nvtl studiedag 2015 · 2.minimize total energy input by using optimal control techniques ......

29
Goal of the project The model Optimization Results Optimization of equipment Optimal management of energy resources in greenhouse crop production systems 10 March 2015, Peter van Beveren a,b a) Farm Technology Group, b) Wageningen UR Greenhouse Horticulture NVTL studiedag 2015

Upload: others

Post on 27-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Optimal management of energy resources in greenhousecrop production systems

10 March 2015, Peter van Beverena,b

a) Farm Technology Group, b) Wageningen UR Greenhouse Horticulture

NVTL studiedag 2015

Page 2: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Background

� Greenhouse horticulture is a large consumer of fossil energy.� Growers have to reduce energy consumption and CO2 emission� Growers have installed a wide range of auxiliary equipment to

produce, consume and store energy.• Increased complexity and interconnectivity of the various resources.• Complex management task.

Page 3: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Optimal management of energy resourcesGoal:

Utilize all equipment in a modern greenhouse in the most efficientmanner.

Figure : 4 ha commercial rose greenhouse

Page 4: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Warm wellCold well

Pipe rail heating

Cooling tower

Heatstorageother

greenhouse

Heatstorage

Heat pump

Heatstorage

Heatstorage

CHP

CHP

Page 5: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Warm wellCold well

Pipe rail heating

Cooling tower

Heatstorageother

greenhouse

Heatstorage

Heat pump

Heatstorage

Heatstorage

CHP

CHP

Page 6: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Dual-stage approach

Stage 1: Create a desired climate in the greenhouse with minimalenergy input.

Stage 2: Generate this energy as efficient as possible with the availableequipment.

Stage 1 Stage 2

Why?� OCAP CO2 is used� Buffer capacity available� Practical reasons

Page 7: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Dual-stage approach

Stage 1: Create a desired climate in the greenhouse with minimalenergy input.

Stage 2: Generate this energy as efficient as possible with the availableequipment.

Stage 1 Stage 2

Why?� OCAP CO2 is used� Buffer capacity available� Practical reasons

Page 8: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Stage 1: Create a desired climate using minimal energy

What is the desired climate?

� Grower knows best about the crop� Ideal climate depends on

• weather predictions• status of the crop• specific crop knowledge• production prognosis• product price prognosis• experience of the grower• ...

Page 9: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

The desired climate

1. Let the grower define bounds to specify the desired climate• Upper and lower bounds for temperature• Upper bound for humidity• Upper and lower bounds for CO2• Maximum amount of CO2 available per day

Advantages

• No crop production models needed• No predictions of market prices needed

2. Minimize total energy input by using optimal control techniques• Model of greenhouse climate is needed.

Page 10: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

The dynamic model (1)

Energy balance

dTair

dt = 1ccap

(Qsun − Qcover − Qtrans + Qlamps − Qvent + Qhe + Qpipe) (◦C s−1)

(1)

Qheat_ex Qpipe

Tair

Qlamps

QcoverQsun

Qtrans

Qvent

Energy fluxes(W m−2)

� Qsun = Radiation from sun� Qcover = Cover losses� Qtrans = Crop transpiration� Qlamps = Artificial lighting� Qvent = Ventilation� Qhe = OPAC

heat exchanger� Qpipe = Pipe rail heating

See Van Beveren et al. (2013).

Page 11: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

The dynamic model (2)

Humidity balance

dχairdt = 1

h (φtrans − φcov − φhe − φvent) (g m−3 s−1) (2)

CO2 balance

dCO2_airdt = 1

h (φc,inj − φc,ass − φc,vent) (g m−3 s−1) (3)

� See Van Beveren et al. (2015) for more details.� The model is based on the work of Van Henten (1994), De Zwart

(1996), Van Ooteghem (2007), and Vanthoor (2011).

Page 12: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

External inputs of the model

� Outdoor conditions• Temperature (◦C)• Relative Humidity (%)• Radiation

(W m−2)

• Wind speed(m s−1)

• CO2 concentration (ppm)

� Control inputs from the climate computer• Screen closure (%)• Artificial lighting (%)

Page 13: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Optimization procedure

� Optimal control formulation� PROPT Matlab Optimal Control Software (Tomlab)

Page 14: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Optimal control problem (1)

Control variables:1. Heating

• QE,heat = Qhe,heat + Qpipe in (W m−2)2. Active cooling

• QE,cool = Qhe,cool in (W m−2)3. Ventilation

• gV = specific ventilation (m s−1)4. CO2 injection

• φc,inj = CO2 injection flux (g m−2 s−1).

Find control variables such that Eq. 4 is minimal.

minQE,heat ,QE,cool ,gV ,φc,inj

J =∫ tf

t0

(Q2

E,heat + Q2E,cool

)dt (4)

Page 15: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Optimal control problem (2) - Constraints

Climate variables� Lower and upper temperature bound:

Tminair (t) ≤ Tair(t) ≤ Tmax

air (t) (5)

� Upper bound for relative humidity:

RHair(t) ≤ RH maxair (t) (6)

� Lower and upper CO2 bound:

COmin2,air(t) ≤ CO2,air(t) ≤ COmax

2,air(t) (7)

These are all set by the grower.

Page 16: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Optimal control problem (2) - Constraints

Climate variables� Lower and upper temperature bound:

Tminair (t) ≤ Tair(t) ≤ Tmax

air (t) (5)

� Upper bound for relative humidity:

RHair(t) ≤ RH maxair (t) (6)

� Lower and upper CO2 bound:

COmin2,air(t) ≤ CO2,air(t) ≤ COmax

2,air(t) (7)

These are all set by the grower.

Page 17: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Optimal control problem (3) - Constraints

Control variables� Heating capacity is limited by:

QminE,heat(t) ≤ QE,heat(t) ≤ Qmax

E,heat(t) (8)

� Cooling capacity is limited by:

QminE,cool(t) ≤ QE,cool(t) ≤ Qmax

E,cool(t) (9)

� Ventilation capacity is limited by:

gminV (t) ≤ gV (t) ≤ gmax

V (t) (10)

� CO2 injection is limited by:

0 ≤ φc,inj(t) ≤ φmaxc,inj(t) (11)

� Total amount of CO2 available per day is limited by:∫ tf

t0

Φc,injdt ≤ φmax,dayc,inj (12)

Page 18: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Optimal control problem (4) - Constraints

Dynamic greenhouse climate model� Dynamic greenhouse climate model:

(Tair , χair , CO2,air) = f (Tair , χair ,CO2,air ,QE , gV , φc,inj , t) (13)

� Initial conditions:

Tair(t0) = Tair(0), χair(t0) = χair(0),CO2,air(t0) = CO2,air(0) (14)

Page 19: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Implementation of minimum pipe temperature

� Change lower bound for heating capacity

Minimum pipe temperatureReplace the old constraint

QminE,heat(t) ≤ QE,heat(t) ≤ Qmax

E,heat(t) (W m−2) (15)

with the new constraint with minimum pipe temperature Tminpipe :

QminE,heat(t) = αpipe(Tmin

pipe − Tair)(t) (W m−2) (16)

� Similar approach for implementation of minimum ventilation ispossible.

Page 20: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Standard optimization settings

Table : Standard settings of the bounds for optimization

Symbol Description Value Unit

Tminair (t) Lower temperature bound T ′air ,meas(t) − 0.5◦C ◦C

Tmaxair (t) Upper temperature bound T ′air ,meas(t) + 0.5◦C ◦C

RH maxair (t) Upper RH bound max RHair ,meas(t) %

COmin2,air(t) Lower CO2 bound 0.97 ·CO′2,air ,meas(t) g m−3

COmax2,air(t) Upper CO2 bound 2000 ppm g m−3

QmaxE,heat(t) Maximal heating capacity 200 W m−2

QminE,cool(t) Maximal cooling capacity 200 W m−2

φmaxc,inj(t) Maximal CO2 injection capacity 1200 kg h−1

Φmax,dayc,inj Total amount of CO2 available per day

∫φc,inj,measdt g m−3 d−1

Table : Standard settings for optimization. ′ = smoothed.

Page 21: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Optimization results

Page 22: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Optimization result 1 day

0 4 8 12 16 20 2440

60

80

100 (b)

RH

air

(%)

0 4 8 12 16 20 241015202530 (a)

Tai

r(o C

)

0 4 8 12 16 20 24−400−200

0200400 (d)

QE

(Wm−

2 )

0 4 8 12 16 20 2401234 ·10−2

(e)

g V(m

s−1 )

0 4 8 12 16 20 2401234 ·10−2

(f)

Time (h)

φc,

inj

(gm−

2s−

1 )

0 4 8 12 16 20 240500

1,0001,5002,000 (c)

Time (h)

CO

2,ai

r(p

pm)

Figure : Optimal states ( ) and optimal control trajectories ( ) for June16, 2012 with standard settings. The dashed lines are the bounds. The realizedclimate variables ( ) and the control trajectories resulting from growersoperation ( ) are also shown.

Page 23: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

One year optimization with standard settings

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec−15

−10

−5

0

5

10

15

20

25

30

Time

Q∗ E

(MJm−

2d−

1 )/

Tou

t(◦

C)

Figure : Results of daily optimization with standard settings for the year 2012.Optimal heating ( ), optimal cooling ( ), heating grower ( ), coolinggrower ( ), and mean outside temperature ( ).

Page 24: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

One year optimization with standard settings

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0

2

4

6

8

Time

Qve

nt(M

Jm−

2d−

1 )

Figure : Optimal ventilation ( ) and ventilation grower ( ) Qvent(MJ m−2 d−1) for 2012.

Page 25: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

One year optimization with standard settings

Table : Total heating, cooling, and CO2 injection of the grower, the optimalsituation with standard settings (ss), and the optimal situation with minimumpipe temperature (mp) as used by the grower for 2012.

Grower Optimal ss Optimal mp Unit

Heating 2.08 1.10 1.49 GJ m−2 y−1

Cooling 0.71 0.60 0.71 GJ m−2 y−1

CO2 injection 95.4 85.7 85.9 kg m−2 y−1

Page 26: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Stage 2: Optimization of equipment

Warm wellCold well

Pipe rail heating

Cooling tower

Heatstorageother

greenhouse

Heatstorage

Heat pump

Heatstorage

Heatstorage

CHP

CHP

Page 27: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Stage 2: Optimization of equipment

Warm wellCold well

Pipe rail heating

Cooling tower

Heatstorageother

greenhouse

Heatstorage

Heat pump

Heatstorage

Heatstorage

CHP

CHP

Page 28: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

Thanks for your attention

[email protected]

Page 29: NVTL studiedag 2015 · 2.Minimize total energy input by using optimal control techniques ... Analyzing energy-saving options in greenhouse cultivation using a simulation model. Landbouwuniversiteit

Goal of the project The model Optimization Results Optimization of equipment

References

� Van Beveren, P.J.M., Bontsema, J., Van Straten, G., and Van Henten, E.J.(2013). Minimal Heating and Cooling in a Modern Rose Greenhouse. In 4thIFAC Conference on Modelling and Control in Agriculture (pp. 282-287).

� Van Beveren, P.J.M., Bontsema, J., Van Straten, G., and Van Henten, E. J.(2015). Minimal heating and cooling in a modern rose greenhouse. AppliedEnergy, 137, 97-109. doi:10.1016/j.apenergy.2014.09.083

� Van Henten, E.J. (1994). Greenhouse climate management: an optimal controlapproach. Landbouwuniversiteit Wageningen, Wageningen, The Netherlands.

� Van Ooteghem, R.J.C. (2007). Optimal control design for a solar greenhouse.Wageningen University, Wageningen, The Netherlands.

� Vanthoor, B.H.E. (2011). A model-based greenhouse design method.Wageningen University, Wageningen, The Netherlands.

� De Zwart, H.F. (1996). Analyzing energy-saving options in greenhousecultivation using a simulation model. Landbouwuniversiteit Wageningen,Wageningen, The Netherlands.