observations of near-inertial waves in lake superiorvvanchur/2013phys1021/austin.pdfthe large lakes...

61
Observations of nearinertial waves in Lake Superior Jay Austin Large Lakes Observatory/ Physics University of Minnesota, Duluth

Upload: others

Post on 16-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Observations of near‐inertial  waves in Lake Superior

Jay AustinLarge Lakes Observatory/ PhysicsUniversity of Minnesota, Duluth

Page 2: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

The Large Lakes Observatory

A Wide range of expertise:–

Geology–

Biology–

Chemistry–

Physics

Global reach•

A wide range of interests, but a 

common interest in climate

Page 3: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

My lab

Dynamics and thermodynamics of large lakes•

Wide range of spatial, temporal scales

Primarily observational, some modeling•

Modern oceanographic equipment

Lakes around the world•

Lots of student involvement

Page 4: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Student projects

Bjorn Stolhammer

(UG): Correcting slow  sensors on autonomous vehicles

John Brethauer

(UG): Descriptions and models  of radiatively

driven convection below TMD

Luke Gloege

(MS, WRS): Models of inertial  energy in Lake Superior

Dan Titze

(PhD, WRS): Role of ice in  determining lake thermal structure,  (interaction of NIO with sediment)

Page 5: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Core Moorings, 2007‐2012

Page 6: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Winter Mooring Thermistor Data

Significant spatial and interannual variability in winter thermal structure•Surface temperature•Thermocline depth

Page 7: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Ice Cover Influence on Heat Loss

Under sustained ice cover, heat loss is inhibited

Western

Central

Eastern

>99% Reduction

80% Reduction

No Reduction

Page 8: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 9: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Energy Distribution

Page 10: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Bathymetry / Energy Distribution 

Energy concentrates around shallow regions in open water

Page 11: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Investigating the lake’s convective warming periodo Has not been researched extensively in the past

Heating in Lake Superior

Page 12: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Using fourier techniques for analysiso Finding the temperature response to the sun

Heating in Lake Superior

Page 13: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Current work: Investigating variations in the standard  pattern

Heating in Lake Superior

Page 14: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 15: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Temperature convolution

( )AdT k T Tdt

= −

0( )0

0

( )

( )0

A

k t t

T t T f

e t tf t

t t

= ∗

⎧ <⎪= ⎨>⎪⎩

Page 16: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Outline

What are near‐inertial waves?•

How do we observe them?

What did we find?•

Why should we (or more to the point, you) 

care?

Page 17: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Previous work•

Lots of activity in large lakes the 70’s 

(Marmorino, Mortimer, Schwab, Fee, Rao,  etc.)

Very few observations to work with‐

severely  technologically limited

Still, nailed down several of the basic features–

Vertical structure

Stratification dependence

Work done in Kinneret

in the last decade… scales are very different

Page 18: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Gravity waves

Gravity waves represent the response of an  density interface to a displacement from 

equilibrium. Gravity as restoring force•

Energy propagates away from disturbance as 

waves •

Particles move back and forth in direction of 

wave, are not displaced over a cycle

Page 19: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 20: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 21: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

The Coriolis force

Force acts perpendicular and in proportion to velocityf

is the Coriolis parameter‐

about 1x10‐4s‐1

v

fv

Page 22: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Poincare waves

At low frequencies, particle paths become  elliptical, approaching circular as their 

frequency (ω) approaches the Coriolis  frequency

(f) (known as ‘near‐inertial waves’)

Surface (or interface) displacement associated  with passage of wave, just as with gravity 

wave•

Energy concentrated around the inertial 

frequency (T ~ 16.1h)

Page 23: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 24: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 25: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Interfacial waves

Waves can exist on any interface between  fluids of different densities (e.g. oil and 

vinegar)•

A stratified lake typically has a strong density 

interface (the pycnocline) due to temperature  stratification

The speed of waves is proportional to the  density difference between the fluids

Page 26: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 27: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 28: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 29: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Observations

Moorings with current meters in Lake  Superior from ~2007 to present

Several sites; will focus on single sites in the  western and eastern basins

ADCPs (current profilers) and thermistors at a  range of depths

Page 30: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Core Moorings, 2007‐2012

Page 31: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Acoustic Doppler Current Profiler  (ADCP)

Page 32: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Raw velocities, WM (E‐W and N‐S)East-West

North-South

Page 33: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Near‐sfc velocities (E‐W and N‐S)

East-West

North-South

Page 34: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Temperature, top 80m

Page 35: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Rotary spectrum, currents

Inertial frequency

Seiche frequency

Page 36: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Temperature @13m, WM

Inertial frequency

Page 37: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Wind stress, WM, rotary

Inertial frequency

Page 38: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Water level, Duluth

Diurnal tide

Sem

i-diurnal tide

Seiche

Helm

holtz (Harbor) m

odes

Inertial frequency

Page 39: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Raw velocities, WM (E‐W and N‐S)East-West

North-South

Page 40: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

2 20( )

02( , ) t t j tw t t e eτ ω

τ π− − −=

Page 41: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

( )P t w Udt∞

± ±−∞

= ∫

Page 42: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

E‐W velocity with wavelet amplitude

Page 43: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

CW(red) and CCW (blue) wavelets  @16.1h, WM 

Clockwise

CCW

Page 44: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 45: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 46: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

∆ρ

Page 47: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Wavelet Amplitude

Wavelet Phase

Temperature

Page 48: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Bottom Velocities, WM, Fall 2010

East-West

North-South

Page 49: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Clockw

ise wavelets

Phase diff.

Density diff.

Page 50: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Estimating the wavelength

Combine estimates of surface velocity  magnitude and interfacial displacement 

amplitude:1 1

2

2h u

λ πη ω

Page 51: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Estimating direction

Direction is a function of the phase difference  between interface displacement and surface 

layer velocity

Page 52: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 53: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 54: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Glider transect

Page 55: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry
Page 56: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Too deep-

bottom currents weak

Too close to shore

Just right

Page 57: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Conclusions

Near‐inertial oscillations dominate•

Stratification matters

Can predict wavelength and direction; direction has  interesting behavior

May play a role in determining sediment  remobilization 

Use caution in interpretation of data–

CTD data

Shipboard ADCP data–

Modeling results

Page 58: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Now What?

What happens at boundaries?•

What is the distribution of KE at the bottom of 

the lake?•

What wind conditions are efficient at creating 

these events? –

Does the spatial or temporal scale of the wind 

field matter more?

How small of a lake can support them?

Page 59: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

C:\Users\Jay Austin\Desktop\2012‐05‐ 01_1448.swf

Page 60: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

The Burger number

Ratio of the horizontal scale of waves (the “Rossby  Radius”

to basin scale. 

For the “external”

(surface) mode:

External waves can’t “fit”

into basin

2

5 4

(9.8 )(160 )0.8

(5 10 )(1 10 )gH f ms m

SL x m s

−= ≈ ≈×

Page 61: Observations of near-inertial waves in Lake Superiorvvanchur/2013PHYS1021/austin.pdfThe Large Lakes Observatory • A Wide range of expertise: – Geology – Biology – Chemistry

Internal (Interfacial) mode:

1 2

1 2

32

3

5 4

' '

1 (20 )(140 )9.81000 160

0.05(5 10 )(1 10 )

I

h hg fh hg H f

SL L

kgm m mmskgm m

x m s

ρρ

−−

⎛ ⎞⎛ ⎞Δ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠= =

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠≈ ≈×