ocean&modeling&for&uuv&path& planning&

20
Ocean Modeling for UUV Path Planning Peter C. Chu Department of Oceanography Naval Postgraduate School Sponsored Jointly by CRUSER ($85,344) and Naval Oceanographic Office ($120k)

Upload: others

Post on 16-Apr-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ocean&Modeling&for&UUV&Path& Planning&

Ocean  Modeling  for  UUV  Path  Planning  

Peter  C.  Chu  Department  of  Oceanography  Naval  Postgraduate  School  

 Sponsored  Jointly  by    

CRUSER  ($85,344)  and  Naval  Oceanographic  Office  ($120k)    

Page 2: Ocean&Modeling&for&UUV&Path& Planning&

Mul?-­‐Disciplinary/  Mul?-­‐Ins?tu?onal    Project  with  Par?cipa?on  of  4  US  Navy  

Students    Peter    Chu,    Kwang  Song  Chenwu  Fan  

Oceanography          NPS    

Tom  WeKergren     Applied  Mathema?cs  

NUWC-­‐  Newport  

Ron  Betsch                                                                      Mine  Warfare   NAVO  Peter  Fleischer     Sedimentology   NAVO  Frank  Bub   Ocean  Modeling   NAVO  

Page 3: Ocean&Modeling&for&UUV&Path& Planning&

Four  US  Navy  METOC  Theses    •  LCDR  Paul  Ku?a,  “Intelligence  fused  Oceanography  for  ASW  using  Unmanned  Underwater  Vehicles  (UUV)”  (Secret).  MS  in  Meteorology  and  Oceanography,  March  2013.  

•  LT  Thai  Phung,  “Analysis  of  Bioluminescence  and  Op?cal  Variability  in  the  Arabian  Gulf  and  Gulf  of  Oman  for  Naval  Opera?ons”  (Restricted).    MS  in  Meteorology  and  Oceanography,  June  2013.    

•  LT  James  Fritz,  “Computer  Aided  Mine  Detec?on  Algorithm  for  Tac?cal  Unmanned  Aerial  Vehicle  (TUAV)”,      MS  in  Meteorology  and    Oceanography,  December  2013    

•  LT  Mary  Doty,  “Analysis  of  Ocean  Variability  in  the  South  China  Sea  for  Naval  Opera?ons”  MS  in  Meteorology  and  Oceanography,  December  2013.    

Page 4: Ocean&Modeling&for&UUV&Path& Planning&

Journal  Publica?ons  •  Chang,  Y.-­‐C.,  R.-­‐S.  Tseng,    G.-­‐Y.  Chen,    P.  C.  Chu,  and  Y.-­‐T.  Shen,  2013:  Ship  rou?ng  u?lizing  strong  ocean  currents.  Journal  of  Naviga.on,  60,    doi:10.1017/  S0373463313000441  

 •  Chu,  P.C.,  S.E.  Miller,  and  J.A.  Hansen,  2013:  Fuel-­‐Saving  Ship  Route  Using  the  Navy’s  Ensemble  Meteorological  and  Oceanic  Forecasts.  Journal  of  Defense  Modeling  and  Simula.on,  in  press.  

Page 5: Ocean&Modeling&for&UUV&Path& Planning&
Page 6: Ocean&Modeling&for&UUV&Path& Planning&

ArJficial  PotenJal  Field  Method  

Page 7: Ocean&Modeling&for&UUV&Path& Planning&

PotenJal  Field  showing  two  closely  space  obstacles  create  an  local  minima  

Page 8: Ocean&Modeling&for&UUV&Path& Planning&

Stream  Line  Method  

Page 9: Ocean&Modeling&for&UUV&Path& Planning&

UV-22

"   Static Obstacle Avoidance Solutions " Circular Obstacle, Convex hull type " Assume speed and position of Obstacle

∑ =

−−−

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎟⎟⎠

⎞⎜⎜⎝

⎛+

−+−−

⎟⎟⎠

⎞⎜⎜⎝

⎛+

−+−

−⎟⎟⎠

⎞⎜⎜⎝

−+−=

m

k

xkykxk

x

ykykxk

yk

g

g

bbybx

bxa

bbybx

bxa

Cxxyy

mCxymC

1

22

2

22

2

12

11

11

)()()(

)()()(

tantan)(tanψ- Stream function for static obstacles:

Page 10: Ocean&Modeling&for&UUV&Path& Planning&

UV-22

"   Moving Obstacle Avoidance " Moving Obstacle Solutions " Assume that we know speed and position of moving obstacles

∑ =

−−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−+−

−+−+−+

−+−

−+−+−−⎟⎟⎠

⎞⎜⎜⎝

−+−=

m

k ykykxk

ykxkxkxkxk

ykxk

ykxkyiyk

g

g vbybx

bybxbbyav

bybxbybxbbya

Cxxyy

mCxymC

1 22

222

22

222

21

11

1 )()(})(){()(

)()(})(){()(

tan)(tanψ

- Stream Function for Moving Obstacle

Page 11: Ocean&Modeling&for&UUV&Path& Planning&

The potential and streamfunction methods are not for the real ocean

11 1

1

2

2 21

2 122 2

tan ( ) tan

( )( ) ( )

tan( )

( ) ( )

gg

ykyk

xk ykmk

xxk

xk yk

ymC mCxy yx x

a x bb

x b y bC

a x b bx b y b

ψ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎨ ⎬⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

− −

−=

=− +−−

−+

− + −−

− +− + −

Analytical Stream Functions:

1 11 1

2 2 2

2 2

2 1 2 2 2

2 2

tan ( ) tan

( ) {( ) ( ) }( ) ( )

( ) {( ) ( ) }( ) ( )

g

g

yiyk xk ykxk

m xk ykk

xk xk xk ykyk

xk yk

y yymC mCx x x

a y b b x b y bv

x b y bC

a y b b x b y bv

x b y b

ψ − −

=

⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

−= − +

− + − + −

− + −−

− + − + −+

− + −

Sta?c  Obstacles     Moving  Obstacles  

Page 12: Ocean&Modeling&for&UUV&Path& Planning&

Gap  between    Ocean  Modeling    and  UUV  Path  Planning  

Ocean    Modeling  

Near  Real-­‐Time    Ocean  Data  

UUV  Path  Planning  

Analy?cal  (ar?ficial):  Poten?al  (φ)  Stream  Func?on  (ψ)  

Page 13: Ocean&Modeling&for&UUV&Path& Planning&

Poten?al  and  Streamfunc?on  from  Navy  Ocean  Model  

2 2

, u vy x z x y zψ ϕ ψ ϕ∂ ∂ ∂ ∂

= − + = +∂ ∂ ∂ ∂ ∂ ∂

2 2, v u wx y

ψ ϕ∂ ∂

∇ = − ∇ = −∂ ∂

Ocean    Modeling  

Near  Real-­‐Time    (u,  v,  w)  

Near  Real-­‐Time    (φ,  ψ)  

UUV  Path    Planning  

3D  Flow    Decomposi?on  

Page 14: Ocean&Modeling&for&UUV&Path& Planning&

1  2  

3  4  

5  

3D,  Full  Physics,  Data  Assimila.ng,  Dynamic,  Forecast  Models  

NOGAPS  

Global  NCOM  

US-­‐East  NCOM  

US-­‐East  NCOM   Global  NCOM  

Groton  DelU3D  

Groton  NCOM  

 Page  14  

COAMPS  

ObservaJons                  Global                  Regional                    Coastal  Ocean Modeling

Page 15: Ocean&Modeling&for&UUV&Path& Planning&

American Seas R-NCOM 96-Hr Series

Surface Temperature

Surface Currents,

Surface Salinity

Surface Elevation

• Same structure / algorithms as GNCOM • Boundary Conditions provided by

GNCOM • FNMOC COAMPS forcing • 3D Forecasts

–  T, S, Currents, Elevation –  Resolution varies (~1 / 36 deg) –  55 vertical layers –  Forecast to 72/96 hr @ 3hr increments

• Assimilates data from –  Satellites (SST, SSH) –  insitu obs (XBTs, CTDs, floats, buoys)

• First - East China Sea (ECS) NCOM operational MAR08

• Replaced MODAS for ASW support •  Implement 3 - 4 regions/year • Eventual transition to COAMPS-OS

(coupled atmosphere—ocean—waves)

Regional:  1/36  deg  (3  km  /  1.7  nm)  Coastal:        50  to  300  m  

Navy Coastal Ocean Models (NCOM)

Page 16: Ocean&Modeling&for&UUV&Path& Planning&

Lagrangian Drift Forecast Examples from AMSEAS-NCOM 30 Day Period

Start with OR&R surface oil coverage in the northern Gulf on 1 June. 30-day Drift uses daily 00Z analyses. No dissipation or wind effects (other than on currents).

Material object drift starting with a line of particles from MS mouth to center of the Loop Current. 30-day persistence forecast using mean currents from 29June10 forecast series.

Material object drift at 1000m (3300ft) starting with a 1-degree disk at the wellhead. 30-day currents from daily 00Z analyses.

Page 17: Ocean&Modeling&for&UUV&Path& Planning&

Example  –  Hampton  Roads  Inlet  •   Within  3nm  of  Norfolk  Naval  Base  

•   Hampton  Roads-­‐  world’s  leading  bulk  cargo  harbor.  

• 150,000  –  500,000  barrels  of  petroleum  in  and  around  Hampton  Roads  biweekly    

• Six  military  tankers  (7.5  million  gallon  capaciity)  homeported  in  Norfolk    

Page 18: Ocean&Modeling&for&UUV&Path& Planning&

Bathymetry  for  Hampton  Roads  Inlet  

Page 19: Ocean&Modeling&for&UUV&Path& Planning&

High-­‐Resolu?on  NAVO  Ocean  Model  (Delj  3D)  

Page 20: Ocean&Modeling&for&UUV&Path& Planning&

Summary    

•  Navy  tac?cal  ocean  environmental  models  and  data  are  very  important  and  useful  for  the  CRUSER  program.  We  will  con?nue  our  efforts  to  effec?vely  incorporated  the  ocean  models  in  the  UUV  opera?ons.