october 26th, 2011

36
The New Jersey Space Grant Consortium at Stevens Institute of Technology and Rutgers University Mike Giglia, Ethan Hayon, Robert Hopkins, Jenny Jean, Mark Siembab, Sean Watts Preliminary Design Review October 26th, 2011

Upload: samson-allison

Post on 01-Jan-2016

18 views

Category:

Documents


2 download

DESCRIPTION

The New Jersey Space Grant Consortium  at Stevens Institute of Technology  and Rutgers University Mike Giglia, Ethan Hayon, Robert Hopkins,  Jenny Jean,  Mark Siembab, Sean Watts Preliminary Design Review. October 26th, 2011. Purpose of PDR. Confirm that: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: October 26th, 2011

The New Jersey Space Grant Consortium at Stevens Institute of Technology 

and Rutgers UniversityMike Giglia, Ethan Hayon, Robert Hopkins, 

Jenny Jean,  Mark Siembab, Sean Watts

Preliminary Design Review

October 26th, 2011

Page 2: October 26th, 2011

Purpose of PDR

• Confirm that:o Science objectives and required system

performance have been translated into verifiable requirements

o Payload Design: to specifications from requirements, can be met through proposed design (trade studies)

o Project risks have been identified, and mitigation plans exist

o Project management plan is adequate to meet schedule and budget

o Project is at a level to proceed to prototyping of high risk items

gnurf.net

Page 3: October 26th, 2011

PDR Presentation Content

• Section 1: Mission Overviewo Mission Overviewo Organizational Charto Theory and Conceptso Concept of Operationso Expected Results

• Section 2: System Overviewo Subsystem Definitionso Critical Interfaces (ICDs?)o System Level Block Diagramo System/Project Level Requirement Verification Plano User Guide Complianceo Sharing Logistics

Page 4: October 26th, 2011

PDR Presentation Contents

• Section 3: Subsystem Designo Subsystem 1 (AMS)

AMS Block Diagram AMS Key Trade Studies (3) AMS Risk Matrix

o Subsystem 2 (ITS) ITS Block Diagram ITS Key Trade Studies (1) ITS Risk Matrix 

o Subsystem 3 (Misc. Sensors) Misc. Sensor Block Diagram

Page 5: October 26th, 2011

PDR Presentation Contents

• Section 4: Prototyping Plano Item “A” to be Prototypedo Item “B” to be Prototypedo Etc., Etc…

• Section 5: Project Management Plano Scheduleo Budgeto Work Breakdown Structure

Page 6: October 26th, 2011

Mission OverviewRobert Hopkins

Page 7: October 26th, 2011

Mission Overview

• Mission statemento To collect and analyze data for future space research operations

through various experiments designed and implemented on a payload.

• Experiments:o Atmospheric

O3, CH4, CO2

o Vibration Piezo vibration of sensor plate

o Temperature Infrared sensor pointed at inside of rocket skin

o Rotational Frequency  Measure rotational frequency using a gyroscope

Page 8: October 26th, 2011

Mission Overview - Theory of Concepts

• At launch we will begin to take atmospheric readings. As the rocket ascends and the ports are opened completely air will flow in the dynamic port across our sensors and out the static port.

• This will be able to show us different levels of various gases at changing altitudes.

• Gathered information is to provide future payloads as to what they will come in contact with during flight to avoid using anything that may malfunction or receive interference as a result of the environment 

• The Earth's atmosphere is composed of 71% Nitrogen, 21% Oxygen, 8% CO2, and 1% various other gases.

• The top greenhouse gases (GHG's) in our atmosphere are CO2, CH4, and O3. As a result we chose to test for these three gases specifically.

• We are taking various other physical readings in order to get a better understanding of the flight environment.

Page 9: October 26th, 2011

Mission Overview - Theory and Concepts

• Ground level ozone (O3) - a key constituent of the troposphere. It is also a constituent of certain regions of the stratosphere commonly known as the Ozone layer. At abnormally high concentrations brought about by human activities (largely the combustion of fossil fuel), it is a pollutant, and a constituent of smog.

• Methane (CH4) - a hydrocarbon that is the primary component of natural gas as well as a very potent and important greenhouse gas, which is a very efficient GHG which contributes to global warming. Both air pollution and global warming could be reduced by controlling emissions of methane gas. 

• Carbon dioxide (CO2) - a colorless, odorless, non-toxic greenhouse gas associated with ocean acidification, emitted from sources such as combustion, cement production, and respiration.

Page 10: October 26th, 2011

Example ConOps

t ≈ 1.3 minAltitude: 75 kmContinue all

readings

t ≈ 15 minSplash Down

t ≈ 1.7 minAltitude: 95 km

Continue all readings

-G switch triggered-All systems on-Begin data collection

t = 0 min

t ≈ 4.0 minAltitude: 95 km

Close redundant air valveApogee

t ≈ 2.8 minAltitude: ≈115 km

End of Orion Burnt ≈ 0.6 min

Altitude: 52 km

t ≈ 4.5 minAltitude: 75 km

Stop atmospheric readings

Altitude

t ≈ 5.5 minChute Deploys

Page 11: October 26th, 2011

Mission Overview - Expected Results

• Expected Results:o Increase in temperature readings because of friction and exhausto Instant High-Z and Low X and Y accelerometer readingso Rotational Frequency readings of ~7Hzo Pollution level gradient as we ascend, prior to closing of atmosph. port

• Minimum Success Criteriao At least partial gas sensor readingso AVR records all sensor data and stores in successfully on the flash memo Temperature readings show some variation during ascento Rotational frequency readings show ~7Hz

Page 12: October 26th, 2011

System OverviewEthan Hayon

Page 13: October 26th, 2011

Subsystem Design – Physical Model

Page 14: October 26th, 2011

Critical Interfaces

• At the PDR level you should at minimum identify these interfaces

Interface Name Brief Description Potential Solution

AVR/BPL

The AVR data acquisition board will be mounted to the bottom makrolon plate (BPL) using short plastic spacers and stainless steel fasteners. The board mount must be able to withstand a 25G load on launch. 

We plan to use a similar mounting system used during RockOn 2011. The AVR board will be mounted directly to the makrolon plate with plastic spacers in between itself and the AVR board. 

EPS/BPLThe electrical power supply must be mounted rigidly to the bottom plate. Similar to the AVR board, the battery supplying the power must be mounted in a manner that is able to withstand a 25G shock on launch. Careful position is important - the battery is a relatively heavy element.

The battery must be positioned so that the center of mass of the payload is towards the center of the canister.

SEN/TPL

ACV/TPL

The sensor board must be mounted rigidly to the top plate. This fixture must be able to withstand the 25G force from launch. Careful placement is also important - the center of mass must be carefully analyzed. 

The sensor board will be mounted to the top plate the same way that the AVR board is mounted to the bottom plate. Stainless steel fasteners and spacers are used for mounting. 

The air containment vessel (ACV) must be mounted securely to the bottom plate. This fixture must be able to withstand a 25G force on launch. Due to it's irregular shape, the ACV must be attached with a bracket to the bottom plate. 

The ACV will be mounted to the top plate with a bracket. Due to the irregular shape, extreme caution must be taken when mounting this element. 

Page 15: October 26th, 2011

System Level Block Diagram

green - power & datared - power

blue/black - data

Page 16: October 26th, 2011

Requirement Verification

• At the PDR level you should highlight the most critical (Top3?) system and project level requirements and how they will be verified prior to flight.

Requirement Verification Method Description

The AVR board boots and the system armed LED blinks steadily. 

DemonstrationThe system will be powered up - RBF pin shorted. The armed LED shall blink steadily if the payload is armed. 

The air vessel must be able to withstand dynamic pressure.

Analysis SolidWorks will be used to determine the stress the vessel is placed under. The vessel will also be pressurized to ensure there are no leaks.

The payload will fit into half of a canister.  Inspection3D models will be sent to the partner school. Teams will cooperatively ensure the payload will fit in the canister.

The system shall survive the vibration characteristics prescribed by the RockSat-C program.

Test The system will be subjected to these vibration loads in June during testing week.

Page 17: October 26th, 2011

RockSat-X 2011 User’s Guide Compliance

• We are using one static and one dynamic atmospheric port.

• We are not using high voltage. We have started building the schematics while breadboarding individual subsystems of our boards. 

• Rough mass estimate: 10  lbs

• Center of Mass: Not yet determined - plan to keep center of mass towards center of canister. 

Page 18: October 26th, 2011

Sharing Logistics

• Our partner school is Mitchell Community Collegeo They plan to implement various generators for passively collecting

energy, such as solar and magnetic. 

o We plan to communicate through email and teleconference. o We will share SolidWorks or equivalent 3D models with our partner

school to plan how space will be used in the canister.o We have not yet determined whether or not there will be clearance

issues. These questions will be cleared up within the next week.

Page 19: October 26th, 2011

Subsystem Design (1)Atmospheric Measurement System

(AMS)Mark Siembab

Page 20: October 26th, 2011

AMS: Block Diagram

(24V)

Page 21: October 26th, 2011

AMS: Trade Studies

Page 22: October 26th, 2011

AMS: Risk Matrix

• Rsk.1: Low sample time establishes a poor pollution gradient

• Rsk.2: Preheat period not complete by T minus zero• Rsk.3: Power loss prevents redundant valve closure

Rsk. 2

Rsk. 3 Rsk. 1

Page 23: October 26th, 2011

Subsystem Design (2)Infrared Temperature Sensor

(ITS)Mark Siembab

Page 24: October 26th, 2011

ITS: Block Diagram

Rocket Skin

Page 25: October 26th, 2011

ITS: Trade Studies

Page 26: October 26th, 2011

ITS: Risk Matrix

• Rsk.1: Inadequate line of sight to rocket skin• Rsk.2: Launch vibrations shift sensor and cause it to

read temperature of irrelevant area• Rsk.3: Launch pad conditions distort skin temperature

data

Rsk. 2 Rsk. 3

Rsk. 1

Page 27: October 26th, 2011

Subsystem Design (3)Gyroscope and Vibration Sensor

(Misc. Sensors)Mark Siembab

Page 28: October 26th, 2011

Misc. Sensors: Block Diagram

Page 29: October 26th, 2011

Prototyping PlanSean Watts

Page 30: October 26th, 2011

Prototyping Plan

Concern about mounting the AVR board to the deck has

been expressedAVR

EPS

SEN

ACV/AMS

Concerns about mounting the power supply have been

expressed.

Some of the atmospheric sensors have a 24hr warm up

time.

The ACV will require strategic mounting and

proper airflow

Verify the fit and stability of the board on the plate.

We will use a combination between metal latches and zip ties and possibly hot glue to mount the battery securely to the plate.

We will try to find sensors with a shorter or zero warm up time. Otherwise we will test the sensors before hand to calibrate them accordingly.

We will use SolidWorks to design and place the ACV on our plate. We will test a variety of valves to control air flow to our sensors specifications.

Risk/Concern Action

• What will you build/test between now and CDR to mitigate risk?

Page 31: October 26th, 2011

Project Management PlanJenny Jean

Page 32: October 26th, 2011

Organizational Chart

 Atmospheric Sampling     Subsystem Design

 Atmospheric Sampling     Subsystem Design

Programming/Software Design

Programming/Software Design Electrical Design

Page 33: October 26th, 2011

Schedule

Page 34: October 26th, 2011

Budget

Page 35: October 26th, 2011

WBS

• Present a very top-level work break down scheduleo One can look up the tree for large scope goalso One can look down the tree for dependencieso Help each subsystem “see” the path ahead

PMP EPS STR PM DEP

• Obtain PM from LASP

• EEF Proposal for funding

• …• …

• Trade Studies

• Schematics

• Schematic Review

• ICDs

• First Revision of Boards

• …• …

• Trade Studies

• Order Materials

• Work Request Into Shop

• …• …

• Obtain PM from LASP

• EEF Proposal for funding

• …• …

• Obtain PM from LASP

• EEF Proposal for funding

• …• …

Page 36: October 26th, 2011

• Before CDR usable sensors must be found.  Mounting of both the sensor board and the power supply should be finalized.  Design of ACV will be started for possible early testing.

• Issueso Would heating elements be allowed if sensors without

preheat are not obtained? Would preheat time lead to poor data collection?

Conclusion