numerical simulation of compressible two -phase...

58
1 Numerical simulation of compressible Numerical simulation of compressible two two - - phase flows phase flows F. Petitpas SMASH Team - MARSEILLE

Upload: vocong

Post on 31-Jan-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

1

Numerical simulation of compressible Numerical simulation of compressible

twotwo--phase flowsphase flows

F. PetitpasSMASH Team - MARSEILLE

Page 2: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

2

Flows zoology – Position of the topic

Compressibles Incompressibles

Single phase Multi-phase

Single velocity Multi-velocity

• Interface problems resolution

• Two-phase mixtures in mechanical equilibrium

• Non equilibrium two-phase mixtures

• General models

Page 3: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

3

Single velocity flows / Interface problems

σ

Single contact interface

Media B

Media A

Steam

Evaporation front

Liquid

Detonation

σ

σ

Page 4: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

4

Some words about discretisation scales

ug

ul

“Macro” scale : Multi-velocity flow

An averaged model with two velocities is needed

« Micro » scale : Single velocity flow

A reduced model for interface problems is enough

Page 5: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

5

On the choice of the method

� Sharp interface methods� Lagrangian methods with moving meshes, ALE (Arbitrary

Lagrangian Eulerian)

� Front tracking, VOF, Level Set

Good for solid weak deformation

Not adapted for fluids computation with extreme deformations

Very impressive results

Generally non conservative regarding mass and energy

Heavy numerical treatment

Page 6: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

6

On the choice of the method

� Diffuse interface methodsThese methods authorize numerical diffusion of interfaces. This presents several

advantages:

� Interfaces are not tracked or reconstructed, they are captured by the numerical scheme as artificial diffusion zone.

� By the way disappearance or apparition of interfaces are naturally obtained

� Conservative

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (m)

Volume Fraction of phase 1

Zone de mélange = interface

Liquide pur

Gaz pur

εα −>1liqεα <liq

Page 7: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

7

On the choice of the model

� Euler equations with liquid-vapor Equation of state for evaporation problemsSingle phase model with equilibrium EOS (T,p,g,u)- Able to compute liquid-vapor mixtures at Thermodynamical equilibrium- But metastable states are omitted- Unable to treat liquid-gas interfaces

� Multi-phase models� 4-equation : Euler + mass equationThermal and mechanical equilibrium (T,p,u)- Largely use for gas mixtures where thermal equilibrium condition is not so restrictive- But unable to treat simple contact interface (interface condition of equal pressure and velocity are

violated)� 5-equation : 4 equations + volume fraction equation (Kapila et al., 2001)Mechanical equilibrium (p,u)- Able to treat interfaces between non miscible fluids (liquid-gas)- Able to treat mixture evolving in mechanical equilibrium

� 6-equation modelVelocity equilibrium (u)

� 7-equation (Baer & Nunziato, 1986)Total disequilibrium- Able to solve a large scale of problems- Difficult to solve numerically

Page 8: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

8

Outline : The 5-equation model

� Topic 1 : Origins and properties of the 5-equation model

� Topic 2 : Numerical resolution� The Euler equations

� The 5-equation model

� Topic 3 : Phase transition with the 5-equation model

� Topic 4 : Other extensions� Capillary effects

� Compaction effects

� Low Mach computing

� Etc.

Page 9: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

9

Topic 1 : Origins and properties of the 5-equation model

Page 10: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

10

Starting point : origin of the 5-equation model (The 7-equation model)

)uu.()PP(P .P)u)PE(.(t

Ek'k'kkIkIkkkkk

kkk �������−σλ+−µ−α∇σ=+ρα∇+

∂ρ∂α

)uu(P))IPuu(.(t

uk'kkIkkkkk

kkk �������

−λ+α∇=+⊗ρα∇+∂ρ∂α

)PP(.t 'kkkk −µ=α∇σ+

∂∂α ��

0)u.(t kkk

kk =ρα∇+∂

ρ∂α ��

2u�� =σ 1I PP =and Baer & Nunziato (1986)

21

1221I ZZ

PZPZP

++=

21

2211

ZZ

uZuZ

++=σ��

�Saurel & al. (2003)

Chinnayya & al (2004)and

Each phase obeys its own thermodynamics (pressure, density, internal energy) and has its own set of equations :

Page 11: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

11

Example of interface problem evolving to a two-velocity mixture

Simulation : Jacques Massoni, SMASH team

Page 12: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

12

Asymptotic reduction of the 7-equation model

� Why it is interesting to use the 5-equation model instead of the 7-equation one ?� It is difficult to solve and implies heavy costs regarding CPU and memory.

� It contains extra unuseful physics to treat interface problems (two velocities and two pressures)

� Extra physical effects are difficult to introduce (as for example phase transition, capillary effects, etc.)

Asymptotic reduction by the Chapman-Enskog method :

∞→ε=µλ 1,

1o fff ε+=

Relaxation parameters tend to infinity

Each flow variable is supporting small variation around an equilibrium state

Page 13: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

13

The diffuse interface model (5-equation model)

( )

( )

=∂+ρ∂+

∂ρ∂

=∂

+ρ∂+∂ρ∂

=∂ρα∂+

∂ρα∂

=∂ρα∂+

∂ρα∂

∂∂

ρα+ραρ−ραα=α

0

0

0

0

2222

1111

2221

2112

211

222

211

x

upE

t

Ex

p²u

t

ux

u

t

x

u

t

x

u

cc

cc

dt

d

222111

2211

EEE ρα+ρα=ρρα+ρα=ρ

ppp

uuu

====

21

21

+ Équation d’état de mélange :

This is a mechanical equilibrium but each phase remains in thermal disequilibrium

Equilibre mécanique

Variables de mélange :

( )11

11

2

2

1

1

2

222

1

111

−γα+

−γα

−γγα

+−γ

γα−ρ

=αρ=

∞∞ ,,

k

ppe

,e,pp

4 co

nser

vativ

e eq

uatio

ns

We will come back on thermodynamic closure in the following …

Page 14: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

14

Physical meaning of the volume fraction equation

( )

( )

=∂

+ρ∂+∂ρ∂

=∂

+ρ∂+∂ρ∂

=∂

ρα∂+∂

ρα∂

=∂

ρα∂+∂

ρα∂∂∂

ρα+ραρ−ραα=α

0

0

0

0

2222

1111

2221

2112

211

222

211

x

upE

t

Ex

p²u

t

ux

u

t

x

u

t

x

u

cc

cc

dt

d

x

uK

xu

t ∂∂=

∂α∂+

∂α∂ 11

0<K Exemple

1

u0 increases

x

∂ < ⇒ α∂

1

u0 decreases

x

∂ > ⇒ α∂

Liquide : phase 1

Bulles gaz : phase 2

2k kcρ is the Bulk modulus of media k

It traduces the compressibility of a media

-Big when it is weakly compressible

-Small when it is strongly compressible

Page 15: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

15

Back to diffuse interface aptitude …

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (m)

Volume Fraction of phase 1

Zone de mélange = interface

Liquide pur Gaz pur

εα −>1liqεα <liq

� Diffusion is due to numerical treatment : Artificial diffusion� By the way, an interface looks like a mixture zone : � The interface conditions of pressures and velocities equalities are automatically obtained !

ε−<α<ε 1k

Page 16: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

16

5-equation model properties

� Hyperbolic systems : 3 waves speeds.

( )

( )

( )

( )

( )[ ]

=+ρ+∂ρ∂

=∇+⊗ρ+∂ρ∂

=ρα+∂

ρα∂

=ρα+∂

ρα∂

0

0

0

0

2222

1111

1

upEdivt

E

puudivt

u

udivt

udivt

uKdivdt

d

���

ww cu,u,cu +−

222

2211

12

1

cccw ρα+

ρα=

ρ

� The speed of sound is those of Wood (1930)

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

Fraction volumique eau

Vitesse du son de wood dans un melange eau/air (m/s)

Page 17: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

17

Topic 2 : Numerical resolution considerations

� Basics for Euler conservative equations

� 5-equation model numerical resolution

Page 18: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

18

Basics of numerical resolution for the Euler equations

� Euler equations:

� Mass balance

� Momentum balance

� Total energy balance

� 1D simplification:

0)u(divt

=ρ+∂∂ρ �

0)P(grad)uu(divt

u =+ρ+∂

∂ρ⊗��

0)u)PE((divt

E =+ρ+∂

∂ρ �

0x

u

t=

∂∂ρ+

∂∂ρ

0x

P²u

t

u =∂

+∂ρ+∂

∂ρ

0x

)PE(u

t

E =∂

+ρ∂+∂

∂ρ

0x

F

t

U =∂∂+

∂∂

T)E,u,(U ρρρ=T))PE(u,P²u,u(F +ρ+ρρ=

Page 19: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

19

Computational mesh

i-1 i i+1 i+2

i-1/2 i+1/2

� The cell ‘i’ is bounded by inlet and outlet sections i-1/2 and i+1/2.

� The fluxes cross over these cell boundaries.

� The unknowns are computed at the cell center and are piecewise constant functions in the cell.

f

xHow to obtain average cells variables form on time step to an

other one

Example at a given time

Page 20: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

20

Numerical approximation

i-1 i i+1 i+2

i-1/2 i+1/2

( )tV

Udiv F dVdt 0

t∆

∂ + = ∂ ∫∫ ( )n 1 n * *

i i i 1/2 i 1/2

tU U F F

x+

+ −∆= − −∆

Integration on cell i over time :

The ‘*’ superscript is for : Solution of the Riemann problem at cell boundary

The Flux F at cell boundaries has been supposed to be constant during integration time step CFL condition

Page 21: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

21

The Riemann problem

f

x0

fR

fL

x

At t=0

� The initial data are know at a given time and are constant on the right and left side.

� A discontinuity connects the two state.

� Question: How does the solution evolves at t>0 ?

Page 22: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

22

The Riemann problem solution (advection)

02/1>−iu 0

2/1<−iu

x

f

x

f

The two possible solutions are:

x/t = ui-1/2

x

t

fi-1 fi

−>

−<

−=

2/1iut/x if

if

2/1iut/x if

1if

)t/x(f

The solution is:

In the (x,t) diagram

f fu 0

t x

∂ ∂+ =∂ ∂

Page 23: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

23

For the linearized Euler equations

0x

W)W(A

t

W =∂∂+

∂∂

T)P,u,(W ρ=

ρρ

ρ=

uc0

1u0

0u

)W(A²

u , cu , cu 0 =λ−=λ+=λ −+

analogue of 0x

fu

t

f =∂∂+

∂∂

Plays the role of a propagation velocity

The eigenvalues of A are the waves speeds:

0x

u

t=

∂∂ρ+

∂∂ρ

0x

P²u

t

u =∂

+∂ρ+∂

∂ρ

0x

)PE(u

t

E =∂

+ρ∂+∂

∂ρ

Page 24: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

24

The Riemann problem for linearized Euler equations

x

t

u+cuu-c

Solving the Riemann problem consist in determining the perturbed states WL* and WR* after waves propagation from the known states WL and WR.

WR

WR*WL*

WL

Page 25: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

25

The Riemann problem solution for linearized Euler equations

*LLL

*LLLLL ucpucp ρ+=ρ+

*LL

*LLLL ²cp²cp ρ−=ρ−

*RRR

*RRRRR ucpucp ρ−=ρ−

x

t

u+cuu-c

*RR

*RRRR ²cp²cp ρ−=ρ−

*L

*R pp =

*L

*R uu =

From this algebraic set of 6 equations the two intermediate states

WL* and WR* are readily obtained.

Page 26: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

26

Riemann problem solution

LR

RLLRRLLR*

ZZ

)uu(ZZpZpZp

+−++=

LR

LLRRRL*

ZZ

uZuZppu

+++−=

²c

pp

R

R*

R*R

−+ρ=ρ

²c

pp

L

L*

L*L

−+ρ=ρ

Page 27: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

27

Example: shock tube

P=10 000 bars

u=0 m/s

ρ=10 kg /m3

P=1 bar

u=0 m/s

ρ=1 kg /m3

Exact solution (lines) / Computed results with Godunov (symbols)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

vite

sse

Espace (m)

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

dens

ite

Espace (m)

Page 28: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

28

Example – Supersonic flow around plane profil

Page 29: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

29

Summary for Euler equations

� The Riemann problem solution is a local solution of the Euler equations between two discontinuous initial states.

� It is the cornerstone of all numerical schemes used in gas dynamics, shallow water and modern multiphase codes

� Recommended literature:

E.F. Toro (1997) Riemann solvers and numerical methods for fluid dynamics. Springer Verlag

Page 30: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

30

The diffuse interface model (5-equation model)

( )

( )

=∂+ρ∂+

∂ρ∂

=∂

+ρ∂+∂ρ∂

=∂ρα∂+

∂ρα∂

=∂ρα∂+

∂ρα∂

∂∂

ρα+ραρ−ραα=α

0

0

0

0

2222

1111

2221

2112

211

222

211

x

upE

t

Ex

p²u

t

ux

u

t

x

u

t

x

u

cc

cc

dt

d

222111

2211

EEE ρα+ρα=ρρα+ρα=ρ

ppp

uuu

====

21

21

+ Équation d’état de mélange :

This is a mechanical equilibrium but each phase remains in thermal disequilibrium

Equilibre mécanique

Variables de mélange :

( )11

11

2

2

1

1

2

222

1

111

−γα+

−γα

−γγα

+−γ

γα−ρ

=αρ=

∞∞ ,,

k

ppe

,e,pp

4 co

nser

vativ

e eq

uatio

ns

We will come back on thermodynamic closure in the following …

Page 31: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

31

Numerical resolutions: issues

1) Volume fraction positivity: How to treat the non-conservative term in the volume fraction equation when shocks or strong rarefaction waves are present ?

Difficulty to guarantee that

2) The volume fraction varies across acoustic waves: Riemann solver difficult to construct.

u.cc

)cc(.u

t���� ∇

αρ+

αρ

ρ−ρ=α∇+∂α∂

2

222

1

211

211

222

11

10 1 <α<

Page 32: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

32

� The pressure equilibrium 5-equation model is obtained from this 6-equation model in the asymptotic limit of stiff pressure relaxation coefficient,

� The speed of sound is monotonic,

� The volume fraction is constant through right- and left-facing waves when relaxation effects are absent

� Previous difficulties are circumvented using a pressure non-equilibrium model

2211 ρα+ρα=ρ

222111 EEE ρα+ρα=ρ)pp(

xu

t 2111 −µ=

∂α∂+

∂α∂

0x

u

t1111 =

∂ρ∂α

+∂

ρα∂

0x

u

t2222 =

∂ρ∂α

+∂

ρα∂

0x

)pp(u

t

u 22112

=∂

α+α+∂ρ+

∂ρ∂

)pp(px

up

t

ue

t

e21I11

111111 −µ−=∂∂α+

∂ρα∂

+∂ρα∂

)pp(px

up

t

ue

t

e21I22

222222 −µ=∂∂α+

∂ρα∂

+∂ρα∂

0x

)pp()u2

1eYeY(u

t

)u2

1eYeY( 2211

22211

22211

=∂

α+α+++ρ∂+

++ρ∂6 equations + 1 redundantequation (coming from the summation of energies):

222

211

2f cYcYc +=

).( 0=µ

6+1-equation model

Page 33: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

33

a) The (6+1)-equation model is solved without relaxation effects: Godunov-type scheme,

b) Stiff pressure relaxation procedure,

c) Energies reset (in order to ensure energy conservation)

The 5-equation model is solved

3-step methods

Page 34: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

34

1st step: Godunov-type scheme

� Without relaxation terms, the 6+1 equation model becomes:

0x

ut

11 =∂α∂+

∂α∂

0x

u

t1111 =

∂ρ∂α

+∂

ρα∂

0x

u

t2222 =

∂ρ∂α

+∂

ρα∂

0x

)pp(u

t

u 22112

=∂

α+α+∂ρ+

∂ρ∂

0x

up

t

ue

t

e11

111111 =∂∂α+

∂ρα∂+

∂ρα∂

0x

up

t

ue

t

e22

222222 =∂∂α+

∂ρα∂+

∂ρα∂

0x

F

t

U =∂∂+

∂∂

( )TE,u,)(,)(U ρραραρ= 21

( )Tu)pE(,p²u,u)(,u)(F +ρ+ραραρ= 11

with

0x

up

t

ue

t

e11

111111 =∂∂α+

∂ρα∂+

∂ρα∂

0x

up

t

ue

t

e22

222222 =∂∂α+

∂ρα∂+

∂ρα∂

A conservative part

A non conservative one

0x

ut

11 =∂α∂+

∂α∂

An advection equation

Page 35: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

35

1st step: Godunov-type scheme

( ))U,U(F)U,U(Fx

tUU n

ini

*ni

ni

*ni

ni 11

1−+

+ −∆∆−=

( ) ( )

( ) ( ) ( ) ( )( )*2/1i

*2/1i

n

ik*

2/1ik*

2/1ik

n

ik1n

ik

uupeueux

t

ee

−+−+

+

−α+αρ−αρ∆∆−

αρ=αρ

0x

F

t

U =∂∂+

∂∂

( )TE,u,)(,)(U ρραραρ= 21

( )Tu)pE(,p²u,u)(,u)(F +ρ+ραραρ= 11

with

0x

up

t

ue

t

e11

111111 =∂∂α+

∂ρα∂+

∂ρα∂

0x

up

t

ue

t

e22

222222 =∂∂α+

∂ρα∂+

∂ρα∂

Godunov scheme for conservative equations

A non conventional scheme for non conservative internal energies equations

0x

ut

11 =∂α∂+

∂α∂

Godunov scheme for advection equation

( ))uu()u()u(x

t */i

*/i

ni

*/i

*/i

ni

ni 212112112111

11 −+−+

+ −α−α−α∆∆−α=α

Page 36: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

36

Riemann solver

ρρ

ρα

ρα

ρ−=

u0c000

0uc000

u00pp

000u00

0000u0

00000u

)W(A

222

211

2121

u , cu , cu 0ff =λ−=λ+=λ −+

0x

ut

11 =∂α∂+

∂α∂

0x

u

t1111 =

∂ρ∂α

+∂

ρα∂

0x

u

t2222 =

∂ρ∂α

+∂

ρα∂

0x

)pp(u

t

u 22112

=∂

α+α+∂ρ+

∂ρ∂

0x

up

t

ue

t

e11

111111 =∂∂α+

∂ρα∂+

∂ρα∂

0x

up

t

ue

t

e22

222222 =∂∂α+

∂ρα∂+

∂ρα∂

0x

W)W(A

t

W =∂∂+

∂∂

T21211 )p,p,u,s,s,(W α=

3 waves speeds

with222

211

2f cYcYc +=

Page 37: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

37

Riemann problem solution

LR

RLLRRLLR*

ZZ

)uu(ZZpZpZp

+−++=

LR

LLRRRL*

ZZ

uZuZppu

+++−=

Rk*

Rk ss =

kL*kL α=α

kR*kR α=α

with

222

211

2f

2211

2211

cYcYc

cZ

ppp

+=ρ=

ρα+ρα=ρ

α+α=

Similar to Euler Riemann solverLk

*

Lk ss =

Page 38: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

38

2nd step: Pressure relaxation

)pp( x

ut 21

11 −µ=∂α∂+

∂α∂

0x

u

t1111 =

∂ρ∂α

+∂

ρα∂

0x

u

t2222 =

∂ρ∂α

+∂

ρα∂

0x

)pp(u

t

u 22112

=∂

α+α+∂ρ+

∂ρ∂

)pp(p x

up

t

ue

t

e21I11

111111 −µ−=∂∂α+

∂ρα∂+

∂ρα∂

)pp(p x

up

t

ue

t

e21I22

222222 −µ=∂∂α+

∂ρα∂+

∂ρα∂

Already solved by the 1st step )pp(t 211 −µ=

∂α∂

)pp(pt

eI 21

111 −µ−=∂ρα∂

)pp(pt

eI 21

222 −µ=∂ρα∂

Relaxation system

011 =∂

ρα∂t

022 =∂

ρα∂t

0=∂ρ∂t

u

0=∂ρ∂t

E

Page 39: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

39

2nd step: Pressure relaxation

0dtdt

dvp

vv

1p̂

t

0

kI0

kkIk =

−= ∫

( ) 0vvp̂ee 0kkIk

0kk =−+−

( ) ( ) 0vYvYp̂vYvYp̂eYeYeYeY 022222I

011111I

02222

01111

k

=−+−+−+−⇒∑

)pp(t 211 −µ=

∂α∂

)pp(pt

eI 21

111 −µ−=∂ρα∂

)pp(pt

eI 21

222 −µ=∂ρα∂ 022 =+

dt

dvp

dt

deI

011 =+dt

dvp

dt

deI

time integration

Using mass equations

( )( ) 0vYvYp̂p̂ee 011112I1I

0 =−−+−I2I1I p̂p̂p̂ ==

pp̂I =Possible choice

Entropy inequality is verified

Page 40: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

40

2nd step: Pressure relaxation

( ) ( ) ( ) 0vvpv,pev,pe 011

01

01

0111 =−+−

( ) ( ) ( ) 0vvpv,pev,pe 022

02

02

0222 =−+−

Closure relation: ( ) ( ) ( ) ( ) 1pvpv 1 2021

0121 =αρ+αρ⇔=α+α

( )pvv 11 =

Zero function to solve ( ) ( ) ( ) ( ) ( ) 1pvpv pf 2021

01 −αρ+αρ=

( )pvv 22 =

Using EOS :

( ) ( ) kkkk vpvp αρ=α→→Then, we determine:

Page 41: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

41

� We have in the 2nd step determined:

� We forget the relaxed pressure but keep volume fractions:

� It is then possible to determine mixture pressure by the mixture EOS. By this way, energy conservation is ensured:

� Phasic EOS permits to reset internal energies:

3th step: Internal energy reset

kp α→

11

1p

1p

e

),,e,(p

2

2

1

1

2

222

1

111

21new

−γα+

−γα

−γγα+

−γγα−ρ

=ααρ

∞∞

Conservative and good treatment of wave dynamics from both sides of the interface

),,p(ee kkknewkk αρα=

kk ,v,p α

Page 42: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

42

1D example:Water-Air shock tube

EAU AIR

Peau = 10 000 barρeau = 1000 kg/m3

Peau = 1 barρeau = 1 kg/m3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.2 0.4 0.6 0.8 1

x (m)

Pression (Bar)

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

x (m)

Vitesse (m/s)

0

100

200

300

400

500

600

700

800

900

1000

0 0.2 0.4 0.6 0.8 1

x (m)

Densite de melange (kg/m3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

x (m)

Fraction volumique air

Solution exacte Solution numérique

Page 43: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

43

Résultats 2D - Expériences IUSTI (Layes, Jourdan, Houas)

Shock wave propagation

t = 134µs

t = 274µs

t = 344µs

t = 554µs

t = 137µs

t = 291µs

t = 350µs

t = 577µs

Page 44: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

44

3D example : Missile impact on a metal plate

Page 45: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

45

Topic 3 : Phase transition with the 5-equation model

Page 46: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

46Hyperbolicity is lost into the phase diagram

022 <

∂∂−=

=ctesv

pvc

Hyperbolicity is preserved in the entire domain

Liquid and Vapor isentropes are linked by a kinetic process

Liquid Vapor

p

v

s=cte

s=cte

c2<0

Thermodynamic path using the Van de

Waals representation

p

v

Liquid

Vapor

Kinetic path with the 5-equation

model and two separate EOS

sl=cte

sv=cte

P0

Why is the 5-equation model a good candidate for phase transition ?

Page 47: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

47

1) Mass transfer modifies mass equations:

2) Volume fractions change during phase transition:

( )

( ) 112222

111111

Ymudivt

Ymudivt

ɺɺ�

ɺɺ�

ρ−=−=ρα+∂

ρα∂

ρ==ρα+∂

ρα∂

( )I

mAQuKdiv

dt

d

ρ++=α 1

11 ɺ�

ρρα== 111

1 dt

d

dt

dYY Avec ɺ

This « interfacial » density has to be determined in order to

close the model.

Phase transition modeling

Page 48: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

48

( ) ( )

( ) ( )122222

121111

ggudivt

ggudivt

−ρν−=ρα+∂

ρα∂

−ρν=ρα+∂

ρα∂

Mechanical relaxation

( )

( )( ) 0

0

=+ρ+∂ρ∂

=∇+⊗ρ+∂ρ∂

upEdivt

E

)p(uudivt

u

����

Mass transfer Heat transfer

2

222

1

211

2

2

1

1

12

2

222

1

211

2

22

1

21

12

2

222

1

211

211

222

11

αρ+

αρ

αΓ+

αΓ

−+

αρ+

αρ

α+

α−ρν+

αρ+

αρ

ρ−ρ=α∇+∂

∂αcc

)TT(Hcc

cc

)gg()u(divcc

)cc()(.u

t���

Entropy analysis for each phase and for the mixture

Lois d’état :

at interfaces (thermodynamical equilibrium),H

0 elsewhere (metastable state)

+∞ν =

Kinetic parameters :

( ) 1011

1111 1 ,

, epp

)p,(e +ρ−γ

γ+=ρ ∞

( ) 2022

22 1 ,ep

)p,(e +ρ−γ

11

11

2

2

1

1

2

222

1

111

21

−γα+

−γα

−γγα+

−γγα−ρ

=ααρ

∞∞ ppe

),,e,(p

For the liquid

For vapor

222111 eee ρα+ρα=ρ

Two-phase model for interface problems with phase transition

Page 49: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

49

Thermodynamic closure

∞γ−−ρ−γ=ρ p)qe()1()e,(p

Repulsive effects (gas, liquids and solids)

Attractive effects (liquids and solids)

Assumption : Each fluid is governed by the stiffened gas EOS:

Other useful forms for the SG EOS :

qTC)T(h V +γ=

q)pp(

TlnTCT)'qC()T,p(g

1VV ++

−−γ= −γ∞

γ'q

)pp(

TlnC)T,p(s

1V ++

= −γ∞

γ

For each fluid EOS : 5 parameters to determine : 'q,q,C,P, V∞γ

Page 50: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

50

0

5

10

15

20

25

30

300 350 400 450 500T (K)

Psat (Bar)

0

500

1000

1500

2000

2500

300 350 400 450 500T (K)

Lv (kJ/kg)

0

200

400

600

800

1000

1200

300 350 400 450 500T (K)

hl (kJ/kg)

2000

2100

2200

2300

2400

2500

2600

2700

2800

300 350 400 450 500T (K)

hg (kJ/kg)

Saturation curves for liquid water and vapor water

Le Métayer et al., Int. Journal of Thermal Sciences, 2004

Page 51: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

51

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (m)

Pression (bar)

0

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (m)

Vitesse (m/s)

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (m)

Densite du melange (kg/m3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x (m)

Fraction massique de vapeur

Rarefactions Phase transfitionfront

Choc

Phase transition frontContact discontinuity

Dodécane liquide Dodécane vapeur

Pliquide = 1 000 barρliquide = 500 kg/m3

Pvapeur = 1 barρvapeur = 2 kg/m3

Saurel, Petitpas & Abgrall, JFM, 2008

Page 52: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

52

High pressure diesel injector

Page 53: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

53

High speed motion under water

Page 54: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

54

Topic 4 : Some possible extensions

� Capillary effects (Perigaud & Saurel, 2005)

� Detonation (Petitpas et al. 2009)

� Gravity, heat conduction, viscosity, turbulence, etc.

Page 55: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

55

Detonation problems

Russian experiences done for the DGA

- 7 fluids

- EOS SG, JWL, IG

- Density ratio : 9000

High velocity impact for ignition

(1500 m/s)

Air

Explosive+ Al Particles

Explosive

PMMA

LifIron

Page 56: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

56

Ebullition crisis simulation

==

21

21

TT

gg

q

Relaxation

gTqcond ∇λ−=��

σ

Many physical ingredients are required

Page 57: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

57

Bubble growth

No gravity Under gravity

Page 58: Numerical simulation of compressible two -phase flowsmath.unice.fr/~nkonga/Cours/Sem/Fabien_Petitpas_Mathmods.pdf · Numerical simulation of compressible two -phase flows ... •

58