observations of possible jet formation in ... -...

1
Observations of possible jet formation in the binary blazar OJ287 H. Jermak, 1,2 I. A. Steele, 1 G. P. Lamb, 1 M. Valtonen 3 , S. Zola 4, T. Hova?a 3 & OJ287 1516 collab.* 5 Abstract Interpreta-on In November December 2015 the OJ287 binary supermassive black holes system under went a double peaked flare associated with the interacUon of the secondary supermassive black hole of the with the accreUon disk of the primary supermassive black hole causing a predicted flare in opUcal wavelengths (see Valtonen et al. ApJ le?ers, 819:L37, 2016 March). 20 days a\er the first flare, a second flare was observed, this was joined by a simultaneous opUcal degree of polarisaUon flare the highest on record reaching 43%. This first flare, with its low polarisaUon, is likely to be dominated by thermal emission which dilutes the nonthermal polarisaUon emission. The second flare is dominated by nonthermal emission. Here the possible causes of the two flares are discussed. Light curve 1 Astrophysics Research InsUtute, Liverpool John Moores University, L3 5RF, UK. 2 University of Lancaster, Lancaster, LA1 4YW, UK. 3 University of Turku, Finland. 4 Jagiellonian University, Poland. 5 See Valtonen et al. 2016. Future work We conUnue to monitor OJ287 along with a sample of 20 blazars with the Ringo3 polarimeter on the Liverpool Telescope and also Fermi gammaray telescope data. We are exploring the spectral properUes of the blazars during periods of quiescence and flaring to understand the differences between the Flat Spectrum Radio Quasar (FSRQ) and BL Lac type blazars. The fundamental physical differences between these sources are their accreUon disk luminosity, visual differences are seen in the core and lobe brightness in FRI and FRII galaxies which are though to be FSRQ and BL Lacs respecUvely and opUcal differences in the presence and absence of opUcal emission lines (FSRQs and BL Lacs respecUvely). Studying the spectral changes in blazars help to explore the contributory components of the source and can lead to constraints of jet and accreUon models. We would like to include addiUonal mulUwavelength photometric observaUons to our dataset, parUcularly UV spacebased observaUons during the next impact. Spectral proper-es Diagram showing the orbit of the secondary supermassive black hole in the OJ287 binary system from 20002023. Taken from Valtonen et al. 2016. 0 1 2 3 Log 10 Flux *10 8 oj287 0 1 2 3 Nov 2008 June 2009 Jan 2010 July 2010 Feb 2011 Aug 2011 Mar 2012 Sept 2012 Apr 2013 Oct 2013 May 2014 Nov 2014 June 2015 Jan 2016 Log 10 Flux *10 8 0 100 200 300 400 500 ●● ●● ● ●●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●● ●● ●● ● ●●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●● EVPA (deg) ●● ●● ●●● ●● ●● ●● ●●●●● ●● ●●●●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●●●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●●●● ●● ●●●●● ●● ●● ●● EVPA (deg) ●● ●● ●●● ●● ●●● ●● ●●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ●●●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●● ●● ●● ● ●●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● EVPA (deg) EVPA (deg) 0 100 200 300 400 500 0 10 20 30 40 P (%) ●● ● ●● ●● ●● ●● ●● ●● ●● 0 10 20 30 40 P (%) ●●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●●● ●● ●● ●●●● ●●● ●● 55000 55500 56000 56500 57000 57500 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 MJD R 1.2 1.9 3.1 4.9 7.7 12.3 19.4 30.8 mJy ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● 15.0 14.5 14.0 13.5 13.0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 r* b* g* rho = 0.387 p = 3.361x1011 The Ringo3 polarimeter consists of a rapidly rotaUng polaroid (one rotaUon every 2.3 seconds) which modulates the incoming beam of light and measures the intensity of light in the 8 different rotor posiUons in three cameras. The light is distributed to the three cameras via 2 dichroic mirrors resulUng in three nonstandard wavelength bands: r* (‘red’) = 770 – 1000 nm g* (‘green’) = 650 – 740 nm b* (‘blue’) = 350 640 nm The Figure on the right shows the spectral index b* magnitude g* magnitude as a funcUon of r* magnitude. The Spearman rank correlaUon coefficient rho and the p value (p) are shown on the plot and suggest a significant negaUve correlaUon of 0.387 for OJ287 over the Ringo3 observing period (thus far). This correlaUon suggests that the source shows a ‘bluer’ when brighter property, like many BL Lac blazars. The spectral properUes of the source during the flaring period have also been studied and show significant negaUve correlaUons of a similar value to the overall value of 0.387. This suggests that the contribuUon from red (i.e. jet emission) and blue (accreUon disk and/or high energy jet emission) does not change drasUcally during the SMBH impact on the accreUon disk. The first flare is predominantly thermal and shows low degree of polarisaUon. This suggests that any of the regular primary jet nonthermal emission is diluted by the increase in thermal emission from the impact of the secondary supermassive black hole (SMBH2) on the primary's accreUon disk and that there is no associated polarised emission from the impact. The impact of the SMBH2 causes a 'bubble' of gas from the accreUon disk to tear away and expand. As the bubble cools it becomes transparent at opUcal wavelengths and produces the shape of the peak in the opUcal flux (Valtonen et al. 2010). To explain the second, strongly polarised, nonthermal flare there must be an ordered magneUc field or magneUc reconnecUon to create such high polarisaUon. While it is possible that the polarisaUon flare is from the primary jet in OJ287, it is not possible that this is caused by the impact due to light crossing Umes across the accreUon disk. It may be coincidental that the primary jet flares shortly a\er the impact, however, the second strongly polarised peak is also present during the 1984 outburst which would suggest the events are connected. PolarisaUon light curve taken from the OJ287 black hole spin paper Valtonen et al. 2016. We therefore lean toward associaUng the strongly polarised flare with the SMBH2 and its impact with the accreUon disk. It is possible that the gravitaUonal influence of the SMBH2 accretes ma?er from the primary accreUon disk and creates a relaUvisUc jet which is orientated toward the observer, or, the magneUc fields associated with SMBH1 and SMBH2 interact and create polarised emission by magneUc reconnecUon. With the simultaneous Fermi gammaray data we can see that the gammaray flux stays low and only increased marginally at the Ume of the flare. This would suggest that the high polarised emission is not associated with magneUc reconnecUon as this would create a shock and high energy gammaray emission. telescope.livjm.ac.uk/

Upload: others

Post on 24-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Observations of possible jet formation in ... - sabotin.ung.sisabotin.ung.si/~agomboc/IAUS324_presentations/... · Observations of possible jet formation in the binary blazar OJ287

Observations of possible jet formation in the binary blazar OJ287 H.  Jermak,1,2  I.  A.  Steele,1  G.  P.  Lamb,1  M.  Valtonen3,  S.  Zola4,  T.  Hova?a3  &  OJ287  15-­‐16  collab.*5  

Abstract  

Interpreta-on  

In  November-­‐  December  2015  the  OJ287  binary  supermassive  black  holes  system  under  went  a  double  peaked  flare  associated  with  the  interacUon  of  the  secondary  supermassive  black  hole  of  the  with  the  accreUon  disk  of  the  primary  supermassive  black  hole  causing  a  predicted  flare  in  opUcal  wavelengths  (see  Valtonen  et  al.  ApJ  le?ers,  819:L37,  2016  March).  20  days  a\er  the  first  flare,  a  second  flare  was  observed,  this  was  joined  by  a  simultaneous  opUcal  degree  of  polarisaUon  flare-­‐  the  highest  on  record  -­‐  reaching  43%.  This  first  flare,  with  its  low  polarisaUon,  is  likely  to  be  dominated  by  thermal  emission  which  dilutes  the  non-­‐thermal  polarisaUon  emission.  The  second  flare  is  dominated  by  non-­‐thermal  emission.  Here  the  possible  causes  of  the  two  flares  are  discussed.    

Light  curve  

1Astrophysics  Research  InsUtute,  Liverpool  John  Moores  University,  L3  5RF,  UK.  2University  of  Lancaster,  Lancaster,  LA1  4YW,  UK.    3University  of  Turku,  Finland.  4Jagiellonian  University,  Poland.  5See  Valtonen  et  al.  2016.  

Future  work  We  conUnue  to  monitor  OJ287  along  with  a  sample  of  20  blazars  with  the  Ringo3  polarimeter  on  the  Liverpool  Telescope  and  also  Fermi  gamma-­‐ray  telescope  data.  We  are  exploring  the  spectral  properUes  of  the  blazars  during  periods  of  quiescence  and  flaring  to  understand  the  differences  between  the  Flat  Spectrum  Radio  Quasar  (FSRQ)  and  BL  Lac-­‐type  blazars.  The  fundamental  physical  differences  between  these  sources  are  their  accreUon  disk  luminosity,  visual  differences  are  seen  in  the  core  and  lobe  brightness  in  FRI  and  FRII  galaxies  which  are  though  to  be  FSRQ  and  BL  Lacs  respecUvely  and  opUcal  differences  in  the  presence  and  absence  of  opUcal  emission  lines  (FSRQs  and  BL  Lacs  respecUvely).    Studying  the  spectral  changes  in  blazars  help  to  explore  the  contributory  components  of  the  source  and  can  lead  to  constraints  of  jet  and  accreUon  models.      We  would  like  to  include  addiUonal  mulUwavelength  photometric  observaUons  to  our  dataset,  parUcularly  UV  space-­‐based  observaUons  during  the  next  impact.    

Spectral  proper-es  

Diagram  showing  the  orbit  of  the  secondary  supermassive  black  hole  in  the  OJ287  binary  system  from  2000-­‐2023.  Taken  from  Valtonen  et  al.  2016.    

0

1

2

3

fermi_source$MJD

Lo

g 10 F

lux *1

0−8

oj287

0

1

2

3

Nov 2008 June 2009 Jan 2010 July 2010 Feb 2011 Aug 2011 Mar 2012 Sept 2012 Apr 2013 Oct 2013 May 2014 Nov 2014 June 2015 Jan 2016

Log 1

0 Flux

*10−

8

0

100

200

300

400

500

MJD

●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

EVPA

(deg

)

●●●●●●●●

●●

●●●●●●● ●

●●●●

●●●●●●●●

●●●●●●

●●●●

●●●●●

●●●●

●●●●●●●●

●●

●●●●●●● ●

●●●●

●●●●●●●●

●●●●●●

●●●●

●●●●●

●●●●

●●●●●●●●

●●

●●●●●●● ●

●●●●

●●●●●●●●

●●●●●●

●●●●

●●●●●

●●●●

●●●●●●●●

●●

●●●●●●● ●

●●●●

●●●●●●●●

●●●●●●

●●●●

●●●●●

●●●●

EVPA

(deg

)

●●●●●●●●

●●●●

●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●

●●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●

●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●

●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●

●●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●

●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●

●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●

●●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●

●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●

●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●

●●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●

●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●

●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●

●●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●

●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●

●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●

●●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●

●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●

●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●

●●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●

●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●

●●●●

●●●●● ●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●

●●●●●● ●

● ●●●●●

●●●●●●●●●●●●●

●●●●●●●●

●●●●●

● ●●●●●●●●● ●● ●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●● ●

●●

●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●

EVPA

(deg

)

EVPA

(deg

)

0

100

200

300

400

500

0

10

20

30

40

MJD

P

(%)

●●

●●●

●●

●●

●●

●● ● ●

● ●

●●

●●

●●

●●●

●●●●

●●●●●

●●

●●●

●●

●●

●●

●●●●●●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●

●●●

●●●●●●

●●●●

●●●●

●●●●●●●●●

●●

●●●●●●

●●●

●●●●●●●●●

●●●

●●●

●●●●●●

●●●●●

●●●

●●●

●●●●●●●●●

●●●

●●

●●

●●●

●●●

●●●

●●●

●●●

●●

●●● ●

●●

●●●●

●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●

●●

●●●

●●●

●●●●●●●●●

●●●

●●●●●●●●●●●●●●

●●●●●●

●●●

●●●●●●●●●●●●●

●●

●●●

●●

●●●

●●

●●●●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●

●●●●●●

●●●

●●●●●●●●●

●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●●

●●●●●●●

●●

●●

●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●●

●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●●●

●●●

●●●

●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●

●●●

●●●

●●●

●●●

●●●●●●●

●●●●

●●●

●●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●●

●●●

0

10

20

30

40

P (%

)

●●●

●●

●●●

●●

●●●

●●

●●●●●

●●●●

●●●●●

●●●●●

●●●

●● ●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●● ●●●●

●●●●● ●●

●●●●●●●●●●●●●●● ●

●●●●●●●

●●●●●●

●●

●●●●●●●●

● ●

●●

●●●●●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●● ●

●●●●●●●●●

●●●●

● ●●●

●●●●●●

●●●●●●●●

●●●

●●●●

●●●●●●●●

●●●●●●● ●

●●

●●●

55000 55500 56000 56500 57000 5750016.015.515.014.514.013.513.012.5

MJD

R

1.21.93.14.97.712.319.430.8

mJy●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●● ●

●●

●●

● ●

●●

●●

●●

●●●

●●●

●●

●●

●●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●●

15.0 14.5 14.0 13.5 13.0

0.5

0.6

0.7

0.8

0.9

1.0

1.1

r*

b* −

g*

rho = −0.387

p = 3.361x10−11

The  Ringo3  polarimeter  consists  of  a  rapidly  rotaUng  polaroid  (one  rotaUon  every  2.3  seconds)  which  modulates  the  incoming  beam  of  light  and  measures  the  intensity  of  light  in  the  8  different  rotor  posiUons  in  three  cameras.  The  light  is  distributed  to  the  three  cameras  via  2  dichroic  mirrors  resulUng  in  three  non-­‐standard  wavelength  bands:      r*  (‘red’)  =  770  –  1000  nm      g*  (‘green’)  =  650  –  740  nm      b*  (‘blue’)  =  350  -­‐640  nm    The  Figure  on  the  right  shows  the  spectral  index  b*  magnitude  -­‐  g*  magnitude  as  a  funcUon  of  r*  magnitude.  The  Spearman  rank  correlaUon  coefficient  rho  and  the  p  value  (p)  are  shown  on  the  plot  and  suggest  a  significant  negaUve  correlaUon  of  -­‐0.387  for  OJ287  over  the  Ringo3  observing  period  (thus  far).  This  correlaUon  suggests  that  the  source  shows  a  ‘bluer’  when  brighter  property,  like  many  BL  Lac  blazars.  The  spectral  properUes  of  the  source  during  the  flaring  period  have  also  been  studied  and  show  significant  negaUve  correlaUons  of  a  similar  value  to  the  overall  value  of  -­‐0.387.  This  suggests  that  the  contribuUon  from  red  (i.e.  jet  emission)  and  blue  (accreUon  disk  and/or  high  energy  jet  emission)  does  not  change  drasUcally  during  the  SMBH  impact  on  the  accreUon  disk.  

The  first  flare  is  predominantly  thermal  and  shows  low  degree  of  polarisaUon.  This  suggests  that  any  of  the  regular  primary  jet  non-­‐thermal  emission  is  diluted  by  the  increase  in  thermal  emission  from  the  impact  of  the  secondary  supermassive  black  hole  (SMBH2)  on  the  primary's  accreUon  disk  and  that  there  is  no  associated  polarised  emission  from  the  impact.  The  impact  of  the  SMBH2  causes  a  'bubble'  of  gas  from  the  accreUon  disk  to  tear  away  and  expand.  As  the  bubble  cools  it  becomes  transparent  at  opUcal  wavelengths  and  produces  the  shape  of  the  peak  in  the  opUcal  flux  (Valtonen  et  al.  2010).    To  explain  the  second,  strongly  polarised,  non-­‐thermal  flare  there  must  be  an  ordered  magneUc  field  or  magneUc  reconnecUon  to  create  such  high  polarisaUon.  While  it  is  possible  that  the  polarisaUon  flare  is  from  the  primary  jet  in  OJ287,  it  is  not  possible  that  this  is  caused  by  the  impact  due  to  light  crossing  Umes  across  the  accreUon  disk.  It  may  be  coincidental  that  the  primary  jet  flares  shortly  a\er  the  impact,  however,  the  second  strongly  polarised  peak  is  also  present  during  the  1984  outburst  which  would  suggest  the  events  are  connected.  

PolarisaUon  light  curve  taken  from  the  OJ287  black  hole  spin  paper  Valtonen  et  al.  2016.  

We  therefore  lean  toward  associaUng  the  strongly  polarised  flare  with  the  SMBH2  and  its  impact  with  the  accreUon  disk.  It  is  possible  that  the  gravitaUonal  influence  of  the  SMBH2  accretes  ma?er  from  the  primary  accreUon  disk  and  creates  a  relaUvisUc  jet  which  is  orientated  toward  the  observer,  or,  the  magneUc  fields  associated  with  SMBH1  and  SMBH2  interact  and  create  polarised  emission  by  magneUc  reconnecUon.  With  the  simultaneous  Fermi  gamma-­‐ray  data  we  can  see  that  the  gamma-­‐ray  flux  stays  low  and  only  increased  marginally  at  the  Ume  of  the  flare.  This  would  suggest  that  the  high  polarised  emission  is  not  associated  with  magneUc  reconnecUon  as  this  would  create  a  shock  and  high  energy  gamma-­‐ray  emission.    

telescope.livjm.ac.uk/