,Ed < I

Ak ~ Wk ~ X min,ji y ,a pl ,y y,fJ

YM ,fl Y M,fl

where

K y =1 II" N fl.Ed

{, f ,.

X Y,fl A (Y.O -'­

Y At .};

but K < 3 y-

(14)

(15)

Page 11: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

and

fly = (l.2f3A1 .y - 3)X;,.t, + 0.44f3A1 . .I' - 0.29 but II ~ 0.8 (16)

with

1 (17) X ji =

rPo + ~[rPo y - [~o r where

rPo = ~ [I + aAo + (Jo Y ] (18)

and

a = 0 . 6S~237Jy (1 9)

X.1i is the reduction factor to the axis)0' and zz in case of fire;

- -~o A. = A -Y,-y.O Y k

E,O

- -~O A = A - Y'-,,0 'k

E,O

(20)

with

Ay e A, are the slenderness of the axisyy and zz at room temperature;

k E.O is the reduction factor of the elastic modulus at temperature e

Following the same strategy as before, solving for M y,ji.Ed from equation (14) and

dividing by M )"ji,O.Rd from equation (7), yields the ratio of applied moment versus

resisting moment for a given level of axial force :

lvII"ji,Ed < 1 (1 _ N ji,Ed ) (21 )

My, ji,O,Rd (1 _ J.l )' N ji'Ed ) Xmin. ji N ji.O,Rd

X y,jiN ji.O,Rd

Again, the lateral-torsional buckling check is given by

Page 12: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

where

and

where

__ N-,-fl=.E-=..d ---,,-_ + K LTM y.fl.Ed :> I

Ak r,· W k ~ X: .ji )'.0 -- X LT,ji pl.)' y.O

Y!of ,fi Y r.l.fi

K - 1- JlLTN

fl.Ed LT - j"

Xo.flAk Y.l1 -'­YM ,ji

but K LT :>1.0

P LT =O.IS}..o'''PM,Lt -0.15 but p :> 0.9

(22)

(23)

(24)

P is the equivalent unifonn moment factor correspondinoo to lateral-torsional M .LT

buckling, in this case (PM,LT = PAl.,. = 1.1);

where

X LT,fl = ~ f j ¢LT,O + [¢LT,(} J' -lA LT,O

(2S)

with

(26)

a =06SP3Jjy (27)

and

- - JE'O A =A 2:-LT." I.T k

E.(}

(28)

Similarly, for comparison, the maximum value of the design moment (taken from

equation (22» is divided by the plastic moment resistance at temperature (equation (7»,

to give

Page 13: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

M y.fl •Ed < XLr (I N fl.Ed J M fl .II.Rd (1- J.lLr N fl.Ed J X'.fl

N fl .II .Rd

X , .fl N fl.O.Rd

(29)

4. COMPARATIVE ANALYSIS OF THE NUMERICAL RESULTS AND THE TWO

VERSIONS OF EUROCODE 3

4.1 Basic results: steel members loaded in compression or in bending

To establish the grounds for the subsequent analysis of the behaviour of beam-

columns, it is worth recalling the results of axially-compressed columns and simply-

supported beams loaded in pure bending under fire conditions.

For both versions of part 1.2 ofEurocode 3, figure 3 compares the axial resistance of

an axially-compressed pin-ended column, non-dimensionalised with respect to its

plastic resistance, for a range of non-dimensional slenderness, XLT.O ' with the

corresponding numerical results for various constant temperature simulations (400° to

700°C). It is noted that, although the numerical results apparently highlight a slight

unconservative nature of the eurocode design expressions, experimental results indicate

otherwise, an issue briefly discussed in the conclusions.

Analogously, figure 4 compares the non-dimensional bending resistance of a simply

supported beam under equal end moments from the two eurocodes proposals, against

the numerical results obtained using the program SAPIR for a range of uniform

temperatures from 400° to 700°C, for various levels of non-dimensional slenderness,

XLr II' In this case, the more recent eurocode design proposal provides perfect fit to the

numerical results.

Page 14: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

4.2 Beam-Column results: combined major-axis bending and axial force

In order to assess the eurocode design rules for bending and axial force, a parametric

study was carried out where the following parameters were considered :

(i) length ofbeam-column, L;

(ii) level of axial force, N / N fl.O.Rd ;

(iii) temperature.

For each length L, and for a chosen temperature, the eurocode design expressions

(13) and (29) were plotted for increasing ratios of N / N fl. O.Rd , together with the results

of the numerical simulations for that beam-column length. These results are illustrated

in the charts of Figures 5 and 6, for uniform temperatures of 400° and 600°C.

Overall, it can be seen that the eurocode results are mostly on the safe side, as can be

summarized in the 3D interaction surfaces of Figures 7 to 10. In each figure, the

continuous surface corresponds to the simple model of Eurocode whereas the cross

points result from the numerical simulations, only visible over the surface, i.e. when the

simple model is on the safe side. These figures clearly show that there are more points

in the safe side for the newer version.

5. CONCLUSIONS

The comparative analysis performed in this paper has shown that for the beam­

column IPE 220 studied with length varying between 0.5 and 4.5 m, the new version for

the fire part ofEurocode is safer than the version from 1995.

This new proposal is general on the safe side when compared to numerical results, as

would be expected from a simple calculation model. This is not systematically the case,

Page 15: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

especially for short members submitted mainly to axial forces. It has yet to be

mentioned that Franssen et al [2] have calibrated the simple model against experimental

tests results in case of a 2D behaviour (no lateral torsional buckling) and have shown

that it is very much on the safe side to perform numerical analyses that consider

simultaneously a characteristic value for both imperfections, namely the geometrical out

of straightness and the residual strength. It can thus reasonable be expected that the

simple model would prove to be on the safe side for the whole (M,N,L) range if

compared to experimental tests. Such tests involving 3D behaviour in elements

submitted to axial force and bending moment at elevated temperature have yet to be

performed.

8. REFERENCES

1. Franssen, J.-M. , Schleich, J.-B. and Cajot L.-G. , A Simple Model for Fire

Resistance of Axially-loaded Members According to Eurocode 3, Journal 0/

Constructional Steel Research, ELSEVlER, 1995, Vol. 35, pp. 49-69.

2. Franssen, J.-M., Schleich, J.-B., Cajot, L.-G., Azpiazu, W., A Simple Model for the

Fire Resistance of Axially-loaded Members-Comparison with Experimental Results

Journal o/Constructional Steel Research, ELSEVlER, 1996,Vol. 37, pp. 175-204.

3. Franssen, J. M., Taladona, D., Kruppa, J. , Cajot, L.G., Stability of Steel Columns in

Case of Fire: Experimental Evaluation, Journal 0/ Structural Engineering, 1998,

Vol. 124, No. 2, pp. 158-163

4. CEN DRAFT prEN 1993-1-2, Eurocode 3 - Design of steel structures - part 1-2:

General Rules - Structural fire design, February, 2002.

5. Vila Real, P.M.M. and Franssen, J.-M. , Lateral buckling of steel I beams under fire

conditions - Comparison between the EUROCODE 3 and the SAFIR code, internal

Page 16: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

report No. 99/02 , Institute of Civil Engineering - Service Ponts et Charpents - of

the University of Liege, 1999.

6. Vila Real, P.M.M. and Franssen, J.-M., Numerical Modelling of Lateral Buckling

of Steel I Beams Under Fire Conditions - Comparison with Eurocode 3, Journal of

Fire Protection Engineering, USA, 2001, Vol. 11, No.2" pp. 112-128.

7. Vila Real, P.M.M., Piloto, P.A.G. and Franssen, l-M., A New Proposal ofa Simple

Model for the Lateral-Torsional Buckling of Unrestrained Steel I-Beams in Case of

Fire: Experimental and Numerical Validation, Journal of Constructional Steel

Research, ELSEVIER, 2003, Vol. 5912, pp. 179-199.

8. Nwosu, D.L, Kodur, V.K.R. , Franssen, J.-M., and Hum, J.K. , User Manual for

SAFIR. A Computer Program for Analysis of Structures at Elevated Temperature

Conditions, National Research Council Canada, int. Report 782, pp. 69, 1999.

9. EUROCODE 3, Design of Steel Structures - part 1-1. General rules and rules for

buildings. Draft ENV 1993-1-1, Commission of the European Communities,

Brussels, Belgium, 1992.

10. Franssen, J.-M. - "Modelling of the residual stresses influence in the behaviour of

hot-rolled profiles under fire conditions" (in French), Construction Metallique,

1989, Vol. 3, pp. 35-42.

11. Franssen, J. M. - "The unloading of building materials submitted to fire" , Fire

SajetyJournal, 1990, Vol. 16, pp. 213-227.

12. Souza, V., Franssen, J.-M. - Lateral Buckling of Steel I Beams at Elevated

Temperature - Comparison between the Modelling with Beam and Shell Elements,

Proc. 3rd European Conf. On Steel Structures, ISBN: 972-98376-3-5, Coimbra,

Univ. de Coimbra, A. Lamas & L. Simoes da Silva ed. , pp. 1479-1488, 2002.

13. ECCS EUROPEAN CONVENTION FOR CONSTRUCTIONAL

STEELWORK, Technical Committee 8 - Structural Stability, Technical Working

Page 17: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

Group 8.2 - System, "Ultimate Limit State Calculation of Sway Frames With Rigid

Joints", first edition, 1984.

14. CEN ENV 1993-1-2, Eurocode 3 - Design of steel structures - part 1-2: General

Rules - Structural fire design, 1995.

Page 18: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

M x

Fig. J - Sil11p~V supported beaf1lll'ilh bending and axial compression.

Page 19: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

~_,~ 0.3

~

I{~ Fig.] - Residual stresses: C - compression; T - tension

Page 20: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

N/Nli.8,Rd 1.2 ,---,------,----,,--.,------,-_.,-_--,,

; ! ; ·~~---f---+---i;~~-

! I I 1 0.8 ./=-=-=-=t;-~4---+--r--l i

: I I I ';----1 !. ___ '. _ -,--, 1---+---; I

J !--t---o

--EC3(t99 ~)

1.0

__ EC3.Now\'ou ion

[] Sal-'r ·~O (lO

<> s.nr·~UO'

!J. s.nr·60D"

o S . fir- ' CO'

0.6 j--+--

0.4 . ---I - +--1

0.2 -+---+--+

0.0 +---+---+---+--+---+--;_-i---+--+---1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0

A O.cam

Fig. 3 - Design curves/or buckling oj columns

Page 21: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

Mt1\'lfi,O,Rd

1.2 '--,,-, --T, --'1---;'--""'1'-" - ~C3.N .... ,V .... ;",

__ L __ J __ .. _ . .J_ .. __ L__ ~ ~~~~:~: 1,0 k<,.,..-i---+-- 1 I ! 1 I

--100 (1 993)

0.8 i ---!--\-_:II-_-i,I--t--r~'~';I'~~':':~' - " .·_-il''_ .. ·.-___ ·_i '._ . ' , ! 1 I I

0,6 I" , I - .- -'-";--,T--' ._ .. " ! I I ! i !! I

0,4 ---r--r-!1---1- '-._- --t--"-j--! ! ' , I ! . ! ~--0,2

0,0 -!----\----\----\--+--+--+---!---!---!---1 0,0 0,2 0,4 0.6 0.8 1,0 1,2 1,4 1,6 2,0

ALT ,O,cum

Fig. 4- Design clI",esJor lateral torsional buckling a/beams

Page 22: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

NINh. t. u

o SilEr

--EC3 ,Ncw Vcr~ion

--EC3 (1995)

0.6.--t-. ! I

o. ~ --t-·t-. I

•. , _._ ._i._~i _ _ i I o

. " •.. "

a) L=250mm; A.LTJi =0.12; A.yJi =0.03;

400~

o SaEr

--EC3,NcwVef!lio n

--EC3 (1995) , ..

0-'

o . ~ O.M I

!vI/Mfi,B,P.d

- -c) L=1000mlll; A.LTJi =0.45; A.yJi =0.14;

A.',1i =0.51

NINf;.~ .P'd

0.' o SUrD"

--EC3, NewVcr.;ion

0 .1 O.l O.l 04 n.J Oft 0 .7

M /Mr..u .d

- -e) L =]OOOlllm; A.LTJi =0.82; A..I~i =0.28;

NINI< ... Ic ,

...

.,

o Sanr

--EC3.NewVers io n

--EC3 (1995)

I •.• j--+--+'\

"j--+--

" " ""

- -

b) L=500Illm; A.LTJi =0.23; A.yJi =0.07;

A.',1i =0.26

4000

o Sufir

__ EC3 .NcwVcrsion

--EC3 (1995)

0.' --,--'--'--1'" 1 i i 'I-r--I I i

o. -[-r--l-T--i . i I •. , - ,- .. --,--,-

0.'

.. , •.. ... ~I / l' ... lf; . ~ . r.d

d) L=1500mm; A.LTJi =0.64; A.yJi =0.21;

A."" =0.77

o surlf --EC3,NcwVer.; ion

--EC3 (1995)

" 0. 1 o_~ O.l 04 C.! 0 ~ 0 .7

Mf!l.'lf;, ~.Il d

j) L=2500mm; A.LTJi =0.98; A.yJi =0.35;

Page 23: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

NfNn.o.M

0.1 o Su fii'

--Ee3. No!w Vo!r.>io n

0 .6 '--1-0.' t--+-i--t---i, ~-

--Eel (1995)

... -l 0.' -'-r! - 1--,-:-, -+1-+-1

'0 ' I I , i O ' ~ --j-" i I ! i 0.' "-i-:- i --~ -1-1-'

<l .1 11 .2 0.3 flA \l . ~ (1.6 0.1

M!!Vl fi.o.IU

g) L~30001ll1ll; iLTJi ~ /.I]; i,.Ji ~0"+2;

NIN, ......

•. , r----,

I o SuflT

--EC3.NewVcrsion --EC3 (1995) " ·~--I--I·--! '

IU I---i---

0.' t---+-~o 10 I I:r-, : • 1-. --i----i--~~>__l

0.'

- -i) L~40001ll1ll; ALTJi ~ 1.35; AyJi ~0.56;

N/NIi.o.ll •

o SufiI' 0.' ,-----;--! --EC3, No!w Vcr.;io n ... --r --EC3{1995)

M l-ti-+-t--+I-I-I-" 1-1-, -+-1 -+'-+1 -i'-i­" - 1-'-11 .-,-0.' _;-___ __ -1_--1_

,O! I , , I 0' - '-1 o ~-r---I--,--""

0. 1 0.2 0 .1 0.4 o . ~ 0.6 0.7

rvWV!n.e,u

11) L~35001ll1ll; iLTJi ~ /.]./; i .. Ji ~0 . ./9;

io,ji ~ /.80

NlNn.e.Ri

o Sufll" 0" ,---,

I __ EC3.NewVers lon

--EC3 (\995) O.J ----J ___ l----~_._ .. , !

i i j o . ~ -----r---t---r--·

o I I !-o-~-I-

! ! I O ~--+--+-~~~~~

" 0.2 0.·'

j) L~45001ll1ll; iLTJi ~ / . ./6; i y•fi ~0. 63;

Fig. 5 -inleraction diagrallls!or cOlllbined 1II0llleni and axial load 01./00 'C

Page 24: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

; ! ; ; o Safir o

"' I I -- EC3, New Ver!:.;on ... 0 ___ _

-- EC3( 1995)

d 1 1 01 .6 ' I· ----i"'O'~-I-·O-r_--t---

"A j---+---.~... _+.0· __ 1_· __

0.1 -----f--.. L o

0.2 " A "., 0.8

a) L~25017l17l; "'LTJi ~ 0.12; "'y,1i ~O. 04;

NI Nr, ... , ....

'r-+l\ i 0 Sa fir "' __ 1 ____ --' --EC3, New Version . I i --EC3 ( 1995 )

" __ I_LJ~_ "' _ O_i_ J ___ I ___ ~

, 1 __ -'-_ . 1 0. 2

! , .,---+----'---i---'<;4----I 0.1 'A ,., "

MIM, •. I. ' .<

c) L~1 000171111; iLTJi ~0.46; i YJi ~0. 14;

N!Nr, .... ~.

0. ' ,--,--,---

,, ---1 o S.'lfir

---EC3, New Version --EC3 (1995 )

" -+--+---i--' '--'--I r-t i

+-1-i--i-ii ; I iii 1 0.' ._,- ,--:---1-1--I: I, i

0.1 -- ----I - -j--:-I--I 1 , , ' 0. 1 : , i . I , --I!-·-- ~·--! ---

" ..

0 .1 0.2 0.3 o 4 o . ~ tI . ~ tI . 7

MI "lh . I. U

e)- L~2000Il1m; "'LTJi ~0.85; "'y,1i =0.29;

i 0 &tfir i 1 --- EC3, New Version ,.,

---:--i- --EC3 (1995 )

: ill I . O ! I 0./, ---;- - oj---jj-"-

'A t---i---i

0.2 0"; 0.' 0.'

b) L~5001711l1; "'LTJi =0.24; "'YJi =0.07;

"';Ji =0.26

600"

1 . 0 Sufir

~ I --- EC3, New Version 0.' . ___ ._. __ l----EC3 ( 1995)

; j I . , , I ii' ,., t--+-+-1-1-i

"A ___ I_····-··-·-r··_··-·!-··--·-r 0.2

0 .2 OA 0 .6 ,., ""Mr. ... l.

d) L~15001l1111; "'LTJi ~ 0.66; "'yJi =0. 22;

Nlt/r,.".,

" ,--,--,--I !

0. 6 -1-_'_ !

o Snfir ---EC3, New Version

--EC3 (1995 ) o . ~ ----1--:- I ; ; : I 0..1 -1--I--I--I--·l--·J-­

I I I I ! I ._!! _ .. -!=]~:=[=J=~

, ! i 1

0.'

o . ~

r ! 1 ,., j--'--:--+--,"'''';;D'i',---l---'--

~ 1 I I

0. 1 0.2 0.3 0 .4 o.~ 0 .6 0 .7

j) L~2500ml7l; "'LTJi =1.01; "'y,1i ~ 0.36;

Page 25: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

'i..'Ji ~ /.06 lUNr. . ••• tl / N" ......

.., ,-,-- " --

i I 0,6 ···_-_·t,.-·_-'Hr'-- --EC3, New Version

I --EC3 (1995 )

,.S --'I--l--j' t-

! ! I I I OA --r-'r-r----.--'--.--

! 1 I ! [ j

, .s "-'-r-'I---i i i t----" -- ; -- ! l i I "., --'-_ .. :-..

! !

o Safir :: j ; i _0_ ~~, New Versioll I --EC3 (1995)

" -1-:--'-'. r---• ! I i I

: !-H!I~ , .• 1---1-"Si."",·

i i 0 .1 0.2 0.3 0.4 o. ~ 0 .6 0.7

0. ] I.l.:! 0 .3 OA a.~ U.6 0.7

g) L~30001ll1ll; 'i..LTJi ~ /.15; 'i.. yJi ~ 0.43; /7) L~35001ll1ll; ALTJi ~ /.]8; A}.Ji ~O.50;

0..1 ,--,---o Safir ,-' '---'1 -- 0 Snfir

".S

,-__ .+1,,__ --EC3, NewVersioll ,_ . --EC3 (1995)

I I ,., 1 __ ;1-__ ! __ j __

I I ,

i I ! ! i

--EO, New Version --EC3 (1995) ,.S

i ,., ----, ----+----1---1

T

I , .. " .. o . ~ ,.S

M/ )l.l{" .. u ~IIM" ... ...

j) L~45001ll1ll; 'i..LTJi ~J.50; 'i.."Ji ~O. 65;

Fig. 6 - Interaction diagrams/or combined moment and axial/Dad a/ 600 OC

Page 26: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

0.8

-0 0.6

'" J ci 1'; ;Z 0.4

0.2

o o

....

. ; .

........ . , .. ,

·····]·····1· . ~ ...... .

, .!. ... '

... : ... . .;.. '

. .

'V:"".;: ~ .. , ... 1 . .

x

• x

M/Mft,I,RrI

. . .:, ... .. .

x

EC3(1995) 400"

x ; ~

.....

j )(

...... x

...........

" '; . •

• x

x Safu .... "' : .

..... ... . ....

. .. ..... . ' . ~ .....

";

~ ; . . . .. . . . . ~ '" ~ . ...... ,

. .. ~ .....

. . ~

x . .. " . ' .. ~

.... .

.... ,. ' .. "" . ... ' 3500

3000

2500 2000 1500 1000 500

4500 4000 L (rom)

o

Fig. 7-Interae/ion sur:faees for combined moment and axial load at 400 "C - version from 1995

Page 27: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

0.'

;il 0.6 J

'" ;;; Z 0.4

0.2

o o

• • j • • • •

.... : ..

. , -~ ...... :

.. , .. . . ~ ...... , ..

x

x

• x •

• •

Eel NewVersiOil 400'

.,~ " 'x' . 'I( • • •••

• x Safu

. . ~.

x

• ~

• .. •

x x • • "" • •

. ..... . . .. ~ .

'x

". ' x

' : ' . .... : ...... .

. " . .......

. ...

x " .

". 'I. • lit " •

~~' M' ~"S:""'" ~··::::· ··· : .' ... ~~O : '~' :": .. :." . . . ; .... ,'. . ".:: ' 1500 1000 500

• •

2500 2000 3500 3000

4500 4000 L (om)

0.6 ..... MlMfi,t,Rd 0.'

Fig.8-Interaction surfaces/or combined moment and axial load at ./00 OC - new version

Page 28: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

0.8

0.2

o o

... . . . .. .....

. ......

l.·o' -t" ..

; • ••• • j • ••

. ... .. : .. . ..

. . ... . .. . , .. y .. j. , : .

~ ,l . ~... . )(

x

0.' MIMfi.t.Rd

x

x

... ...... . ~ ;.:

0.8

ED (1995) 600"

.. ; '

. ...

.. ... . ' .. . - . x Saf~

x " ........ . ~ ..

. ... .

x ' ,0., ....... x .....

x . .... ... : .... .

x x . ....

' X " "

x x ... . :

' :"

K

x

,' , . " ::: .

'" .......... .. : ... . :.,..,.:.

.. . .. , .. 2500 1000 1500 1000 500

3000 ~- ---- -4000 3500 L (nun)

4500

o

Fig. 9-Interaction surJaces Jar combined moment and axial load at 600 "C - version from 1995

Page 29: Numerical Modelling of Steel Beam-Columns in Case of · PDF fileNumerical Modelling of Steel Beam-Columns in Case of Fire - Comparisons with Eurocode 3 ... Greek Imperfection factor

0 .•

"a 0.6

" J

" ;;; Z 0.4

. ~ .. ' ..... "

. i. ·· .: . . '

. .. . . "'

:" .'

4·"

.. [ . . '

....

.' ~ .... . '

ECl New Version 600"

x

'X

x

x x

" . x 5aflr

'j ••.

.... .. ~ . ' '' ..

x

~L-:"C;-:;;::-:::""-·::"::-" ~ .. ;~".~·. ~·: ::: ... :·:::"·"'·"" ·"':: ·::·~· -.-: ... : ... :: ... :: .. 7"",7'~::;1::OOO:;:':'00:-O .. :........ 2000 1500

.. ;:" , 3000 2500

3500 4500 4000 1.. (mm)

Fig. 1 0- interaction surfaces for combined moment and axial/oad at 600 OC - new version