of high‐speed uhplc high resolution orbitrap ms in the...

11
Application of High Speed UHPLC Application of HighSpeed UHPLC and HighResolution OrbitrapMS in the Analysis of Pharmaceutical Compounds Christian Huber ThermoScientific Lunch Symposium @ HPLC2011 Citius, altius, f ti f ortius Department of Molecular Biology Division of Chemistry and Bioanalytics 2 Cs. Horváth, LC GC Magazine, 9, 1996, 622623

Upload: voque

Post on 20-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Application of High Speed UHPLCApplication of High‐Speed UHPLC and High‐Resolution Orbitrap‐MS in the Analysis of Pharmaceutical Compounds

Christian Huber

ThermoScientific Lunch Symposium @ HPLC2011

Citius,altius,

f tifortius

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 2

Cs. Horváth, LC GC Magazine, 9, 1996, 622‐623

Ultrafast Analysis of ThyroidUltrafast Analysis of Thyroid Hormone Degradation Products 

Thyroxin manufacturer: peptido1 2 3 4 5 6 7peptido

1 2 3 4 5 6 7

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 3

active substancesactive substances

Thyroxin as active pharmaceutical ingredient

I O

I

OH

NH2

Thyroxin, T4

OH

I

IOH

O

I

Liothyronine T3

I

OH

O

IOH

O

NH2

Liothyronine, T3 O

• Synthetic Thyroxin needs to be carefully 

checked for s nthesis b prod cts or stress

• Worldwide up to 1 Billion people 

h l k f Th i (WHO 2003) checked for synthesis by‐products or stress‐

induced degradation products, respectively.

• Development of a high troughput MS‐

show a lack of Thyroxine (WHO, 2003).

• Hypothyroidism requires a lifelong treatment with Thyroxin

compatible analysis method.

• Structure elucidation of impurities byhigh‐resolution mass spectrometry.

treatment with Thyroxin.

• Thyroxin acts as a prohormone ofits active form Liothyronine. 

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 44

high resolution mass spectrometry.y

Thermal stressing as a model for storage

Model analytes for thermal stressing:

O

I

T2/T3/T4O

I

HO

I

I

NH2

COOH

I

r-T2/r-T3

I

O

HO

I NH2

COOH

I

TriPropO

HO

I

I COOH

I

Thyroxin kept at 40°C for 6 monthsand finally stressed for 16 h at 60 °C. 

DiAc/TriAc/TetraAc

O

I

HO

I

ICOOH

TetraFAO

I

I

HO

I

I COOH

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 5

I

Instrumental requirements

Accela 1000 bar UHPLC system:

• 1000 bar pressure limit pump

• 1000 µL/min maximal flow rate

Accela 1250 bar UHPLC system:

• 1250 bar pressure limit pump

• 2000 µL/min maximal flow rate• 1000 µL/min maximal flow rate

• Hypersil GOLD column, 100 x 2.1 mm,

1.9 µm particles• 20 Hz UV Detector

• 2000 µL/min maximal flow rate

• Hypersil GOLD column, 100 x 2.1 mm,

1.9 µm particles• 80 Hz UV Detector

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 6

• 20 Hz UV Detector • 80 Hz UV Detector

The route to high‐throughput analysis

• YMC C18 Pro, 150 x 4.6 mm, 5µm 

• 38 min acetonitrile gradientT4

DiAc

TriAc TriProp

TetraAcT2• 4.5 mM Phosphate buffer

• 900 µL/min, UV @225 nm.

rT3

rT2 T3TetraAc

TetraFA

Application of UHPLC

T2

Application of UHPLC using:

1) Gradient volumeprinciple

0.0 10.0 30.0 40.0 50.0 min

principle

2) Gradient fine tuning including optimization 

DiAcTriProp

of separation temperture

T2

• Hypersil GOLD, 100 x 2.1 mm, 1.9 µm

rT2

rT3

T3T4 TriAc

p

TetraAc

TetraFA

0 0 0 5 2 5 min1 5 2 01 0

• 2.1 min acetonitrile gradient, 

• 0.1 % Formic acid

• 1000 µL/min, UV @ 280 nm

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 77

0.0 0.5 2.5 min1.5 2.01.0

UHPLC and the gradient‐volume principle

18.0

nm

1

2

6

VG = F tG= konst.VG, gradient volumeF volumetric flow rate

mA

U @

280

2

34

57

89 10

9.0

F, volumetric flow ratetG, gradient time

5 min at 30% ACN, 30‐70% ACN in 37 min, 225 µl/min 270 bar

0.0 20.0 40.0 min

0.0

In practice: halving of gradient time 

requires doubling of flow rate !225 µl/min, 270 bar.

12.0

0 n

m 1

2

6

7• Hypersil GOLD column,

mA

U @

280 2

34

5

78

9 106.0 100 x 2.1 mm, 1.9 µm

• Accela UHPLC system

• 1000 bar pressure limit

1.25 min at 30% ACN, 30‐70% ACN in 9.25 min, 900 l/ i 920 b

0.0 5.0 10.0 min

0.0• 1000 bar pressure limit

•Maximal flow rate

1000 µL/min

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 888

900 µl/min, 920 bar.

Optimized UHPLC‐MS method0

nm

25.06

7 8

UV-detection • LTQ‐Orbitrap XL mass spectrometer  

• Maximum resolution of 100,000

4 S / t R 15 000

mA

U @

280 1 2

3

4

7 89105

• 4 Scans/s at R = 15,000

• Mass accuracy < 1 ppm

106

0.0

10 0

0 0.5 2.5 min1.5 2.01.0

y [c

ou

nts

]x1 10.0 negESI-MS detection

20‐fold reduction of nal

in

ten

sity

total analysis time from 60 to 3 min !

Sig

n

0.00.0 0.5 2.5 min1.5 2.01.0

30‐80% acetonitrile in 0.1 % formic acid i 2 1 i 1000 l/ i 620 b 60°C

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 999

in 2.1 min, 1000 µl/min, 620 bar, 60°C.

Reproducibility of the ultrafast method

3.50% Retention timePeak area (UV)

2.50%

3.00%Peak area (UV)Peak area (MS)Mass deviation ppm

1.50%

2.00%

0 50%

1.00%

0.00%

0.50%

Day1 Day2 Day3 Day1-3Day1 Day2 Day3 Day1 3

∑ 60 measurements

0.5%=0.01 min (0.6 s) in 2 min, 0.5 ppm =0.00035 Da in 700 Da!

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 10

0.5% 0.01 min (0.6 s) in 2 min, 0.5 ppm  0.00035 Da in 700 Da!

High‐end separations reaching instrumental limits

25.0n

m• System Accela I• 30‐80% ACN + 0.1 % FA in 2.1 min• Maximum flow rate of 1000 µL/min• Column backpressure 620 bar (1000

6

78

mA

U @

280

n • Column backpressure 620 bar (1000 bar pressure maximum)

• Column temperature 60 °C

1 2

3

4

8

9105

0.00.0 0.5 2.5 min1.5 2.01.0

m

15.0

nm

Gradient volume principle!

mA

U @

280

n

• System Accela II• 30‐80% ACN + 0.1 % FA in 1.05 min

0.00.0 0.25 1.25 min0.75 1.00.5

m • Maximum flow rate of 2000 µL/min• Column backpressure 1210 bar

(1250 bar pressure maximum)• Column temperature 60 °C

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 111111

Column lifetime under UHPLC conditions

Hypersil GOLD

column number

Total injection number without sigificant loss in column efficiency

Blankinjections

StandardInjections

(20 – 200 ppm)

Thyroid hormoneInjections(2000 ppm)

column efficiency( pp ) ( pp )

1 2050 200 450 1400

2 1200 500 400 300

3 3300 2500 400 400

Average 2180 1060 420 700

26 6Column 1 UHPLC di i f ll

0

132 3

4

57

9 1081

Column 1 after 2050 injections

UHPLC conditions of all measurements:

•Hypersil GOLD, 100 x 2.1 mm; 1.9 µm•Maximum flow rate of 1000 µL/min•Column backpressure 620 barm

AU

]

0

0

1.5 3.0 min

•Column backpressure 620 bar•Column temperature 60 °C

A well packed UHPLC column300

al i

nte

nsi

ty [

1 2 34 5 6

After 3 injectionsAfter 3100 injections

Column 2

tolerates more than 2000 injections 

under UHPLC conditions!

0

0

150

1 0 2 0 3 0

Sig

na After 3100 injections

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 12

0 1.0 2.0 3.0

Higher information content: interfacing to high‐resolutionmass spectrometrymass spectrometry

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 13

Instrumental platforms

Accela‐Exactive:

• max. resolution of 100.000 

• 1 scan per s @ R=100.000

Accela‐LTQ Orbitrap XL:

• max. resolution of 100,000

• 4 scans/s @ R=15,000

• 10 scans per s @ R=10.000

• < 1 ppm mass accuracy

• No MSn possibility

• 0.5 scans/s @ R=100.000

• < 1 ppm mass accuracy

• MSn possibility

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 14

p y p y

Analysis of thermally stressed Thyroxin

1.55 min

Base peak chromatogram

Thyroxin

1 2 3 min0

3

4

5 78

9

10817 69762.65

Scan Nr. 2

6

731 65

Scan Nr. 12

1.53 1.55 1.58 min

1

10

112817.69

745.6712 762.65

774.65745.67

731.65

775 850 m/z700

745.67Scan Nr. 6

750 800 m/z700

750 800 m/z700

I it tt th 300 d t t d !

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 151515

Impurity pattern: more than 300 masses detected !

From accurate mass to structure

www.ich‐bin‐dann‐mal‐schlank.de/magazin_v2/wp‐content/uploads/2011/06/IBDMS‐Waage‐help‐450x298.jpgh b d / h bl /

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 16

thumbs.dreamstime.com/thumblarge_401/124292109408v6qR.jpg

Simplification of impurity patternStep 1: Generation of molecular formulas from accurate masses.

f id d ki l i312 candidates

Software‐aided ranking applying:

• limited elements (C,H,O,N,I,Na)•< 2ppm mass accuracy Nit l i it

even‐ 0.3209.5C14H8O3NI4

e‐Δ ppmRDBMolecular formula

• Nitrogen rule , ion parity

m/z = 

Accurate mass:

odd‐ 1.9964.0CHO15N8I3

odd1.48110.0C12H6O2N4I4

i f i l d d i l i

745.66860

[M-H]-

745.66774

Comparison of simulated and experimental isotope pattern:

[M-H]-

745.66860

267 candidates left749 m/z745 747 749 m/z745 747

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 17

Simplification of impurity patternStep 2: Assembly of molecular formulas deriving from different species of the same compound.

267 candidates

p

Ordering of molecular formulasby retention time

RT: 1.78 min

[M‐H]‐ Found impurityC14 H7 O4 I4

[M‐H‐CO2]‐

[2M‐2H+Na]‐

[2M‐H]‐

[ ]

Sodium adductC28 H14 O8 I8 Na

Gas phase dimerC28 H15 O8 I8

ESI‐fragmentC13H7O

2I4

p y14 7 4 4

Identification of related molecularformulas

[ 2] g13 7 2 4

180 candidates left[M‐H]‐ Σ peak areaC14 H7 O4 I4

Assembly andsummation of peak area

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 18

Simplification of impurity patternStep 3:  Check of chemical plausibility of molecular formulas NH2

COOR

Thyroxin

180 candidatesplausibleThermal

stressing

COO

HO

C15H10O5NI4O

I

INH2

Thyroxin

NH2

COOR

HO OH

HOnot plausible

Hydrate!

O2

hardly oxidizable

I

HO I COO

oxidizable

For a specific number of carbon atoms in a molecularformula only a limited number of oxygen is plausible!

C15H10O7NI4

ycore structure side chain

formula, only a limited number of oxygen is plausible!(Erlenmeyer rule)

Result of step 1‐3: 

145 candidates left

•Massive reduction of impurity number:    312           145

•Minimal loss of overall peak area :           100 %        96 %

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 19

Impurity distribution according to reaction pathways

Degradation pathways:

Deiodination Oxidation / side chain degradation + deiodinationOxidation / side chain degradation

Quantitative distributionaccording to relative peak area

Qualitative distributionaccording to number of compounds

MonomersDimers

MonomersDimers

O id ti d id h i d d tiR ti b t d di

Monomers

Dimers

Oxidation and side chain degradationrepresented by 84 % of peak area. 

Ratio between monomers and dimers: 46 to 54 %.

Comparison of absolute peak areas:Comparison of absolute peak areas:

• 20 main impurities make up 91 % of the total impurity peak area

• 16 of the main impurites derive from oxidation / side chain degradation

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 20

16 of the main impurites derive from oxidation / side chain degradation

Conclusions

Small particles enable ultra‐fast separationsp pat high flow rates (UHPLC).

A t d t ti i i di bl f Accurate mass detection is indispensable for the characterization of unknown impurities. 

High‐resolution fragmentation is a powerful toolfor structure elucidation.

The coupling of UHPLC and HRMS opens up new perspectives in pharmaceutical quality controlperspectives in pharmaceutical quality control(productivity, cost & resource control).

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 21

Acknowledgments

Instrumental support: 

Department of Molecular BiologyDivision of Chemistry and Bioanalytics 22